ocaml/typing/typecore.ml

5623 lines
208 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Typechecking for the core language *)
open Misc
open Asttypes
open Parsetree
open Types
open Typedtree
open Btype
open Ctype
type type_forcing_context =
| If_conditional
| If_no_else_branch
| While_loop_conditional
| While_loop_body
| For_loop_start_index
| For_loop_stop_index
| For_loop_body
| Assert_condition
| Sequence_left_hand_side
| When_guard
type type_expected = {
ty: type_expr;
explanation: type_forcing_context option;
}
module Datatype_kind = struct
type t = Record | Variant
let type_name = function
| Record -> "record"
| Variant -> "variant"
let label_name = function
| Record -> "field"
| Variant -> "constructor"
end
type wrong_name = {
type_path: Path.t;
kind: Datatype_kind.t;
name: string loc;
valid_names: string list;
}
type existential_restriction =
| At_toplevel (** no existential types at the toplevel *)
| In_group (** nor with let ... and ... *)
| In_rec (** or recursive definition *)
| With_attributes (** or let[@any_attribute] = ... *)
| In_class_args (** or in class arguments *)
| In_class_def (** or in [class c = let ... in ...] *)
| In_self_pattern (** or in self pattern *)
type error =
| Constructor_arity_mismatch of Longident.t * int * int
| Label_mismatch of Longident.t * Ctype.Unification_trace.t
| Pattern_type_clash :
Ctype.Unification_trace.t * _ pattern_desc option -> error
| Or_pattern_type_clash of Ident.t * Ctype.Unification_trace.t
| Multiply_bound_variable of string
| Orpat_vars of Ident.t * Ident.t list
| Expr_type_clash of
Ctype.Unification_trace.t * type_forcing_context option
* expression_desc option
| Apply_non_function of type_expr
| Apply_wrong_label of arg_label * type_expr * bool
| Label_multiply_defined of string
| Label_missing of Ident.t list
| Label_not_mutable of Longident.t
| Wrong_name of string * type_expected * wrong_name
| Name_type_mismatch of
Datatype_kind.t * Longident.t * (Path.t * Path.t) * (Path.t * Path.t) list
| Invalid_format of string
| Undefined_method of type_expr * string * string list option
| Undefined_inherited_method of string * string list
| Virtual_class of Longident.t
| Private_type of type_expr
| Private_label of Longident.t * type_expr
| Private_constructor of constructor_description * type_expr
| Unbound_instance_variable of string * string list
| Instance_variable_not_mutable of string
| Not_subtype of Ctype.Unification_trace.t * Ctype.Unification_trace.t
| Outside_class
| Value_multiply_overridden of string
| Coercion_failure of
type_expr * type_expr * Ctype.Unification_trace.t * bool
| Too_many_arguments of bool * type_expr * type_forcing_context option
| Abstract_wrong_label of arg_label * type_expr * type_forcing_context option
| Scoping_let_module of string * type_expr
| Not_a_variant_type of Longident.t
| Incoherent_label_order
| Less_general of string * Ctype.Unification_trace.t
| Modules_not_allowed
| Cannot_infer_signature
| Not_a_packed_module of type_expr
| Unexpected_existential of existential_restriction * string * string list
| Invalid_interval
| Invalid_for_loop_index
| No_value_clauses
| Exception_pattern_disallowed
| Mixed_value_and_exception_patterns_under_guard
| Inlined_record_escape
| Inlined_record_expected
| Unrefuted_pattern of pattern
| Invalid_extension_constructor_payload
| Not_an_extension_constructor
| Literal_overflow of string
| Unknown_literal of string * char
| Illegal_letrec_pat
| Illegal_letrec_expr
| Illegal_class_expr
| Letop_type_clash of string * Ctype.Unification_trace.t
| Andop_type_clash of string * Ctype.Unification_trace.t
| Bindings_type_clash of Ctype.Unification_trace.t
exception Error of Location.t * Env.t * error
exception Error_forward of Location.error
let trace_of_error = function
Label_mismatch (_,tr)
| Pattern_type_clash (tr,_)
| Or_pattern_type_clash (_,tr)
| Expr_type_clash (tr,_,_)
| Coercion_failure (_,_,tr,_)
| Less_general (_,tr)
| Letop_type_clash (_,tr)
| Andop_type_clash (_,tr)
| Bindings_type_clash tr -> Some tr
| _ -> None
(* Forward declaration, to be filled in by Typemod.type_module *)
let type_module =
ref ((fun _env _md -> assert false) :
Env.t -> Parsetree.module_expr -> Typedtree.module_expr)
(* Forward declaration, to be filled in by Typemod.type_open *)
let type_open :
(?used_slot:bool ref -> override_flag -> Env.t -> Location.t ->
Longident.t loc -> Path.t * Env.t)
ref =
ref (fun ?used_slot:_ _ -> assert false)
let type_open_decl :
(?used_slot:bool ref -> Env.t -> Parsetree.open_declaration
-> open_declaration * Types.signature * Env.t)
ref =
ref (fun ?used_slot:_ _ -> assert false)
(* Forward declaration, to be filled in by Typemod.type_package *)
let type_package =
ref (fun _ -> assert false)
(* Forward declaration, to be filled in by Typeclass.class_structure *)
let type_object =
ref (fun _env _s -> assert false :
Env.t -> Location.t -> Parsetree.class_structure ->
Typedtree.class_structure * Types.class_signature * string list)
(*
Saving and outputting type information.
We keep these function names short, because they have to be
called each time we create a record of type [Typedtree.expression]
or [Typedtree.pattern] that will end up in the typed AST.
*)
let re node =
Cmt_format.add_saved_type (Cmt_format.Partial_expression node);
node
;;
let rp node =
Cmt_format.add_saved_type (Cmt_format.Partial_pattern (Value, node));
node
;;
let rcp node =
Cmt_format.add_saved_type (Cmt_format.Partial_pattern (Computation, node));
node
;;
type recarg =
| Allowed
| Required
| Rejected
let mk_expected ?explanation ty = { ty; explanation; }
let case lhs rhs =
{c_lhs = lhs; c_guard = None; c_rhs = rhs}
(* Typing of constants *)
let type_constant = function
Const_int _ -> instance Predef.type_int
| Const_char _ -> instance Predef.type_char
| Const_string _ -> instance Predef.type_string
| Const_float _ -> instance Predef.type_float
| Const_int32 _ -> instance Predef.type_int32
| Const_int64 _ -> instance Predef.type_int64
| Const_nativeint _ -> instance Predef.type_nativeint
let constant : Parsetree.constant -> (Asttypes.constant, error) result =
function
| Pconst_integer (i,None) ->
begin
try Ok (Const_int (Misc.Int_literal_converter.int i))
with Failure _ -> Error (Literal_overflow "int")
end
| Pconst_integer (i,Some 'l') ->
begin
try Ok (Const_int32 (Misc.Int_literal_converter.int32 i))
with Failure _ -> Error (Literal_overflow "int32")
end
| Pconst_integer (i,Some 'L') ->
begin
try Ok (Const_int64 (Misc.Int_literal_converter.int64 i))
with Failure _ -> Error (Literal_overflow "int64")
end
| Pconst_integer (i,Some 'n') ->
begin
try Ok (Const_nativeint (Misc.Int_literal_converter.nativeint i))
with Failure _ -> Error (Literal_overflow "nativeint")
end
| Pconst_integer (i,Some c) -> Error (Unknown_literal (i, c))
| Pconst_char c -> Ok (Const_char c)
| Pconst_string (s,loc,d) -> Ok (Const_string (s,loc,d))
| Pconst_float (f,None)-> Ok (Const_float f)
| Pconst_float (f,Some c) -> Error (Unknown_literal (f, c))
let constant_or_raise env loc cst =
match constant cst with
| Ok c -> c
| Error err -> raise (Error (loc, env, err))
(* Specific version of type_option, using newty rather than newgenty *)
let type_option ty =
newty (Tconstr(Predef.path_option,[ty], ref Mnil))
let mkexp exp_desc exp_type exp_loc exp_env =
{ exp_desc; exp_type; exp_loc; exp_env; exp_extra = []; exp_attributes = [] }
let option_none env ty loc =
let lid = Longident.Lident "None" in
let cnone = Env.find_ident_constructor Predef.ident_none env in
mkexp (Texp_construct(mknoloc lid, cnone, [])) ty loc env
let option_some env texp =
let lid = Longident.Lident "Some" in
let csome = Env.find_ident_constructor Predef.ident_some env in
mkexp ( Texp_construct(mknoloc lid , csome, [texp]) )
(type_option texp.exp_type) texp.exp_loc texp.exp_env
let extract_option_type env ty =
match expand_head env ty with {desc = Tconstr(path, [ty], _)}
when Path.same path Predef.path_option -> ty
| _ -> assert false
let extract_concrete_record env ty =
match extract_concrete_typedecl env ty with
(p0, p, {type_kind=Type_record (fields, _)}) -> (p0, p, fields)
| _ -> raise Not_found
let extract_concrete_variant env ty =
match extract_concrete_typedecl env ty with
(p0, p, {type_kind=Type_variant cstrs}) -> (p0, p, cstrs)
| (p0, p, {type_kind=Type_open}) -> (p0, p, [])
| _ -> raise Not_found
let extract_label_names env ty =
try
let (_, _,fields) = extract_concrete_record env ty in
List.map (fun l -> l.Types.ld_id) fields
with Not_found ->
assert false
(* Typing of patterns *)
(* unification inside type_exp and type_expect *)
let unify_exp_types loc env ty expected_ty =
(* Format.eprintf "@[%a@ %a@]@." Printtyp.raw_type_expr exp.exp_type
Printtyp.raw_type_expr expected_ty; *)
try
unify env ty expected_ty
with
Unify trace ->
raise(Error(loc, env, Expr_type_clash(trace, None, None)))
| Tags(l1,l2) ->
raise(Typetexp.Error(loc, env, Typetexp.Variant_tags (l1, l2)))
(* level at which to create the local type declarations *)
let gadt_equations_level = ref None
let get_gadt_equations_level () =
match !gadt_equations_level with
Some y -> y
| None -> assert false
let nothing_equated = TypePairs.create 0
(* unification inside type_pat*)
let unify_pat_types_return_equated_pairs ?(refine = None) loc env ty ty' =
try
match refine with
| Some allow_recursive ->
unify_gadt ~equations_level:(get_gadt_equations_level ())
~allow_recursive env ty ty'
| None ->
unify !env ty ty';
nothing_equated
with
| Unify trace ->
raise(Error(loc, !env, Pattern_type_clash(trace, None)))
| Tags(l1,l2) ->
raise(Typetexp.Error(loc, !env, Typetexp.Variant_tags (l1, l2)))
let unify_pat_types ?refine loc env ty ty' =
ignore (unify_pat_types_return_equated_pairs ?refine loc env ty ty')
let unify_pat ?refine env pat expected_ty =
try unify_pat_types ?refine pat.pat_loc env pat.pat_type expected_ty
with Error (loc, env, Pattern_type_clash(trace, None)) ->
raise(Error(loc, env, Pattern_type_clash(trace, Some pat.pat_desc)))
(* Creating new conjunctive types is not allowed when typing patterns *)
(* make all Reither present in open variants *)
let finalize_variant pat tag opat r =
let row =
match expand_head pat.pat_env pat.pat_type with
{desc = Tvariant row} -> r := row; row_repr row
| _ -> assert false
in
begin match row_field tag row with
| Rabsent -> () (* assert false *)
| Reither (true, [], _, e) when not row.row_closed ->
set_row_field e (Rpresent None)
| Reither (false, ty::tl, _, e) when not row.row_closed ->
set_row_field e (Rpresent (Some ty));
begin match opat with None -> assert false
| Some pat ->
let env = ref pat.pat_env in List.iter (unify_pat env pat) (ty::tl)
end
| Reither (c, _l, true, e) when not (row_fixed row) ->
set_row_field e (Reither (c, [], false, ref None))
| _ -> ()
end
(* Force check of well-formedness WHY? *)
(* unify_pat pat.pat_env pat
(newty(Tvariant{row_fields=[]; row_more=newvar(); row_closed=false;
row_bound=(); row_fixed=false; row_name=None})); *)
let has_variants p =
exists_general_pattern
{ f = fun (type k) (p : k general_pattern) -> match p.pat_desc with
| (Tpat_variant _) -> true
| _ -> false } p
let finalize_variants p =
iter_general_pattern
{ f = fun (type k) (p : k general_pattern) -> match p.pat_desc with
| Tpat_variant(tag, opat, r) ->
finalize_variant p tag opat r
| _ -> () } p
(* pattern environment *)
type pattern_variable =
{
pv_id: Ident.t;
pv_type: type_expr;
pv_loc: Location.t;
pv_as_var: bool;
pv_attributes: attributes;
}
type module_variable =
string loc * Location.t
let pattern_variables = ref ([] : pattern_variable list)
let pattern_force = ref ([] : (unit -> unit) list)
let allow_modules = ref false
let module_variables = ref ([] : module_variable list)
let reset_pattern allow =
pattern_variables := [];
pattern_force := [];
allow_modules := allow;
module_variables := [];
;;
let maybe_add_pattern_variables_ghost loc_let env pv =
List.fold_right
(fun {pv_id; _} env ->
let name = Ident.name pv_id in
if Env.bound_value name env then env
else begin
Env.enter_unbound_value name
(Val_unbound_ghost_recursive loc_let) env
end
) pv env
let enter_variable ?(is_module=false) ?(is_as_variable=false) loc name ty
attrs =
if List.exists (fun {pv_id; _} -> Ident.name pv_id = name.txt)
!pattern_variables
then raise(Error(loc, Env.empty, Multiply_bound_variable name.txt));
let id = Ident.create_local name.txt in
pattern_variables :=
{pv_id = id;
pv_type = ty;
pv_loc = loc;
pv_as_var = is_as_variable;
pv_attributes = attrs} :: !pattern_variables;
if is_module then begin
(* Note: unpack patterns enter a variable of the same name *)
if not !allow_modules then
raise (Error (loc, Env.empty, Modules_not_allowed));
module_variables := (name, loc) :: !module_variables
end;
id
let sort_pattern_variables vs =
List.sort
(fun {pv_id = x; _} {pv_id = y; _} ->
Stdlib.compare (Ident.name x) (Ident.name y))
vs
let enter_orpat_variables loc env p1_vs p2_vs =
(* unify_vars operate on sorted lists *)
let p1_vs = sort_pattern_variables p1_vs
and p2_vs = sort_pattern_variables p2_vs in
let rec unify_vars p1_vs p2_vs =
let vars vs = List.map (fun {pv_id; _} -> pv_id) vs in
match p1_vs, p2_vs with
| {pv_id = x1; pv_type = t1; _}::rem1, {pv_id = x2; pv_type = t2; _}::rem2
when Ident.equal x1 x2 ->
if x1==x2 then
unify_vars rem1 rem2
else begin
begin try
unify_var env (newvar ()) t1;
unify env t1 t2
with
| Unify trace ->
raise(Error(loc, env, Or_pattern_type_clash(x1, trace)))
end;
(x2,x1)::unify_vars rem1 rem2
end
| [],[] -> []
| {pv_id; _}::_, [] | [],{pv_id; _}::_ ->
raise (Error (loc, env, Orpat_vars (pv_id, [])))
| {pv_id = x; _}::_, {pv_id = y; _}::_ ->
let err =
if Ident.name x < Ident.name y
then Orpat_vars (x, vars p2_vs)
else Orpat_vars (y, vars p1_vs) in
raise (Error (loc, env, err)) in
unify_vars p1_vs p2_vs
let rec build_as_type env p =
let as_ty = build_as_type_aux env p in
(* Cf. #1655 *)
List.fold_left (fun as_ty (extra, _loc, _attrs) ->
match extra with
| Tpat_type _ | Tpat_open _ | Tpat_unpack -> as_ty
| Tpat_constraint cty ->
(* [generic_instance] can only be used if the variables of the original
type ([cty.ctyp_type] here) are not at [generic_level], which they are
here.
If we used [generic_instance] we would lose the sharing between
[instance ty] and [ty]. *)
begin_def ();
let ty = instance cty.ctyp_type in
end_def ();
generalize_structure ty;
(* This call to unify can't fail since the pattern is well typed. *)
unify !env (instance as_ty) (instance ty);
ty
) as_ty p.pat_extra
and build_as_type_aux env p =
match p.pat_desc with
Tpat_alias(p1,_, _) -> build_as_type env p1
| Tpat_tuple pl ->
let tyl = List.map (build_as_type env) pl in
newty (Ttuple tyl)
| Tpat_construct(_, cstr, pl) ->
let keep = cstr.cstr_private = Private || cstr.cstr_existentials <> [] in
if keep then p.pat_type else
let tyl = List.map (build_as_type env) pl in
let ty_args, ty_res = instance_constructor cstr in
List.iter2 (fun (p,ty) -> unify_pat env {p with pat_type = ty})
(List.combine pl tyl) ty_args;
ty_res
| Tpat_variant(l, p', _) ->
let ty = Option.map (build_as_type env) p' in
newty (Tvariant{row_fields=[l, Rpresent ty]; row_more=newvar();
row_bound=(); row_name=None;
row_fixed=None; row_closed=false})
| Tpat_record (lpl,_) ->
let lbl = snd3 (List.hd lpl) in
if lbl.lbl_private = Private then p.pat_type else
let ty = newvar () in
let ppl = List.map (fun (_, l, p) -> l.lbl_pos, p) lpl in
let do_label lbl =
let _, ty_arg, ty_res = instance_label false lbl in
unify_pat env {p with pat_type = ty} ty_res;
let refinable =
lbl.lbl_mut = Immutable && List.mem_assoc lbl.lbl_pos ppl &&
match (repr lbl.lbl_arg).desc with Tpoly _ -> false | _ -> true in
if refinable then begin
let arg = List.assoc lbl.lbl_pos ppl in
unify_pat env {arg with pat_type = build_as_type env arg} ty_arg
end else begin
let _, ty_arg', ty_res' = instance_label false lbl in
unify !env ty_arg ty_arg';
unify_pat env p ty_res'
end in
Array.iter do_label lbl.lbl_all;
ty
| Tpat_or(p1, p2, row) ->
begin match row with
None ->
let ty1 = build_as_type env p1 and ty2 = build_as_type env p2 in
unify_pat env {p2 with pat_type = ty2} ty1;
ty1
| Some row ->
let row = row_repr row in
newty (Tvariant{row with row_closed=false; row_more=newvar()})
end
| Tpat_any | Tpat_var _ | Tpat_constant _
| Tpat_array _ | Tpat_lazy _ -> p.pat_type
let build_or_pat env loc lid =
let path, decl = Env.lookup_type ~loc:lid.loc lid.txt env in
let tyl = List.map (fun _ -> newvar()) decl.type_params in
let row0 =
let ty = expand_head env (newty(Tconstr(path, tyl, ref Mnil))) in
match ty.desc with
Tvariant row when static_row row -> row
| _ -> raise(Error(lid.loc, env, Not_a_variant_type lid.txt))
in
let pats, fields =
List.fold_left
(fun (pats,fields) (l,f) ->
match row_field_repr f with
Rpresent None ->
(l,None) :: pats,
(l, Reither(true,[], true, ref None)) :: fields
| Rpresent (Some ty) ->
(l, Some {pat_desc=Tpat_any; pat_loc=Location.none; pat_env=env;
pat_type=ty; pat_extra=[]; pat_attributes=[]})
:: pats,
(l, Reither(false, [ty], true, ref None)) :: fields
| _ -> pats, fields)
([],[]) (row_repr row0).row_fields in
let row =
{ row_fields = List.rev fields; row_more = newvar(); row_bound = ();
row_closed = false; row_fixed = None; row_name = Some (path, tyl) }
in
let ty = newty (Tvariant row) in
let gloc = {loc with Location.loc_ghost=true} in
let row' = ref {row with row_more=newvar()} in
let pats =
List.map
(fun (l,p) ->
{pat_desc=Tpat_variant(l,p,row'); pat_loc=gloc;
pat_env=env; pat_type=ty; pat_extra=[]; pat_attributes=[]})
pats
in
match pats with
[] ->
(* empty polymorphic variants: not possible with the concrete language
but valid at the ast level *)
raise(Error(lid.loc, env, Not_a_variant_type lid.txt))
| pat :: pats ->
let r =
List.fold_left
(fun pat pat0 ->
{pat_desc=Tpat_or(pat0,pat,Some row0); pat_extra=[];
pat_loc=gloc; pat_env=env; pat_type=ty; pat_attributes=[]})
pat pats in
(path, rp { r with pat_loc = loc },ty)
let split_cases env cases =
let add_case lst case = function
| None -> lst
| Some c_lhs -> { case with c_lhs } :: lst
in
List.fold_right (fun ({ c_lhs; c_guard } as case) (vals, exns) ->
match split_pattern c_lhs with
| Some _, Some _ when c_guard <> None ->
raise (Error (c_lhs.pat_loc, env,
Mixed_value_and_exception_patterns_under_guard))
| vp, ep -> add_case vals case vp, add_case exns case ep
) cases ([], [])
(* Type paths *)
let rec expand_path env p =
let decl =
try Some (Env.find_type p env) with Not_found -> None
in
match decl with
Some {type_manifest = Some ty} ->
begin match repr ty with
{desc=Tconstr(p,_,_)} -> expand_path env p
| _ -> assert false
end
| _ ->
let p' = Env.normalize_type_path None env p in
if Path.same p p' then p else expand_path env p'
let compare_type_path env tpath1 tpath2 =
Path.same (expand_path env tpath1) (expand_path env tpath2)
(* Records *)
exception Wrong_name_disambiguation of Env.t * wrong_name
let get_constr_type_path ty =
match (repr ty).desc with
| Tconstr(p, _, _) -> p
| _ -> assert false
module NameChoice(Name : sig
type t
type usage
val kind: Datatype_kind.t
val get_name: t -> string
val get_type: t -> type_expr
val lookup_all_from_type:
Location.t -> usage -> Path.t -> Env.t -> (t * (unit -> unit)) list
(** Some names (for example the fields of inline records) are not
in the typing environment -- they behave as structural labels
rather than nominal labels.*)
val in_env: t -> bool
end) = struct
open Name
let get_type_path d = get_constr_type_path (get_type d)
let lookup_from_type env type_path usage lid =
let descrs = lookup_all_from_type lid.loc usage type_path env in
match lid.txt with
| Longident.Lident name -> begin
match
List.find (fun (nd, _) -> get_name nd = name) descrs
with
| descr, use ->
use ();
descr
| exception Not_found ->
let valid_names = List.map (fun (nd, _) -> get_name nd) descrs in
raise (Wrong_name_disambiguation (env, {
type_path;
name = { lid with txt = name };
kind;
valid_names;
}))
end
| _ -> raise Not_found
let rec unique eq acc = function
[] -> List.rev acc
| x :: rem ->
if List.exists (eq x) acc then unique eq acc rem
else unique eq (x :: acc) rem
let ambiguous_types env lbl others =
let tpath = get_type_path lbl in
let others =
List.map (fun (lbl, _) -> get_type_path lbl) others in
let tpaths = unique (compare_type_path env) [tpath] others in
match tpaths with
[_] -> []
| _ -> let open Printtyp in
wrap_printing_env ~error:true env (fun () ->
reset(); strings_of_paths Type tpaths)
let disambiguate_by_type env tpath lbls =
match lbls with
| (Error _ : _ result) -> raise Not_found
| Ok lbls ->
let check_type (lbl, _) =
let lbl_tpath = get_type_path lbl in
compare_type_path env tpath lbl_tpath
in
List.find check_type lbls
(* warn if there are several distinct candidates in scope *)
let warn_if_ambiguous warn lid env lbl rest =
Printtyp.Conflicts.reset ();
let paths = ambiguous_types env lbl rest in
let expansion =
Format.asprintf "%t" Printtyp.Conflicts.print_explanations in
if paths <> [] then
warn lid.loc
(Warnings.Ambiguous_name ([Longident.last lid.txt],
paths, false, expansion))
(* a non-principal type was used for disambiguation *)
let warn_non_principal warn lid =
let name = Datatype_kind.label_name kind in
warn lid.loc
(Warnings.Not_principal
("this type-based " ^ name ^ " disambiguation"))
(* we selected a name out of the lexical scope *)
let warn_out_of_scope warn lid env tpath =
let path_s =
Printtyp.wrap_printing_env ~error:true env
(fun () -> Printtyp.string_of_path tpath) in
warn lid.loc
(Warnings.Name_out_of_scope (path_s, [Longident.last lid.txt], false))
(* warn if the selected name is not the last introduced in scope
-- in these cases the resolution is different from pre-disambiguation OCaml
(this warning is not enabled by default, it is specifically for people
wishing to write backward-compatible code).
*)
let warn_if_disambiguated_name warn lid lbl scope =
match scope with
| Ok ((lab1,_) :: _) when lab1 == lbl -> ()
| _ ->
warn lid.loc
(Warnings.Disambiguated_name (get_name lbl))
let force_error : ('a, _) result -> 'a = function
| Ok lbls -> lbls
| Error (loc', env', err) ->
Env.lookup_error loc' env' err
type candidate = t * (unit -> unit)
type nonempty_candidate_filter =
candidate list -> (candidate list, candidate list) result
(** This type is used for candidate filtering functions.
Filtering typically proceeds in several passes, filtering
candidates through increasingly precise conditions.
We assume that the input list is non-empty, and the output is one of
- [Ok result] for a non-empty list [result] of valid candidates
- [Error candidates] with there are no valid candidates,
and [candidates] is a non-empty subset of the input, typically
the result of the last non-empty filtering step.
*)
(** [disambiguate] selects a concrete description for [lid] using
some contextual information:
- An optional [expected_type].
- A list of candidates labels in the current lexical scope,
[candidates_in_scope], that is actually at the type
[(label_descr list, lookup_error) result] so that the
lookup error is only raised when necessary.
- A filtering criterion on candidates in scope [filter_candidates],
representing extra contextual information that can help
candidate selection (see [disambiguate_label_by_ids]).
*)
let disambiguate
?(warn=Location.prerr_warning)
?(filter : nonempty_candidate_filter = Result.ok)
usage lid env
expected_type
candidates_in_scope =
let lbl = match expected_type with
| None ->
(* no expected type => no disambiguation *)
begin match filter (force_error candidates_in_scope) with
| Ok [] | Error [] -> assert false
| Error((lbl, _use) :: _rest) -> lbl (* will fail later *)
| Ok((lbl, use) :: rest) ->
use ();
warn_if_ambiguous warn lid env lbl rest;
lbl
end
| Some(tpath0, tpath, principal) ->
(* If [expected_type] is available, the candidate selected
will correspond to the type-based resolution.
There are two reasons to still check the lexical scope:
- for warning purposes
- for extension types, the type environment does not contain
a list of constructors, so using only type-based selection
would fail.
*)
(* note that [disambiguate_by_type] does not
force [candidates_in_scope]: we just skip this case if there
are no candidates in scope *)
begin match disambiguate_by_type env tpath candidates_in_scope with
| lbl, use ->
use ();
if not principal then begin
(* Check if non-principal type is affecting result *)
match (candidates_in_scope : _ result) with
| Error _ -> warn_non_principal warn lid
| Ok lbls ->
match filter lbls with
| Error _ -> warn_non_principal warn lid
| Ok [] -> assert false
| Ok ((lbl', _use') :: rest) ->
let lbl_tpath = get_type_path lbl' in
(* no principality warning if the non-principal
type-based selection corresponds to the last
definition in scope *)
if not (compare_type_path env tpath lbl_tpath)
then warn_non_principal warn lid
else warn_if_ambiguous warn lid env lbl rest;
end;
lbl
| exception Not_found ->
(* look outside the lexical scope *)
match lookup_from_type env tpath usage lid with
| lbl ->
(* warn only on nominal labels;
structural labels cannot be qualified anyway *)
if in_env lbl then warn_out_of_scope warn lid env tpath;
if not principal then warn_non_principal warn lid;
lbl
| exception Not_found ->
match filter (force_error candidates_in_scope) with
| Ok lbls | Error lbls ->
let tp = (tpath0, expand_path env tpath) in
let tpl =
List.map
(fun (lbl, _) ->
let tp0 = get_type_path lbl in
let tp = expand_path env tp0 in
(tp0, tp))
lbls
in
raise (Error (lid.loc, env,
Name_type_mismatch (kind, lid.txt, tp, tpl)));
end
in
(* warn only on nominal labels *)
if in_env lbl then
warn_if_disambiguated_name warn lid lbl candidates_in_scope;
lbl
end
let wrap_disambiguate msg ty f x =
try f x with
| Wrong_name_disambiguation (env, wrong_name) ->
raise (Error (wrong_name.name.loc, env, Wrong_name (msg, ty, wrong_name)))
module Label = NameChoice (struct
type t = label_description
type usage = unit
let kind = Datatype_kind.Record
let get_name lbl = lbl.lbl_name
let get_type lbl = lbl.lbl_res
let lookup_all_from_type loc () path env =
Env.lookup_all_labels_from_type ~loc path env
let in_env lbl =
match lbl.lbl_repres with
| Record_regular | Record_float | Record_unboxed false -> true
| Record_unboxed true | Record_inlined _ | Record_extension _ -> false
end)
(* In record-construction expressions and patterns, we have many labels
at once; find a candidate type in the intersection of the candidates
of each label. In the [closed] expression case, this candidate must
contain exactly all the labels.
If our successive refinements result in an empty list,
return [Error] with the last non-empty list of candidates
for use in error messages.
*)
let disambiguate_label_by_ids closed ids labels : (_, _) result =
let check_ids (lbl, _) =
let lbls = Hashtbl.create 8 in
Array.iter (fun lbl -> Hashtbl.add lbls lbl.lbl_name ()) lbl.lbl_all;
List.for_all (Hashtbl.mem lbls) ids
and check_closed (lbl, _) =
(not closed || List.length ids = Array.length lbl.lbl_all)
in
match List.filter check_ids labels with
| [] -> Error labels
| labels ->
match List.filter check_closed labels with
| [] -> Error labels
| labels ->
Ok labels
(* Only issue warnings once per record constructor/pattern *)
let disambiguate_lid_a_list loc closed env expected_type lid_a_list =
let ids = List.map (fun (lid, _) -> Longident.last lid.txt) lid_a_list in
let w_pr = ref false and w_amb = ref []
and w_scope = ref [] and w_scope_ty = ref "" in
let warn loc msg =
let open Warnings in
match msg with
| Not_principal _ -> w_pr := true
| Ambiguous_name([s], l, _, ex) -> w_amb := (s, l, ex) :: !w_amb
| Name_out_of_scope(ty, [s], _) ->
w_scope := s :: !w_scope; w_scope_ty := ty
| _ -> Location.prerr_warning loc msg
in
let process_label lid =
let scope = Env.lookup_all_labels ~loc:lid.loc lid.txt env in
let filter : Label.nonempty_candidate_filter =
disambiguate_label_by_ids closed ids in
Label.disambiguate ~warn ~filter () lid env expected_type scope in
let lbl_a_list =
List.map (fun (lid,a) -> lid, process_label lid, a) lid_a_list in
if !w_pr then
Location.prerr_warning loc
(Warnings.Not_principal "this type-based record disambiguation")
else begin
match List.rev !w_amb with
(_,types,ex)::_ as amb ->
let paths =
List.map (fun (_,lbl,_) -> Label.get_type_path lbl) lbl_a_list in
let path = List.hd paths in
let fst3 (x,_,_) = x in
if List.for_all (compare_type_path env path) (List.tl paths) then
Location.prerr_warning loc
(Warnings.Ambiguous_name (List.map fst3 amb, types, true, ex))
else
List.iter
(fun (s,l,ex) -> Location.prerr_warning loc
(Warnings.Ambiguous_name ([s],l,false, ex)))
amb
| _ -> ()
end;
if !w_scope <> [] then
Location.prerr_warning loc
(Warnings.Name_out_of_scope (!w_scope_ty, List.rev !w_scope, true));
lbl_a_list
let rec find_record_qual = function
| [] -> None
| ({ txt = Longident.Ldot (modname, _) }, _) :: _ -> Some modname
| _ :: rest -> find_record_qual rest
let map_fold_cont f xs k =
List.fold_right (fun x k ys -> f x (fun y -> k (y :: ys)))
xs (fun ys -> k (List.rev ys)) []
let type_label_a_list
?labels loc closed env type_lbl_a expected_type lid_a_list k =
let lbl_a_list =
match lid_a_list, labels with
({txt=Longident.Lident s}, _)::_, Some labels when Hashtbl.mem labels s ->
(* Special case for rebuilt syntax trees *)
List.map
(function lid, a -> match lid.txt with
Longident.Lident s -> lid, Hashtbl.find labels s, a
| _ -> assert false)
lid_a_list
| _ ->
let lid_a_list =
match find_record_qual lid_a_list with
None -> lid_a_list
| Some modname ->
List.map
(fun (lid, a as lid_a) ->
match lid.txt with Longident.Lident s ->
{lid with txt=Longident.Ldot (modname, s)}, a
| _ -> lid_a)
lid_a_list
in
disambiguate_lid_a_list loc closed env expected_type lid_a_list
in
(* Invariant: records are sorted in the typed tree *)
let lbl_a_list =
List.sort
(fun (_,lbl1,_) (_,lbl2,_) -> compare lbl1.lbl_pos lbl2.lbl_pos)
lbl_a_list
in
map_fold_cont type_lbl_a lbl_a_list k
;;
(* Checks over the labels mentioned in a record pattern:
no duplicate definitions (error); properly closed (warning) *)
let check_recordpat_labels loc lbl_pat_list closed =
match lbl_pat_list with
| [] -> () (* should not happen *)
| (_, label1, _) :: _ ->
let all = label1.lbl_all in
let defined = Array.make (Array.length all) false in
let check_defined (_, label, _) =
if defined.(label.lbl_pos)
then raise(Error(loc, Env.empty, Label_multiply_defined label.lbl_name))
else defined.(label.lbl_pos) <- true in
List.iter check_defined lbl_pat_list;
if closed = Closed
&& Warnings.is_active (Warnings.Missing_record_field_pattern "")
then begin
let undefined = ref [] in
for i = 0 to Array.length all - 1 do
if not defined.(i) then undefined := all.(i).lbl_name :: !undefined
done;
if !undefined <> [] then begin
let u = String.concat ", " (List.rev !undefined) in
Location.prerr_warning loc (Warnings.Missing_record_field_pattern u)
end
end
(* Constructors *)
module Constructor = NameChoice (struct
type t = constructor_description
type usage = Env.constructor_usage
let kind = Datatype_kind.Variant
let get_name cstr = cstr.cstr_name
let get_type cstr = cstr.cstr_res
let lookup_all_from_type loc usage path env =
match Env.lookup_all_constructors_from_type ~loc usage path env with
| _ :: _ as x -> x
| [] ->
match (Env.find_type path env).type_kind with
| Type_open ->
(* Extension constructors cannot be found by looking at the type
declaration.
We scan the whole environment to get an accurate spellchecking
hint in the subsequent error message *)
let filter lbl =
compare_type_path env
path (get_constr_type_path @@ get_type lbl) in
let add_valid x acc = if filter x then (x,ignore)::acc else acc in
Env.fold_constructors add_valid None env []
| _ -> []
let in_env _ = true
end)
(* unification of a type with a tconstr with
freshly created arguments *)
let unify_head_only ~refine loc env ty constr =
let (_, ty_res) = instance_constructor constr in
let ty_res = repr ty_res in
match ty_res.desc with
| Tconstr(p,args,m) ->
ty_res.desc <- Tconstr(p,List.map (fun _ -> newvar ()) args,m);
enforce_constraints !env ty_res;
unify_pat_types ~refine loc env ty_res ty
| _ -> assert false
(* Typing of patterns *)
(* "half typed" cases are produced in [type_cases] when we've just typechecked
the pattern but haven't type-checked the body yet.
At this point we might have added some type equalities to the environment,
but haven't yet added identifiers bound by the pattern. *)
type 'case_pattern half_typed_case =
{ typed_pat: 'case_pattern;
pat_type_for_unif: type_expr;
untyped_case: Parsetree.case;
branch_env: Env.t;
pat_vars: pattern_variable list;
unpacks: module_variable list;
contains_gadt: bool; }
let rec has_literal_pattern p = match p.ppat_desc with
| Ppat_constant _
| Ppat_interval _ ->
true
| Ppat_any
| Ppat_variant (_, None)
| Ppat_construct (_, None)
| Ppat_type _
| Ppat_var _
| Ppat_unpack _
| Ppat_extension _ ->
false
| Ppat_exception p
| Ppat_variant (_, Some p)
| Ppat_construct (_, Some p)
| Ppat_constraint (p, _)
| Ppat_alias (p, _)
| Ppat_lazy p
| Ppat_open (_, p) ->
has_literal_pattern p
| Ppat_tuple ps
| Ppat_array ps ->
List.exists has_literal_pattern ps
| Ppat_record (ps, _) ->
List.exists (fun (_,p) -> has_literal_pattern p) ps
| Ppat_or (p, q) ->
has_literal_pattern p || has_literal_pattern q
let check_scope_escape loc env level ty =
try Ctype.check_scope_escape env level ty
with Unify trace ->
raise(Error(loc, env, Pattern_type_clash(trace, None)))
type pattern_checking_mode =
| Normal
(** We are checking user code. *)
| Counter_example of counter_example_checking_info
(** In [Counter_example] mode, we are checking a counter-example
candidate produced by Parmatch. This is a syntactic pattern that
represents a set of values by using or-patterns (p_1 | ... | p_n)
to enumerate all alternatives in the counter-example
search. These or-patterns occur at every choice point, possibly
deep inside the pattern.
Parmatch does not use type information, so this pattern may
exhibit two issues:
- some parts of the pattern may be ill-typed due to GADTs, and
- some wildcard patterns may not match any values: their type is
empty.
The aim of [type_pat] in the [Counter_example] mode is to refine
this syntactic pattern into a well-typed pattern, and ensure
that it matches at least one concrete value.
- It filters ill-typed branches of or-patterns.
(see {!splitting_mode} below)
- It tries to check that wildcard patterns are non-empty.
(see {!explosion_fuel})
*)
and counter_example_checking_info = {
explosion_fuel: int;
splitting_mode: splitting_mode;
constrs: (string, Types.constructor_description) Hashtbl.t;
labels: (string, Types.label_description) Hashtbl.t;
}
(**
[explosion_fuel] controls the checking of wildcard patterns. We
eliminate potentially-empty wildcard patterns by exploding them
into concrete sub-patterns, for example (K1 _ | K2 _) or
{ l1: _; l2: _ }. [explosion_fuel] is the depth limit on wildcard
explosion. Such depth limit is required to avoid non-termination
and compilation-time blowups.
[splitting_mode] controls the handling of or-patterns. In
[Counter_example] mode, we only need to select one branch that
leads to a well-typed pattern. Checking all branches is expensive,
we use different search strategies (see {!splitting_mode}) to
reduce the number of explored alternatives.
[constrs] and [labels] contain metadata produced by [Parmatch] to
type-check the given syntactic pattern. [Parmatch] produces
counter-examples by turning typed patterns into
[Parsetree.pattern]. In this process, constructor and label paths
are lost, and are replaced by generated strings. [constrs] and
[labels] map those synthetic names back to the typed descriptions
of the original names.
*)
(** Due to GADT constraints, an or-pattern produced within
a counter-example may have ill-typed branches. Consider for example
{[
type _ tag = Int : int tag | Bool : bool tag
]}
then [Parmatch] will propose the or-pattern [Int | Bool] whenever
a pattern of type [tag] is required to form a counter-example. For
example, a function expects a (int tag option) and only [None] is
handled by the user-written pattern. [Some (Int | Bool)] is not
well-typed in this context, only the sub-pattern [Some Int] is.
In this example, the expected type coming from the context
suffices to know which or-pattern branch must be chosen.
In the general case, choosing a branch can have non-local effects
on the typability of the term. For example, consider a tuple type
['a tag * ...'a...], where the first component is a GADT. All
constructor choices for this GADT lead to a well-typed branch in
isolation (['a] is unconstrained), but choosing one of them adds
a constraint on ['a] that may make the other tuple elements
ill-typed.
In general, after choosing each possible branch of the or-pattern,
[type_pat] has to check the rest of the pattern to tell if this
choice leads to a well-typed term. This may lead to an explosion
of typing/search work -- the rest of the term may in turn contain
alternatives.
We use careful strategies to try to limit counterexample-checking
time; [splitting_mode] represents those strategies.
*)
and splitting_mode =
| Backtrack_or
(** Always backtrack in or-patterns.
[Backtrack_or] selects a single alternative from an or-pattern
by using backtracking, trying to choose each branch in turn, and
to complete it into a valid sub-pattern. We call this
"splitting" the or-pattern.
We use this mode when looking for unused patterns or sub-patterns,
in particular to check a refutation clause (p -> .).
*)
| Refine_or of { inside_nonsplit_or: bool; }
(** Only backtrack when needed.
[Refine_or] tries another approach for refining or-pattern.
Instead of always splitting each or-pattern, It first attempts to
find branches that do not introduce new constraints (because they
do not contain GADT constructors). Those branches are such that,
if they fail, all other branches will fail.
If we find one such branch, we attempt to complete the subpattern
(checking what's outside the or-pattern), ignoring other
branches -- we never consider another branch choice again. If all
branches are constrained, it falls back to splitting the
or-pattern.
We use this mode when checking exhaustivity of pattern matching.
*)
(** This exception is only used internally within [type_pat_aux], in
counter-example mode, to jump back to the parent or-pattern in the
[Refine_or] strategy.
Such a parent exists precisely when [inside_nonsplit_or = true];
it's an invariant that we always setup an exception handler for
[Need_backtrack] when we set this flag. *)
exception Need_backtrack
(** This exception is only used internally within [type_pat_aux], in
counter-example mode. We use it to discard counter-example candidates
that do not match any value. *)
exception Empty_branch
type abort_reason = Adds_constraints | Empty
(** Remember current typing state for backtracking.
No variable information, as we only backtrack on
patterns without variables (cf. assert statements). *)
type state =
{ snapshot: Btype.snapshot;
levels: Ctype.levels;
env: Env.t; }
let save_state env =
{ snapshot = Btype.snapshot ();
levels = Ctype.save_levels ();
env = !env; }
let set_state s env =
Btype.backtrack s.snapshot;
Ctype.set_levels s.levels;
env := s.env
(** Find the first alternative in the tree of or-patterns for which
[f] does not raise an error. If all fail, the last error is
propagated *)
let rec find_valid_alternative f pat =
match pat.ppat_desc with
| Ppat_or(p1,p2) ->
(try find_valid_alternative f p1 with
| Empty_branch | Error _ -> find_valid_alternative f p2
)
| _ -> f pat
let no_explosion = function
| Normal -> Normal
| Counter_example info ->
Counter_example { info with explosion_fuel = 0 }
let get_splitting_mode = function
| Normal -> None
| Counter_example {splitting_mode} -> Some splitting_mode
let enter_nonsplit_or mode = match mode with
| Normal -> Normal
| Counter_example info ->
let splitting_mode = match info.splitting_mode with
| Backtrack_or ->
(* in Backtrack_or mode, or-patterns are always split *)
assert false
| Refine_or _ ->
Refine_or {inside_nonsplit_or = true}
in Counter_example { info with splitting_mode }
(** The typedtree has two distinct syntactic categories for patterns,
"value" patterns, matching on values, and "computation" patterns
that match on the effect of a computation -- typically, exception
patterns (exception p).
On the other hand, the parsetree has an unstructured representation
where all categories of patterns are mixed together. The
decomposition according to the value/computation structure has to
happen during type-checking.
We don't want to duplicate the type-checking logic in two different
functions, depending on the kind of pattern to be produced. In
particular, there are both value and computation or-patterns, and
the type-checking logic for or-patterns is horribly complex; having
it in two different places would be twice as horirble.
The solution is to pass a GADT tag to [type_pat] to indicate whether
a value or computation pattern is expected. This way, there is a single
place where [Ppat_or] nodes are type-checked, the checking logic is shared,
and only at the end do we inspect the tag to decide to produce a value
or computation pattern.
*)
let pure
: type k . k pattern_category -> value general_pattern -> k general_pattern
= fun category pat ->
match category with
| Value -> pat
| Computation -> as_computation_pattern pat
let only_impure
: type k . k pattern_category ->
computation general_pattern -> k general_pattern
= fun category pat ->
match category with
| Value ->
(* LATER: this exception could be renamed/generalized *)
raise (Error (pat.pat_loc, pat.pat_env,
Exception_pattern_disallowed))
| Computation -> pat
let as_comp_pattern
: type k . k pattern_category ->
k general_pattern -> computation general_pattern
= fun category pat ->
match category with
| Value -> as_computation_pattern pat
| Computation -> pat
(* type_pat propagates the expected type.
Unification may update the typing environment.
In counter-example mode, [Empty_branch] is raised when the counter-example
does not match any value. *)
let rec type_pat
: type k r . k pattern_category -> no_existentials:_ -> mode:_ ->
env:_ -> _ -> _ -> (k general_pattern -> r) -> r
= fun category ~no_existentials ~mode
~env sp expected_ty k ->
Builtin_attributes.warning_scope sp.ppat_attributes
(fun () ->
type_pat_aux category ~no_existentials ~mode
~env sp expected_ty k
)
and type_pat_aux
: type k r . k pattern_category -> no_existentials:_ -> mode:_ ->
env:_ -> _ -> _ -> (k general_pattern -> r) -> r
= fun category ~no_existentials ~mode
~env sp expected_ty k ->
let type_pat category ?(mode=mode) ?(env=env) =
type_pat category ~no_existentials ~mode ~env
in
let loc = sp.ppat_loc in
let refine =
match mode with Normal -> None | Counter_example _ -> Some true in
let unif (x : pattern) : pattern =
unify_pat ~refine env x (instance expected_ty);
x
in
let rp x =
let crp (x : k general_pattern) : k general_pattern =
match category with
| Value -> rp x
| Computation -> rcp x in
if mode = Normal then crp x else x in
let rp k x = k (rp x)
and rvp k x = k (rp (pure category x))
and rcp k x = k (rp (only_impure category x)) in
let construction_not_used_in_counterexamples = (mode = Normal) in
let must_backtrack_on_gadt = match get_splitting_mode mode with
| None -> false
| Some Backtrack_or -> false
| Some (Refine_or {inside_nonsplit_or}) -> inside_nonsplit_or
in
match sp.ppat_desc with
Ppat_any ->
let k' d = rvp k {
pat_desc = d;
pat_loc = loc; pat_extra=[];
pat_type = instance expected_ty;
pat_attributes = sp.ppat_attributes;
pat_env = !env }
in
begin match mode with
| Normal -> k' Tpat_any
| Counter_example {explosion_fuel; _} when explosion_fuel <= 0 ->
k' Tpat_any
| Counter_example ({explosion_fuel; _} as info) ->
let open Parmatch in
begin match ppat_of_type !env expected_ty with
| PT_empty -> raise Empty_branch
| PT_any -> k' Tpat_any
| PT_pattern (explosion, sp, constrs, labels) ->
let explosion_fuel =
match explosion with
| PE_single -> explosion_fuel - 1
| PE_gadt_cases ->
if must_backtrack_on_gadt then raise Need_backtrack;
explosion_fuel - 5
in
let mode =
Counter_example { info with explosion_fuel; constrs; labels }
in
type_pat category ~mode sp expected_ty k
end
end
| Ppat_var name ->
let ty = instance expected_ty in
let id = (* PR#7330 *)
if name.txt = "*extension*" then
Ident.create_local name.txt
else
enter_variable loc name ty sp.ppat_attributes
in
rvp k {
pat_desc = Tpat_var (id, name);
pat_loc = loc; pat_extra=[];
pat_type = ty;
pat_attributes = sp.ppat_attributes;
pat_env = !env }
| Ppat_unpack name ->
assert construction_not_used_in_counterexamples;
let t = instance expected_ty in
begin match name.txt with
| None ->
rvp k {
pat_desc = Tpat_any;
pat_loc = sp.ppat_loc;
pat_extra=[Tpat_unpack, name.loc, sp.ppat_attributes];
pat_type = t;
pat_attributes = [];
pat_env = !env }
| Some s ->
let v = { name with txt = s } in
let id = enter_variable loc v t ~is_module:true sp.ppat_attributes in
rvp k {
pat_desc = Tpat_var (id, v);
pat_loc = sp.ppat_loc;
pat_extra=[Tpat_unpack, loc, sp.ppat_attributes];
pat_type = t;
pat_attributes = [];
pat_env = !env }
end
| Ppat_constraint(
{ppat_desc=Ppat_var name; ppat_loc=lloc; ppat_attributes = attrs},
({ptyp_desc=Ptyp_poly _} as sty)) ->
(* explicitly polymorphic type *)
assert construction_not_used_in_counterexamples;
let cty, ty, force = Typetexp.transl_simple_type_delayed !env sty in
unify_pat_types ~refine lloc env ty (instance expected_ty);
pattern_force := force :: !pattern_force;
begin match ty.desc with
| Tpoly (body, tyl) ->
begin_def ();
init_def generic_level;
let _, ty' = instance_poly ~keep_names:true false tyl body in
end_def ();
let id = enter_variable lloc name ty' attrs in
rvp k {
pat_desc = Tpat_var (id, name);
pat_loc = lloc;
pat_extra = [Tpat_constraint cty, loc, sp.ppat_attributes];
pat_type = ty;
pat_attributes = [];
pat_env = !env
}
| _ -> assert false
end
| Ppat_alias(sq, name) ->
assert construction_not_used_in_counterexamples;
type_pat Value sq expected_ty (fun q ->
begin_def ();
let ty_var = build_as_type env q in
end_def ();
generalize ty_var;
let id =
enter_variable ~is_as_variable:true loc name ty_var sp.ppat_attributes
in
rvp k {
pat_desc = Tpat_alias(q, id, name);
pat_loc = loc; pat_extra=[];
pat_type = q.pat_type;
pat_attributes = sp.ppat_attributes;
pat_env = !env })
| Ppat_constant cst ->
let cst = constant_or_raise !env loc cst in
rvp k @@ unif {
pat_desc = Tpat_constant cst;
pat_loc = loc; pat_extra=[];
pat_type = type_constant cst;
pat_attributes = sp.ppat_attributes;
pat_env = !env }
| Ppat_interval (Pconst_char c1, Pconst_char c2) ->
let open Ast_helper.Pat in
let gloc = {loc with Location.loc_ghost=true} in
let rec loop c1 c2 =
if c1 = c2 then constant ~loc:gloc (Pconst_char c1)
else
or_ ~loc:gloc
(constant ~loc:gloc (Pconst_char c1))
(loop (Char.chr(Char.code c1 + 1)) c2)
in
let p = if c1 <= c2 then loop c1 c2 else loop c2 c1 in
let p = {p with ppat_loc=loc} in
type_pat category ~mode:(no_explosion mode) p expected_ty k
(* TODO: record 'extra' to remember about interval *)
| Ppat_interval _ ->
raise (Error (loc, !env, Invalid_interval))
| Ppat_tuple spl ->
assert (List.length spl >= 2);
let spl_ann = List.map (fun p -> (p,newgenvar ())) spl in
let ty = newgenty (Ttuple(List.map snd spl_ann)) in
let expected_ty = generic_instance expected_ty in
unify_pat_types ~refine loc env ty expected_ty;
map_fold_cont (fun (p,t) -> type_pat Value p t) spl_ann (fun pl ->
rvp k {
pat_desc = Tpat_tuple pl;
pat_loc = loc; pat_extra=[];
pat_type = newty (Ttuple(List.map (fun p -> p.pat_type) pl));
pat_attributes = sp.ppat_attributes;
pat_env = !env })
| Ppat_construct(lid, sarg) ->
let expected_type =
try
let (p0, p, _) = extract_concrete_variant !env expected_ty in
let principal =
(repr expected_ty).level = generic_level || not !Clflags.principal
in
Some (p0, p, principal)
with Not_found -> None
in
let constr =
match lid.txt, mode with
| Longident.Lident s, Counter_example {constrs; _} ->
(* assert: cf. {!counter_example_checking_info} documentation *)
assert (Hashtbl.mem constrs s);
Hashtbl.find constrs s
| _ ->
let candidates =
Env.lookup_all_constructors Env.Pattern ~loc:lid.loc lid.txt !env in
wrap_disambiguate "This variant pattern is expected to have"
(mk_expected expected_ty)
(Constructor.disambiguate Env.Pattern lid !env expected_type)
candidates
in
if constr.cstr_generalized && must_backtrack_on_gadt then
raise Need_backtrack;
begin match no_existentials, constr.cstr_existentials with
| None, _ | _, [] -> ()
| Some r, (_ :: _ as exs) ->
let exs = List.map (Ctype.existential_name constr) exs in
let name = constr.cstr_name in
raise (Error (loc, !env, Unexpected_existential (r,name, exs)))
end;
(* if constructor is gadt, we must verify that the expected type has the
correct head *)
if constr.cstr_generalized then
unify_head_only ~refine loc env (instance expected_ty) constr;
let sargs =
match sarg with
None -> []
| Some {ppat_desc = Ppat_tuple spl} when
constr.cstr_arity > 1 ||
Builtin_attributes.explicit_arity sp.ppat_attributes
-> spl
| Some({ppat_desc = Ppat_any} as sp) when constr.cstr_arity <> 1 ->
if constr.cstr_arity = 0 then
Location.prerr_warning sp.ppat_loc
Warnings.Wildcard_arg_to_constant_constr;
replicate_list sp constr.cstr_arity
| Some sp -> [sp] in
if Builtin_attributes.warn_on_literal_pattern constr.cstr_attributes then
begin match List.filter has_literal_pattern sargs with
| sp :: _ ->
Location.prerr_warning sp.ppat_loc Warnings.Fragile_literal_pattern
| _ -> ()
end;
if List.length sargs <> constr.cstr_arity then
raise(Error(loc, !env, Constructor_arity_mismatch(lid.txt,
constr.cstr_arity, List.length sargs)));
begin_def ();
let (ty_args, ty_res) =
instance_constructor ~in_pattern:(env, get_gadt_equations_level ())
constr
in
let expected_ty = instance expected_ty in
(* PR#7214: do not use gadt unification for toplevel lets *)
let refine =
if refine = None && constr.cstr_generalized && no_existentials = None
then Some false
else refine
in
let equated_types =
unify_pat_types_return_equated_pairs ~refine loc env ty_res expected_ty
in
end_def ();
generalize_structure expected_ty;
generalize_structure ty_res;
List.iter generalize_structure ty_args;
if !Clflags.principal then (
let exception Warn_only_once in
try
TypePairs.iter (fun (t1, t2) () ->
generalize_structure t1;
generalize_structure t2;
if not (fully_generic t1 && fully_generic t2) then
let msg =
Format.asprintf
"typing this pattern requires considering@ %a@ and@ %a@ as \
equal.@,\
But the knowledge of these types"
Printtyp.type_expr t1
Printtyp.type_expr t2
in
Location.prerr_warning loc (Warnings.Not_principal msg);
raise Warn_only_once
) equated_types
with Warn_only_once -> ()
);
let rec check_non_escaping p =
match p.ppat_desc with
| Ppat_or (p1, p2) ->
check_non_escaping p1;
check_non_escaping p2
| Ppat_alias (p, _) ->
check_non_escaping p
| Ppat_constraint _ ->
raise (Error (p.ppat_loc, !env, Inlined_record_escape))
| _ ->
()
in
if constr.cstr_inlined <> None then List.iter check_non_escaping sargs;
map_fold_cont
(fun (p,t) -> type_pat Value p t)
(List.combine sargs ty_args)
(fun args ->
rvp k {
pat_desc=Tpat_construct(lid, constr, args);
pat_loc = loc; pat_extra=[];
pat_type = instance expected_ty;
pat_attributes = sp.ppat_attributes;
pat_env = !env })
| Ppat_variant(l, sarg) ->
let arg_type = match sarg with None -> [] | Some _ -> [newgenvar()] in
let row = { row_fields =
[l, Reither(sarg = None, arg_type, true, ref None)];
row_bound = ();
row_closed = false;
row_more = newgenvar ();
row_fixed = None;
row_name = None } in
let expected_ty = generic_instance expected_ty in
(* PR#7404: allow some_private_tag blindly, as it would not unify with
the abstract row variable *)
if l = Parmatch.some_private_tag
then assert (match mode with Normal -> false | Counter_example _ -> true)
else unify_pat_types ~refine loc env (newgenty(Tvariant row)) expected_ty;
let k arg =
rvp k {
pat_desc = Tpat_variant(l, arg, ref {row with row_more = newvar()});
pat_loc = loc; pat_extra=[];
pat_type = instance expected_ty;
pat_attributes = sp.ppat_attributes;
pat_env = !env }
in begin
(* PR#6235: propagate type information *)
match sarg, arg_type with
Some p, [ty] -> type_pat Value p ty (fun p -> k (Some p))
| _ -> k None
end
| Ppat_record(lid_sp_list, closed) ->
assert (lid_sp_list <> []);
let expected_type, record_ty =
try
let (p0, p,_) = extract_concrete_record !env expected_ty in
let ty = generic_instance expected_ty in
let principal =
(repr expected_ty).level = generic_level || not !Clflags.principal
in
Some (p0, p, principal), ty
with Not_found -> None, newvar ()
in
let type_label_pat (label_lid, label, sarg) k =
begin_def ();
let (_, ty_arg, ty_res) = instance_label false label in
begin try
unify_pat_types ~refine loc env ty_res (instance record_ty)
with Error(_loc, _env, Pattern_type_clash(trace, _)) ->
raise(Error(label_lid.loc, !env,
Label_mismatch(label_lid.txt, trace)))
end;
end_def ();
generalize_structure ty_res;
generalize_structure ty_arg;
type_pat Value sarg ty_arg (fun arg ->
k (label_lid, label, arg))
in
let make_record_pat lbl_pat_list =
check_recordpat_labels loc lbl_pat_list closed;
{
pat_desc = Tpat_record (lbl_pat_list, closed);
pat_loc = loc; pat_extra=[];
pat_type = instance record_ty;
pat_attributes = sp.ppat_attributes;
pat_env = !env;
}
in
let k' pat = rvp k (unif pat) in
begin match mode with
| Normal ->
k' (wrap_disambiguate "This record pattern is expected to have"
(mk_expected expected_ty)
(type_label_a_list loc false !env type_label_pat expected_type
lid_sp_list)
make_record_pat)
| Counter_example {labels; _} ->
type_label_a_list ~labels loc false !env type_label_pat expected_type
lid_sp_list (fun lbl_pat_list -> k' (make_record_pat lbl_pat_list))
end
| Ppat_array spl ->
let ty_elt = newgenvar() in
let expected_ty = generic_instance expected_ty in
unify_pat_types ~refine
loc env (Predef.type_array ty_elt) expected_ty;
map_fold_cont (fun p -> type_pat Value p ty_elt) spl (fun pl ->
rvp k {
pat_desc = Tpat_array pl;
pat_loc = loc; pat_extra=[];
pat_type = instance expected_ty;
pat_attributes = sp.ppat_attributes;
pat_env = !env })
| Ppat_or(sp1, sp2) ->
let may_split, must_split =
match get_splitting_mode mode with
| None -> false, false
| Some Backtrack_or -> true, true
| Some (Refine_or _) -> true, false in
let state = save_state env in
let split_or sp =
assert may_split;
let typ pat = type_pat category pat expected_ty k in
find_valid_alternative (fun pat -> set_state state env; typ pat) sp in
if must_split then split_or sp else begin
let initial_pattern_variables = !pattern_variables in
let initial_module_variables = !module_variables in
let equation_level = !gadt_equations_level in
let outter_lev = get_current_level () in
(* introduce a new scope *)
begin_def ();
let lev = get_current_level () in
gadt_equations_level := Some lev;
let env1 = ref !env in
let inside_or = enter_nonsplit_or mode in
let type_pat_result env sp : (_, abort_reason) result =
match
type_pat category ~mode:inside_or sp expected_ty ~env (fun x -> x)
with
| res -> Ok res
| exception Need_backtrack -> Error Adds_constraints
| exception Empty_branch -> Error Empty
in
let p1 = type_pat_result env1 sp1 in
let p1_variables = !pattern_variables in
let p1_module_variables = !module_variables in
pattern_variables := initial_pattern_variables;
module_variables := initial_module_variables;
let env2 = ref !env in
let p2 = type_pat_result env2 sp2 in
end_def ();
gadt_equations_level := equation_level;
let p2_variables = !pattern_variables in
(* Make sure no variable with an ambiguous type gets added to the
environment. *)
List.iter (fun { pv_type; pv_loc; _ } ->
check_scope_escape pv_loc !env1 outter_lev pv_type
) p1_variables;
List.iter (fun { pv_type; pv_loc; _ } ->
check_scope_escape pv_loc !env2 outter_lev pv_type
) p2_variables;
begin match p1, p2 with
| Error Empty, Error Empty ->
raise Empty_branch
| Error Adds_constraints, Error _
| Error _, Error Adds_constraints ->
let inside_nonsplit_or =
match get_splitting_mode mode with
| None | Some Backtrack_or -> false
| Some (Refine_or {inside_nonsplit_or}) -> inside_nonsplit_or in
if inside_nonsplit_or
then raise Need_backtrack
else split_or sp
| Ok p, Error _
| Error _, Ok p ->
rp k p
| Ok p1, Ok p2 ->
let alpha_env =
enter_orpat_variables loc !env p1_variables p2_variables in
let p2 = alpha_pat alpha_env p2 in
pattern_variables := p1_variables;
module_variables := p1_module_variables;
let make_pat desc =
{ pat_desc = desc;
pat_loc = loc; pat_extra=[];
pat_type = instance expected_ty;
pat_attributes = sp.ppat_attributes;
pat_env = !env } in
rp k (make_pat (Tpat_or(p1, p2, None)))
end
end
| Ppat_lazy sp1 ->
let nv = newgenvar () in
unify_pat_types ~refine loc env (Predef.type_lazy_t nv)
(generic_instance expected_ty);
(* do not explode under lazy: PR#7421 *)
type_pat Value ~mode:(no_explosion mode) sp1 nv (fun p1 ->
rvp k {
pat_desc = Tpat_lazy p1;
pat_loc = loc; pat_extra=[];
pat_type = instance expected_ty;
pat_attributes = sp.ppat_attributes;
pat_env = !env })
| Ppat_constraint(sp, sty) ->
(* Pretend separate = true *)
begin_def();
let cty, ty, force = Typetexp.transl_simple_type_delayed !env sty in
end_def();
generalize_structure ty;
let ty, expected_ty' = instance ty, ty in
unify_pat_types ~refine loc env ty (instance expected_ty);
type_pat category sp expected_ty' (fun p ->
(*Format.printf "%a@.%a@."
Printtyp.raw_type_expr ty
Printtyp.raw_type_expr p.pat_type;*)
pattern_force := force :: !pattern_force;
let extra = (Tpat_constraint cty, loc, sp.ppat_attributes) in
let p : k general_pattern =
match category, (p : k general_pattern) with
| Value, {pat_desc = Tpat_var (id,s); _} ->
{p with
pat_type = ty;
pat_desc =
Tpat_alias
({p with pat_desc = Tpat_any; pat_attributes = []}, id,s);
pat_extra = [extra];
}
| _, p ->
{ p with pat_type = ty; pat_extra = extra::p.pat_extra }
in k p)
| Ppat_type lid ->
let (path, p,ty) = build_or_pat !env loc lid in
unify_pat_types ~refine loc env ty (instance expected_ty);
k @@ pure category @@ { p with pat_extra =
(Tpat_type (path, lid), loc, sp.ppat_attributes)
:: p.pat_extra }
| Ppat_open (lid,p) ->
let path, new_env =
!type_open Asttypes.Fresh !env sp.ppat_loc lid in
let new_env = ref new_env in
type_pat category ~env:new_env p expected_ty ( fun p ->
env := Env.copy_local !env ~from:!new_env;
k { p with pat_extra =( Tpat_open (path,lid,!new_env),
loc, sp.ppat_attributes) :: p.pat_extra }
)
| Ppat_exception p ->
type_pat Value p Predef.type_exn (fun p_exn ->
rcp k {
pat_desc = Tpat_exception p_exn;
pat_loc = sp.ppat_loc;
pat_extra = [];
pat_type = expected_ty;
pat_env = !env;
pat_attributes = sp.ppat_attributes;
})
| Ppat_extension ext ->
raise (Error_forward (Builtin_attributes.error_of_extension ext))
let type_pat category ?no_existentials ?(mode=Normal)
?(lev=get_current_level()) env sp expected_ty =
Misc.protect_refs [Misc.R (gadt_equations_level, Some lev)] (fun () ->
type_pat category ~no_existentials ~mode
~env sp expected_ty (fun x -> x)
)
(* this function is passed to Partial.parmatch
to type check gadt nonexhaustiveness *)
let partial_pred ~lev ~splitting_mode ?(explode=0)
env expected_ty constrs labels p =
let env = ref env in
let state = save_state env in
let mode =
Counter_example {
splitting_mode;
explosion_fuel = explode;
constrs; labels;
} in
try
reset_pattern true;
let typed_p = type_pat Value ~lev ~mode env p expected_ty in
set_state state env;
(* types are invalidated but we don't need them here *)
Some typed_p
with Error _ | Empty_branch ->
set_state state env;
None
let check_partial ?(lev=get_current_level ()) env expected_ty loc cases =
let explode = match cases with [_] -> 5 | _ -> 0 in
let splitting_mode = Refine_or {inside_nonsplit_or = false} in
Parmatch.check_partial
(partial_pred ~lev ~splitting_mode ~explode env expected_ty) loc cases
let check_unused ?(lev=get_current_level ()) env expected_ty cases =
Parmatch.check_unused
(fun refute constrs labels spat ->
match
partial_pred ~lev ~splitting_mode:Backtrack_or ~explode:5
env expected_ty constrs labels spat
with
Some pat when refute ->
raise (Error (spat.ppat_loc, env, Unrefuted_pattern pat))
| r -> r)
cases
let iter_pattern_variables_type f : pattern_variable list -> unit =
List.iter (fun {pv_type; _} -> f pv_type)
let add_pattern_variables ?check ?check_as env pv =
List.fold_right
(fun {pv_id; pv_type; pv_loc; pv_as_var; pv_attributes} env ->
let check = if pv_as_var then check_as else check in
Env.add_value ?check pv_id
{val_type = pv_type; val_kind = Val_reg; Types.val_loc = pv_loc;
val_attributes = pv_attributes;
val_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
} env
)
pv env
let type_pattern category ~lev env spat expected_ty =
reset_pattern true;
let new_env = ref env in
let pat = type_pat category ~lev new_env spat expected_ty in
let pvs = get_ref pattern_variables in
let unpacks = get_ref module_variables in
(pat, !new_env, get_ref pattern_force, pvs, unpacks)
let type_pattern_list
category no_existentials env spatl expected_tys allow
=
reset_pattern allow;
let new_env = ref env in
let type_pat (attrs, pat) ty =
Builtin_attributes.warning_scope ~ppwarning:false attrs
(fun () ->
type_pat category ~no_existentials new_env pat ty
)
in
let patl = List.map2 type_pat spatl expected_tys in
let pvs = get_ref pattern_variables in
let unpacks =
List.map (fun (name, loc) ->
name, loc, Uid.mk ~current_unit:(Env.get_unit_name ())
) (get_ref module_variables)
in
let new_env = add_pattern_variables !new_env pvs in
(patl, new_env, get_ref pattern_force, pvs, unpacks)
let type_class_arg_pattern cl_num val_env met_env l spat =
reset_pattern false;
let nv = newvar () in
let pat =
type_pat Value ~no_existentials:In_class_args (ref val_env) spat nv in
if has_variants pat then begin
Parmatch.pressure_variants val_env [pat];
finalize_variants pat;
end;
List.iter (fun f -> f()) (get_ref pattern_force);
if is_optional l then unify_pat (ref val_env) pat (type_option (newvar ()));
let (pv, val_env, met_env) =
List.fold_right
(fun {pv_id; pv_type; pv_loc; pv_as_var; pv_attributes}
(pv, val_env, met_env) ->
let check s =
if pv_as_var then Warnings.Unused_var s
else Warnings.Unused_var_strict s in
let id' = Ident.rename pv_id in
let val_uid = Uid.mk ~current_unit:(Env.get_unit_name ()) in
let val_env =
Env.add_value pv_id
{ val_type = pv_type
; val_kind = Val_reg
; val_attributes = pv_attributes
; val_loc = pv_loc
; val_uid
}
val_env
in
let met_env =
Env.add_value id' ~check
{ val_type = pv_type
; val_kind = Val_ivar (Immutable, cl_num)
; val_attributes = pv_attributes
; val_loc = pv_loc
; val_uid
}
met_env
in
((id', pv_id, pv_type)::pv, val_env, met_env))
!pattern_variables ([], val_env, met_env)
in
(pat, pv, val_env, met_env)
let type_self_pattern cl_num privty val_env met_env par_env spat =
let open Ast_helper in
let spat =
Pat.mk (Ppat_alias (Pat.mk(Ppat_alias (spat, mknoloc "selfpat-*")),
mknoloc ("selfpat-" ^ cl_num)))
in
reset_pattern false;
let nv = newvar() in
let pat =
type_pat Value ~no_existentials:In_self_pattern (ref val_env) spat nv in
List.iter (fun f -> f()) (get_ref pattern_force);
let meths = ref Meths.empty in
let vars = ref Vars.empty in
let pv = !pattern_variables in
pattern_variables := [];
let (val_env, met_env, par_env) =
List.fold_right
(fun {pv_id; pv_type; pv_loc; pv_as_var; pv_attributes}
(val_env, met_env, par_env) ->
let name = Ident.name pv_id in
(Env.enter_unbound_value name Val_unbound_self val_env,
Env.add_value pv_id
{val_type = pv_type;
val_kind = Val_self (meths, vars, cl_num, privty);
val_attributes = pv_attributes;
val_loc = pv_loc;
val_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
~check:(fun s -> if pv_as_var then Warnings.Unused_var s
else Warnings.Unused_var_strict s)
met_env,
Env.enter_unbound_value name Val_unbound_self par_env))
pv (val_env, met_env, par_env)
in
(pat, meths, vars, val_env, met_env, par_env)
let delayed_checks = ref []
let reset_delayed_checks () = delayed_checks := []
let add_delayed_check f =
delayed_checks := (f, Warnings.backup ()) :: !delayed_checks
let force_delayed_checks () =
(* checks may change type levels *)
let snap = Btype.snapshot () in
let w_old = Warnings.backup () in
List.iter
(fun (f, w) -> Warnings.restore w; f ())
(List.rev !delayed_checks);
Warnings.restore w_old;
reset_delayed_checks ();
Btype.backtrack snap
let rec final_subexpression exp =
match exp.exp_desc with
Texp_let (_, _, e)
| Texp_sequence (_, e)
| Texp_try (e, _)
| Texp_ifthenelse (_, e, _)
| Texp_match (_, {c_rhs=e} :: _, _)
| Texp_letmodule (_, _, _, _, e)
| Texp_letexception (_, e)
| Texp_open (_, e)
-> final_subexpression e
| _ -> exp
(* Generalization criterion for expressions *)
let rec is_nonexpansive exp =
match exp.exp_desc with
| Texp_ident _
| Texp_constant _
| Texp_unreachable
| Texp_function _
| Texp_array [] -> true
| Texp_let(_rec_flag, pat_exp_list, body) ->
List.for_all (fun vb -> is_nonexpansive vb.vb_expr) pat_exp_list &&
is_nonexpansive body
| Texp_apply(e, (_,None)::el) ->
is_nonexpansive e && List.for_all is_nonexpansive_opt (List.map snd el)
| Texp_match(e, cases, _) ->
(* Not sure this is necessary, if [e] is nonexpansive then we shouldn't
care if there are exception patterns. But the previous version enforced
that there be none, so... *)
let contains_exception_pat pat =
exists_general_pattern { f = fun (type k) (p : k general_pattern) ->
match p.pat_desc with
| Tpat_exception _ -> true
| _ -> false } pat
in
is_nonexpansive e &&
List.for_all
(fun {c_lhs; c_guard; c_rhs} ->
is_nonexpansive_opt c_guard && is_nonexpansive c_rhs
&& not (contains_exception_pat c_lhs)
) cases
| Texp_tuple el ->
List.for_all is_nonexpansive el
| Texp_construct( _, _, el) ->
List.for_all is_nonexpansive el
| Texp_variant(_, arg) -> is_nonexpansive_opt arg
| Texp_record { fields; extended_expression } ->
Array.for_all
(fun (lbl, definition) ->
match definition with
| Overridden (_, exp) ->
lbl.lbl_mut = Immutable && is_nonexpansive exp
| Kept _ -> true)
fields
&& is_nonexpansive_opt extended_expression
| Texp_field(exp, _, _) -> is_nonexpansive exp
| Texp_ifthenelse(_cond, ifso, ifnot) ->
is_nonexpansive ifso && is_nonexpansive_opt ifnot
| Texp_sequence (_e1, e2) -> is_nonexpansive e2 (* PR#4354 *)
| Texp_new (_, _, cl_decl) -> Ctype.class_type_arity cl_decl.cty_type > 0
(* Note: nonexpansive only means no _observable_ side effects *)
| Texp_lazy e -> is_nonexpansive e
| Texp_object ({cstr_fields=fields; cstr_type = { csig_vars=vars}}, _) ->
let count = ref 0 in
List.for_all
(fun field -> match field.cf_desc with
Tcf_method _ -> true
| Tcf_val (_, _, _, Tcfk_concrete (_, e), _) ->
incr count; is_nonexpansive e
| Tcf_val (_, _, _, Tcfk_virtual _, _) ->
incr count; true
| Tcf_initializer e -> is_nonexpansive e
| Tcf_constraint _ -> true
| Tcf_inherit _ -> false
| Tcf_attribute _ -> true)
fields &&
Vars.fold (fun _ (mut,_,_) b -> decr count; b && mut = Immutable)
vars true &&
!count = 0
| Texp_letmodule (_, _, _, mexp, e)
| Texp_open ({ open_expr = mexp; _}, e) ->
is_nonexpansive_mod mexp && is_nonexpansive e
| Texp_pack mexp ->
is_nonexpansive_mod mexp
(* Computations which raise exceptions are nonexpansive, since (raise e) is
equivalent to (raise e; diverge), and a nonexpansive "diverge" can be
produced using lazy values or the relaxed value restriction.
See GPR#1142 *)
| Texp_assert exp ->
is_nonexpansive exp
| Texp_apply (
{ exp_desc = Texp_ident (_, _, {val_kind =
Val_prim {Primitive.prim_name =
("%raise" | "%reraise" | "%raise_notrace")}}) },
[Nolabel, Some e]) ->
is_nonexpansive e
| Texp_array (_ :: _)
| Texp_apply _
| Texp_try _
| Texp_setfield _
| Texp_while _
| Texp_for _
| Texp_send _
| Texp_instvar _
| Texp_setinstvar _
| Texp_override _
| Texp_letexception _
| Texp_letop _
| Texp_extension_constructor _ ->
false
and is_nonexpansive_mod mexp =
match mexp.mod_desc with
| Tmod_ident _
| Tmod_functor _ -> true
| Tmod_unpack (e, _) -> is_nonexpansive e
| Tmod_constraint (m, _, _, _) -> is_nonexpansive_mod m
| Tmod_structure str ->
List.for_all
(fun item -> match item.str_desc with
| Tstr_eval _ | Tstr_primitive _ | Tstr_type _
| Tstr_modtype _ | Tstr_class_type _ -> true
| Tstr_value (_, pat_exp_list) ->
List.for_all (fun vb -> is_nonexpansive vb.vb_expr) pat_exp_list
| Tstr_module {mb_expr=m;_}
| Tstr_open {open_expr=m;_}
| Tstr_include {incl_mod=m;_} -> is_nonexpansive_mod m
| Tstr_recmodule id_mod_list ->
List.for_all (fun {mb_expr=m;_} -> is_nonexpansive_mod m)
id_mod_list
| Tstr_exception {tyexn_constructor = {ext_kind = Text_decl _}} ->
false (* true would be unsound *)
| Tstr_exception {tyexn_constructor = {ext_kind = Text_rebind _}} ->
true
| Tstr_typext te ->
List.for_all
(function {ext_kind = Text_decl _} -> false
| {ext_kind = Text_rebind _} -> true)
te.tyext_constructors
| Tstr_class _ -> false (* could be more precise *)
| Tstr_attribute _ -> true
)
str.str_items
| Tmod_apply _ -> false
and is_nonexpansive_opt = function
| None -> true
| Some e -> is_nonexpansive e
let maybe_expansive e = not (is_nonexpansive e)
let check_recursive_bindings env valbinds =
let ids = let_bound_idents valbinds in
List.iter
(fun {vb_expr} ->
if not (Rec_check.is_valid_recursive_expression ids vb_expr) then
raise(Error(vb_expr.exp_loc, env, Illegal_letrec_expr))
)
valbinds
let check_recursive_class_bindings env ids exprs =
List.iter
(fun expr ->
if not (Rec_check.is_valid_class_expr ids expr) then
raise(Error(expr.cl_loc, env, Illegal_class_expr)))
exprs
let is_prim ~name funct =
match funct.exp_desc with
| Texp_ident (_, _, {val_kind=Val_prim{Primitive.prim_name; _}}) ->
prim_name = name
| _ -> false
(* Approximate the type of an expression, for better recursion *)
let rec approx_type env sty =
match sty.ptyp_desc with
Ptyp_arrow (p, _, sty) ->
let ty1 = if is_optional p then type_option (newvar ()) else newvar () in
newty (Tarrow (p, ty1, approx_type env sty, Cok))
| Ptyp_tuple args ->
newty (Ttuple (List.map (approx_type env) args))
| Ptyp_constr (lid, ctl) ->
let path, decl = Env.lookup_type ~use:false ~loc:lid.loc lid.txt env in
if List.length ctl <> decl.type_arity then newvar ()
else begin
let tyl = List.map (approx_type env) ctl in
newconstr path tyl
end
| Ptyp_poly (_, sty) ->
approx_type env sty
| _ -> newvar ()
let rec type_approx env sexp =
match sexp.pexp_desc with
Pexp_let (_, _, e) -> type_approx env e
| Pexp_fun (p, _, _, e) ->
let ty = if is_optional p then type_option (newvar ()) else newvar () in
newty (Tarrow(p, ty, type_approx env e, Cok))
| Pexp_function ({pc_rhs=e}::_) ->
newty (Tarrow(Nolabel, newvar (), type_approx env e, Cok))
| Pexp_match (_, {pc_rhs=e}::_) -> type_approx env e
| Pexp_try (e, _) -> type_approx env e
| Pexp_tuple l -> newty (Ttuple(List.map (type_approx env) l))
| Pexp_ifthenelse (_,e,_) -> type_approx env e
| Pexp_sequence (_,e) -> type_approx env e
| Pexp_constraint (e, sty) ->
let ty = type_approx env e in
let ty1 = approx_type env sty in
begin try unify env ty ty1 with Unify trace ->
raise(Error(sexp.pexp_loc, env, Expr_type_clash (trace, None, None)))
end;
ty1
| Pexp_coerce (e, sty1, sty2) ->
let approx_ty_opt = function
| None -> newvar ()
| Some sty -> approx_type env sty
in
let ty = type_approx env e
and ty1 = approx_ty_opt sty1
and ty2 = approx_type env sty2 in
begin try unify env ty ty1 with Unify trace ->
raise(Error(sexp.pexp_loc, env, Expr_type_clash (trace, None, None)))
end;
ty2
| _ -> newvar ()
(* List labels in a function type, and whether return type is a variable *)
let rec list_labels_aux env visited ls ty_fun =
let ty = expand_head env ty_fun in
if List.memq ty visited then
List.rev ls, false
else match ty.desc with
Tarrow (l, _, ty_res, _) ->
list_labels_aux env (ty::visited) (l::ls) ty_res
| _ ->
List.rev ls, is_Tvar ty
let list_labels env ty =
wrap_trace_gadt_instances env (list_labels_aux env [] []) ty
(* Check that all univars are safe in a type. Both exp.exp_type and
ty_expected should already be generalized. *)
let check_univars env kind exp ty_expected vars =
let pty = instance ty_expected in
begin_def ();
let exp_ty, vars =
match pty.desc with
Tpoly (body, tl) ->
(* Enforce scoping for type_let:
since body is not generic, instance_poly only makes
copies of nodes that have a Tvar as descendant *)
let _, ty' = instance_poly true tl body in
let vars, exp_ty = instance_parameterized_type vars exp.exp_type in
unify_exp_types exp.exp_loc env exp_ty ty';
exp_ty, vars
| _ -> assert false
in
end_def ();
generalize exp_ty;
List.iter generalize vars;
let ty, complete = polyfy env exp_ty vars in
if not complete then
let ty_expected = instance ty_expected in
raise (Error (exp.exp_loc, env,
Less_general(kind, [Unification_trace.diff ty ty_expected])))
let generalize_and_check_univars env kind exp ty_expected vars =
generalize exp.exp_type;
generalize ty_expected;
List.iter generalize vars;
check_univars env kind exp ty_expected vars
let check_partial_application statement exp =
let rec f delay =
let ty = (expand_head exp.exp_env exp.exp_type).desc in
let check_statement () =
match ty with
| Tconstr (p, _, _) when Path.same p Predef.path_unit ->
()
| _ ->
if statement then
let rec loop {exp_loc; exp_desc; exp_extra; _} =
match exp_desc with
| Texp_let (_, _, e)
| Texp_sequence (_, e)
| Texp_letexception (_, e)
| Texp_letmodule (_, _, _, _, e) ->
loop e
| _ ->
let loc =
match List.find_opt (function
| (Texp_constraint _, _, _) -> true
| _ -> false) exp_extra
with
| Some (_, loc, _) -> loc
| None -> exp_loc
in
Location.prerr_warning loc Warnings.Non_unit_statement
in
loop exp
in
match ty, exp.exp_desc with
| Tarrow _, _ ->
let rec check {exp_desc; exp_loc; exp_extra; _} =
if List.exists (function
| (Texp_constraint _, _, _) -> true
| _ -> false) exp_extra then check_statement ()
else begin
match exp_desc with
| Texp_ident _ | Texp_constant _ | Texp_tuple _
| Texp_construct _ | Texp_variant _ | Texp_record _
| Texp_field _ | Texp_setfield _ | Texp_array _
| Texp_while _ | Texp_for _ | Texp_instvar _
| Texp_setinstvar _ | Texp_override _ | Texp_assert _
| Texp_lazy _ | Texp_object _ | Texp_pack _ | Texp_unreachable
| Texp_extension_constructor _ | Texp_ifthenelse (_, _, None)
| Texp_function _ ->
check_statement ()
| Texp_match (_, cases, _) ->
List.iter (fun {c_rhs; _} -> check c_rhs) cases
| Texp_try (e, cases) ->
check e; List.iter (fun {c_rhs; _} -> check c_rhs) cases
| Texp_ifthenelse (_, e1, Some e2) ->
check e1; check e2
| Texp_let (_, _, e) | Texp_sequence (_, e) | Texp_open (_, e)
| Texp_letexception (_, e) | Texp_letmodule (_, _, _, _, e) ->
check e
| Texp_apply _ | Texp_send _ | Texp_new _ | Texp_letop _ ->
Location.prerr_warning exp_loc
Warnings.Ignored_partial_application
end
in
check exp
| Tvar _, _ ->
if delay then add_delayed_check (fun () -> f false)
| _ ->
check_statement ()
in
f true
(* Check that a type is generalizable at some level *)
let generalizable level ty =
let rec check ty =
let ty = repr ty in
if ty.level < lowest_level then () else
if ty.level <= level then raise Exit else
(mark_type_node ty; iter_type_expr check ty)
in
try check ty; unmark_type ty; true
with Exit -> unmark_type ty; false
(* Hack to allow coercion of self. Will clean-up later. *)
let self_coercion = ref ([] : (Path.t * Location.t list ref) list)
(* Helpers for packaged modules. *)
let create_package_type loc env (p, l) =
let s = !Typetexp.transl_modtype_longident loc env p in
let fields = List.map (fun (name, ct) ->
name, Typetexp.transl_simple_type env false ct) l in
let ty = newty (Tpackage (s,
List.map fst l,
List.map (fun (_, cty) -> cty.ctyp_type) fields))
in
(s, fields, ty)
(* Helpers for type_cases *)
let contains_variant_either ty =
let rec loop ty =
let ty = repr ty in
if ty.level >= lowest_level then begin
mark_type_node ty;
match ty.desc with
Tvariant row ->
let row = row_repr row in
if not (is_fixed row) then
List.iter
(fun (_,f) ->
match row_field_repr f with Reither _ -> raise Exit | _ -> ())
row.row_fields;
iter_row loop row
| _ ->
iter_type_expr loop ty
end
in
try loop ty; unmark_type ty; false
with Exit -> unmark_type ty; true
let shallow_iter_ppat f p =
match p.ppat_desc with
| Ppat_any | Ppat_var _ | Ppat_constant _ | Ppat_interval _
| Ppat_extension _
| Ppat_type _ | Ppat_unpack _ -> ()
| Ppat_array pats -> List.iter f pats
| Ppat_or (p1,p2) -> f p1; f p2
| Ppat_variant (_, arg) | Ppat_construct (_, arg) -> Option.iter f arg
| Ppat_tuple lst -> List.iter f lst
| Ppat_exception p | Ppat_alias (p,_)
| Ppat_open (_,p)
| Ppat_constraint (p,_) | Ppat_lazy p -> f p
| Ppat_record (args, _flag) -> List.iter (fun (_,p) -> f p) args
let exists_ppat f p =
let exception Found in
let rec loop p =
if f p then raise Found else ();
shallow_iter_ppat loop p in
match loop p with
| exception Found -> true
| () -> false
let contains_polymorphic_variant p =
exists_ppat
(function
| {ppat_desc = (Ppat_variant _ | Ppat_type _)} -> true
| _ -> false)
p
let contains_gadt p =
exists_general_pattern { f = fun (type k) (p : k general_pattern) ->
match p.pat_desc with
| Tpat_construct (_, cd, _) when cd.cstr_generalized -> true
| _ -> false } p
(* There are various things that we need to do in presence of GADT constructors
that aren't required if there are none.
However, because of disambiguation, we can't know for sure whether the
patterns contain some GADT constructors. So we conservatively assume that
any constructor might be a GADT constructor. *)
let may_contain_gadts p =
exists_ppat
(function
| {ppat_desc = Ppat_construct (_, _)} -> true
| _ -> false)
p
let check_absent_variant env =
iter_general_pattern { f = fun (type k) (pat : k general_pattern) ->
match pat.pat_desc with
| Tpat_variant (s, arg, row) ->
let row = row_repr !row in
if List.exists (fun (s',fi) -> s = s' && row_field_repr fi <> Rabsent)
row.row_fields
|| not (is_fixed row) && not (static_row row) (* same as Ctype.poly *)
then () else
let ty_arg =
match arg with None -> [] | Some p -> [correct_levels p.pat_type] in
let row' = {row_fields = [s, Reither(arg=None,ty_arg,true,ref None)];
row_more = newvar (); row_bound = ();
row_closed = false; row_fixed = None; row_name = None} in
(* Should fail *)
unify_pat (ref env) {pat with pat_type = newty (Tvariant row')}
(correct_levels pat.pat_type)
| _ -> () }
(* Getting proper location of already typed expressions.
Used to avoid confusing locations on type error messages in presence of
type constraints.
For example:
(* Before patch *)
# let x : string = (5 : int);;
^
(* After patch *)
# let x : string = (5 : int);;
^^^^^^^^^
*)
let proper_exp_loc exp =
let rec aux = function
| [] -> exp.exp_loc
| ((Texp_constraint _ | Texp_coerce _), loc, _) :: _ -> loc
| _ :: rest -> aux rest
in
aux exp.exp_extra
(* To find reasonable names for let-bound and lambda-bound idents *)
let rec name_pattern default = function
[] -> Ident.create_local default
| p :: rem ->
match p.pat_desc with
Tpat_var (id, _) -> id
| Tpat_alias(_, id, _) -> id
| _ -> name_pattern default rem
let name_cases default lst =
name_pattern default (List.map (fun c -> c.c_lhs) lst)
(* Typing of expressions *)
let unify_exp env exp expected_ty =
let loc = proper_exp_loc exp in
try
unify_exp_types loc env exp.exp_type expected_ty
with Error(loc, env, Expr_type_clash(trace, tfc, None)) ->
raise (Error(loc, env, Expr_type_clash(trace, tfc, Some exp.exp_desc)))
let rec type_exp ?recarg env sexp =
(* We now delegate everything to type_expect *)
type_expect ?recarg env sexp (mk_expected (newvar ()))
(* Typing of an expression with an expected type.
This provide better error messages, and allows controlled
propagation of return type information.
In the principal case, [type_expected'] may be at generic_level.
*)
and type_expect ?in_function ?recarg env sexp ty_expected_explained =
let previous_saved_types = Cmt_format.get_saved_types () in
let exp =
Builtin_attributes.warning_scope sexp.pexp_attributes
(fun () ->
type_expect_ ?in_function ?recarg env sexp ty_expected_explained
)
in
Cmt_format.set_saved_types
(Cmt_format.Partial_expression exp :: previous_saved_types);
exp
and with_explanation explanation f =
match explanation with
| None -> f ()
| Some explanation ->
try f ()
with Error (loc', env', Expr_type_clash(trace', None, exp'))
when not loc'.Location.loc_ghost ->
let err = Expr_type_clash(trace', Some explanation, exp') in
raise (Error (loc', env', err))
and type_expect_
?in_function ?(recarg=Rejected)
env sexp ty_expected_explained =
let { ty = ty_expected; explanation } = ty_expected_explained in
let loc = sexp.pexp_loc in
(* Record the expression type before unifying it with the expected type *)
let with_explanation = with_explanation explanation in
let rue exp =
with_explanation (fun () ->
unify_exp env (re exp) (instance ty_expected));
exp
in
match sexp.pexp_desc with
| Pexp_ident lid ->
let path, desc = type_ident env ~recarg lid in
let exp_desc =
match desc.val_kind with
| Val_ivar (_, cl_num) ->
let (self_path, _) =
Env.find_value_by_name
(Longident.Lident ("self-" ^ cl_num)) env
in
Texp_instvar(self_path, path,
match lid.txt with
Longident.Lident txt -> { txt; loc = lid.loc }
| _ -> assert false)
| Val_self (_, _, cl_num, _) ->
let (path, _) =
Env.find_value_by_name (Longident.Lident ("self-" ^ cl_num)) env
in
Texp_ident(path, lid, desc)
| _ ->
Texp_ident(path, lid, desc)
in
rue {
exp_desc; exp_loc = loc; exp_extra = [];
exp_type = instance desc.val_type;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_constant(Pconst_string (str, _, _) as cst) -> (
let cst = constant_or_raise env loc cst in
(* Terrible hack for format strings *)
let ty_exp = expand_head env ty_expected in
let fmt6_path =
Path.(Pdot (Pident (Ident.create_persistent "CamlinternalFormatBasics"),
"format6"))
in
let is_format = match ty_exp.desc with
| Tconstr(path, _, _) when Path.same path fmt6_path ->
if !Clflags.principal && ty_exp.level <> generic_level then
Location.prerr_warning loc
(Warnings.Not_principal "this coercion to format6");
true
| _ -> false
in
if is_format then
let format_parsetree =
{ (type_format loc str env) with pexp_loc = sexp.pexp_loc } in
type_expect ?in_function env format_parsetree ty_expected_explained
else
rue {
exp_desc = Texp_constant cst;
exp_loc = loc; exp_extra = [];
exp_type = instance Predef.type_string;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
)
| Pexp_constant cst ->
let cst = constant_or_raise env loc cst in
rue {
exp_desc = Texp_constant cst;
exp_loc = loc; exp_extra = [];
exp_type = type_constant cst;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_let(Nonrecursive,
[{pvb_pat=spat; pvb_expr=sval; pvb_attributes=[]}], sbody)
when may_contain_gadts spat ->
(* TODO: allow non-empty attributes? *)
type_expect ?in_function env
{sexp with
pexp_desc = Pexp_match (sval, [Ast_helper.Exp.case spat sbody])}
ty_expected_explained
| Pexp_let(rec_flag, spat_sexp_list, sbody) ->
let existential_context =
if rec_flag = Recursive then In_rec
else if List.compare_length_with spat_sexp_list 1 > 0 then In_group
else With_attributes in
let (pat_exp_list, new_env, unpacks) =
type_let existential_context env rec_flag spat_sexp_list true in
let body = type_unpacks new_env unpacks sbody ty_expected_explained in
let () =
if rec_flag = Recursive then
check_recursive_bindings env pat_exp_list
in
re {
exp_desc = Texp_let(rec_flag, pat_exp_list, body);
exp_loc = loc; exp_extra = [];
exp_type = body.exp_type;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_fun (l, Some default, spat, sbody) ->
assert(is_optional l); (* default allowed only with optional argument *)
let open Ast_helper in
let default_loc = default.pexp_loc in
let scases = [
Exp.case
(Pat.construct ~loc:default_loc
(mknoloc (Longident.(Ldot (Lident "*predef*", "Some"))))
(Some (Pat.var ~loc:default_loc (mknoloc "*sth*"))))
(Exp.ident ~loc:default_loc (mknoloc (Longident.Lident "*sth*")));
Exp.case
(Pat.construct ~loc:default_loc
(mknoloc (Longident.(Ldot (Lident "*predef*", "None"))))
None)
default;
]
in
let sloc =
{ Location.loc_start = spat.ppat_loc.Location.loc_start;
loc_end = default_loc.Location.loc_end;
loc_ghost = true }
in
let smatch =
Exp.match_ ~loc:sloc
(Exp.ident ~loc (mknoloc (Longident.Lident "*opt*")))
scases
in
let pat = Pat.var ~loc:sloc (mknoloc "*opt*") in
let body =
Exp.let_ ~loc Nonrecursive
~attrs:[Attr.mk (mknoloc "#default") (PStr [])]
[Vb.mk spat smatch] sbody
in
type_function ?in_function loc sexp.pexp_attributes env
ty_expected_explained l [Exp.case pat body]
| Pexp_fun (l, None, spat, sbody) ->
type_function ?in_function loc sexp.pexp_attributes env
ty_expected_explained l [Ast_helper.Exp.case spat sbody]
| Pexp_function caselist ->
type_function ?in_function
loc sexp.pexp_attributes env ty_expected_explained Nolabel caselist
| Pexp_apply(sfunct, sargs) ->
assert (sargs <> []);
begin_def (); (* one more level for non-returning functions *)
if !Clflags.principal then begin_def ();
let funct = type_exp env sfunct in
if !Clflags.principal then begin
end_def ();
generalize_structure funct.exp_type
end;
let rec lower_args seen ty_fun =
let ty = expand_head env ty_fun in
if List.memq ty seen then () else
match ty.desc with
Tarrow (_l, ty_arg, ty_fun, _com) ->
(try unify_var env (newvar()) ty_arg with Unify _ -> assert false);
lower_args (ty::seen) ty_fun
| _ -> ()
in
let ty = instance funct.exp_type in
end_def ();
wrap_trace_gadt_instances env (lower_args []) ty;
begin_def ();
let (args, ty_res) = type_application env funct sargs in
end_def ();
unify_var env (newvar()) funct.exp_type;
let exp =
{ exp_desc = Texp_apply(funct, args);
exp_loc = loc; exp_extra = [];
exp_type = ty_res;
exp_attributes = sexp.pexp_attributes;
exp_env = env } in
begin
try rue exp
with Error (_, _, Expr_type_clash _) as err ->
Misc.reraise_preserving_backtrace err (fun () ->
check_partial_application false exp)
end
| Pexp_match(sarg, caselist) ->
begin_def ();
let arg = type_exp env sarg in
end_def ();
if maybe_expansive arg then lower_contravariant env arg.exp_type;
generalize arg.exp_type;
let cases, partial =
type_cases Computation env arg.exp_type ty_expected true loc caselist in
re {
exp_desc = Texp_match(arg, cases, partial);
exp_loc = loc; exp_extra = [];
exp_type = instance ty_expected;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_try(sbody, caselist) ->
let body = type_expect env sbody ty_expected_explained in
let cases, _ =
type_cases Value env Predef.type_exn ty_expected false loc caselist in
re {
exp_desc = Texp_try(body, cases);
exp_loc = loc; exp_extra = [];
exp_type = body.exp_type;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_tuple sexpl ->
assert (List.length sexpl >= 2);
let subtypes = List.map (fun _ -> newgenvar ()) sexpl in
let to_unify = newgenty (Ttuple subtypes) in
with_explanation (fun () ->
unify_exp_types loc env to_unify (generic_instance ty_expected));
let expl =
List.map2 (fun body ty -> type_expect env body (mk_expected ty))
sexpl subtypes
in
re {
exp_desc = Texp_tuple expl;
exp_loc = loc; exp_extra = [];
(* Keep sharing *)
exp_type = newty (Ttuple (List.map (fun e -> e.exp_type) expl));
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_construct(lid, sarg) ->
type_construct env loc lid sarg ty_expected_explained sexp.pexp_attributes
| Pexp_variant(l, sarg) ->
(* Keep sharing *)
let ty_expected0 = instance ty_expected in
begin try match
sarg, expand_head env ty_expected, expand_head env ty_expected0 with
| Some sarg, {desc = Tvariant row}, {desc = Tvariant row0} ->
let row = row_repr row in
begin match row_field_repr (List.assoc l row.row_fields),
row_field_repr (List.assoc l row0.row_fields) with
Rpresent (Some ty), Rpresent (Some ty0) ->
let arg = type_argument env sarg ty ty0 in
re { exp_desc = Texp_variant(l, Some arg);
exp_loc = loc; exp_extra = [];
exp_type = ty_expected0;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| _ -> raise Not_found
end
| _ -> raise Not_found
with Not_found ->
let arg = Option.map (type_exp env) sarg in
let arg_type = Option.map (fun arg -> arg.exp_type) arg in
rue {
exp_desc = Texp_variant(l, arg);
exp_loc = loc; exp_extra = [];
exp_type= newty (Tvariant{row_fields = [l, Rpresent arg_type];
row_more = newvar ();
row_bound = ();
row_closed = false;
row_fixed = None;
row_name = None});
exp_attributes = sexp.pexp_attributes;
exp_env = env }
end
| Pexp_record(lid_sexp_list, opt_sexp) ->
assert (lid_sexp_list <> []);
let opt_exp =
match opt_sexp with
None -> None
| Some sexp ->
if !Clflags.principal then begin_def ();
let exp = type_exp ~recarg env sexp in
if !Clflags.principal then begin
end_def ();
generalize_structure exp.exp_type
end;
Some exp
in
let ty_record, expected_type =
let get_path ty =
try
let (p0, p,_) = extract_concrete_record env ty in
let principal =
(repr ty).level = generic_level || not !Clflags.principal
in
Some (p0, p, principal)
with Not_found -> None
in
let opath = get_path ty_expected in
match opath with
None | Some (_, _, false) ->
let ty = if opath = None then newvar () else ty_expected in
begin match opt_exp with
None -> ty, opath
| Some exp ->
match get_path exp.exp_type with
None ->
ty, opath
| Some (_, p', _) as opath ->
let decl = Env.find_type p' env in
begin_def ();
let ty =
newconstr p' (instance_list decl.type_params) in
end_def ();
generalize_structure ty;
ty, opath
end
| _ -> ty_expected, opath
in
let closed = (opt_sexp = None) in
let lbl_exp_list =
wrap_disambiguate "This record expression is expected to have"
(mk_expected ty_record)
(type_label_a_list loc closed env
(fun e k -> k (type_label_exp true env loc ty_record e))
expected_type lid_sexp_list)
(fun x -> x)
in
with_explanation (fun () ->
unify_exp_types loc env (instance ty_record) (instance ty_expected));
(* type_label_a_list returns a list of labels sorted by lbl_pos *)
(* note: check_duplicates would better be implemented in
type_label_a_list directly *)
let rec check_duplicates = function
| (_, lbl1, _) :: (_, lbl2, _) :: _ when lbl1.lbl_pos = lbl2.lbl_pos ->
raise(Error(loc, env, Label_multiply_defined lbl1.lbl_name))
| _ :: rem ->
check_duplicates rem
| [] -> ()
in
check_duplicates lbl_exp_list;
let opt_exp, label_definitions =
let (_lid, lbl, _lbl_exp) = List.hd lbl_exp_list in
let matching_label lbl =
List.find
(fun (_, lbl',_) -> lbl'.lbl_pos = lbl.lbl_pos)
lbl_exp_list
in
match opt_exp with
None ->
let label_definitions =
Array.map (fun lbl ->
match matching_label lbl with
| (lid, _lbl, lbl_exp) ->
Overridden (lid, lbl_exp)
| exception Not_found ->
let present_indices =
List.map (fun (_, lbl, _) -> lbl.lbl_pos) lbl_exp_list
in
let label_names = extract_label_names env ty_expected in
let rec missing_labels n = function
[] -> []
| lbl :: rem ->
if List.mem n present_indices
then missing_labels (n + 1) rem
else lbl :: missing_labels (n + 1) rem
in
let missing = missing_labels 0 label_names in
raise(Error(loc, env, Label_missing missing)))
lbl.lbl_all
in
None, label_definitions
| Some exp ->
let ty_exp = instance exp.exp_type in
let unify_kept lbl =
let _, ty_arg1, ty_res1 = instance_label false lbl in
unify_exp_types exp.exp_loc env ty_exp ty_res1;
match matching_label lbl with
| lid, _lbl, lbl_exp ->
(* do not connect result types for overridden labels *)
Overridden (lid, lbl_exp)
| exception Not_found -> begin
let _, ty_arg2, ty_res2 = instance_label false lbl in
unify_exp_types loc env ty_arg1 ty_arg2;
with_explanation (fun () ->
unify_exp_types loc env (instance ty_expected) ty_res2);
Kept ty_arg1
end
in
let label_definitions = Array.map unify_kept lbl.lbl_all in
Some {exp with exp_type = ty_exp}, label_definitions
in
let num_fields =
match lbl_exp_list with [] -> assert false
| (_, lbl,_)::_ -> Array.length lbl.lbl_all in
if opt_sexp <> None && List.length lid_sexp_list = num_fields then
Location.prerr_warning loc Warnings.Useless_record_with;
let label_descriptions, representation =
let (_, { lbl_all; lbl_repres }, _) = List.hd lbl_exp_list in
lbl_all, lbl_repres
in
let fields =
Array.map2 (fun descr def -> descr, def)
label_descriptions label_definitions
in
re {
exp_desc = Texp_record {
fields; representation;
extended_expression = opt_exp
};
exp_loc = loc; exp_extra = [];
exp_type = instance ty_expected;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_field(srecord, lid) ->
let (record, label, _) = type_label_access env srecord lid in
let (_, ty_arg, ty_res) = instance_label false label in
unify_exp env record ty_res;
rue {
exp_desc = Texp_field(record, lid, label);
exp_loc = loc; exp_extra = [];
exp_type = ty_arg;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_setfield(srecord, lid, snewval) ->
let (record, label, expected_type) =
type_label_access env srecord lid in
let ty_record =
if expected_type = None then newvar () else record.exp_type in
let (label_loc, label, newval) =
type_label_exp false env loc ty_record (lid, label, snewval) in
unify_exp env record ty_record;
if label.lbl_mut = Immutable then
raise(Error(loc, env, Label_not_mutable lid.txt));
rue {
exp_desc = Texp_setfield(record, label_loc, label, newval);
exp_loc = loc; exp_extra = [];
exp_type = instance Predef.type_unit;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_array(sargl) ->
let ty = newgenvar() in
let to_unify = Predef.type_array ty in
with_explanation (fun () ->
unify_exp_types loc env to_unify (generic_instance ty_expected));
let argl =
List.map (fun sarg -> type_expect env sarg (mk_expected ty)) sargl in
re {
exp_desc = Texp_array argl;
exp_loc = loc; exp_extra = [];
exp_type = instance ty_expected;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_ifthenelse(scond, sifso, sifnot) ->
let cond = type_expect env scond
(mk_expected ~explanation:If_conditional Predef.type_bool) in
begin match sifnot with
None ->
let ifso = type_expect env sifso
(mk_expected ~explanation:If_no_else_branch Predef.type_unit) in
rue {
exp_desc = Texp_ifthenelse(cond, ifso, None);
exp_loc = loc; exp_extra = [];
exp_type = ifso.exp_type;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Some sifnot ->
let ifso = type_expect env sifso ty_expected_explained in
let ifnot = type_expect env sifnot ty_expected_explained in
(* Keep sharing *)
unify_exp env ifnot ifso.exp_type;
re {
exp_desc = Texp_ifthenelse(cond, ifso, Some ifnot);
exp_loc = loc; exp_extra = [];
exp_type = ifso.exp_type;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
end
| Pexp_sequence(sexp1, sexp2) ->
let exp1 = type_statement ~explanation:Sequence_left_hand_side
env sexp1 in
let exp2 = type_expect env sexp2 ty_expected_explained in
re {
exp_desc = Texp_sequence(exp1, exp2);
exp_loc = loc; exp_extra = [];
exp_type = exp2.exp_type;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_while(scond, sbody) ->
let cond = type_expect env scond
(mk_expected ~explanation:While_loop_conditional Predef.type_bool) in
let body = type_statement ~explanation:While_loop_body env sbody in
rue {
exp_desc = Texp_while(cond, body);
exp_loc = loc; exp_extra = [];
exp_type = instance Predef.type_unit;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_for(param, slow, shigh, dir, sbody) ->
let low = type_expect env slow
(mk_expected ~explanation:For_loop_start_index Predef.type_int) in
let high = type_expect env shigh
(mk_expected ~explanation:For_loop_stop_index Predef.type_int) in
let id, new_env =
match param.ppat_desc with
| Ppat_any -> Ident.create_local "_for", env
| Ppat_var {txt} ->
Env.enter_value txt
{val_type = instance Predef.type_int;
val_attributes = [];
val_kind = Val_reg;
val_loc = loc;
val_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
} env
~check:(fun s -> Warnings.Unused_for_index s)
| _ ->
raise (Error (param.ppat_loc, env, Invalid_for_loop_index))
in
let body = type_statement ~explanation:For_loop_body new_env sbody in
rue {
exp_desc = Texp_for(id, param, low, high, dir, body);
exp_loc = loc; exp_extra = [];
exp_type = instance Predef.type_unit;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_constraint (sarg, sty) ->
(* Pretend separate = true, 1% slowdown for lablgtk *)
begin_def ();
let cty = Typetexp.transl_simple_type env false sty in
let ty = cty.ctyp_type in
end_def ();
generalize_structure ty;
let (arg, ty') = (type_argument env sarg ty (instance ty), instance ty) in
rue {
exp_desc = arg.exp_desc;
exp_loc = arg.exp_loc;
exp_type = ty';
exp_attributes = arg.exp_attributes;
exp_env = env;
exp_extra =
(Texp_constraint cty, loc, sexp.pexp_attributes) :: arg.exp_extra;
}
| Pexp_coerce(sarg, sty, sty') ->
(* Pretend separate = true, 1% slowdown for lablgtk *)
(* Also see PR#7199 for a problem with the following:
let separate = !Clflags.principal || Env.has_local_constraints env in*)
let (arg, ty',cty,cty') =
match sty with
| None ->
let (cty', ty', force) =
Typetexp.transl_simple_type_delayed env sty'
in
begin_def ();
let arg = type_exp env sarg in
end_def ();
let tv = newvar () in
let gen = generalizable tv.level arg.exp_type in
unify_var env tv arg.exp_type;
begin match arg.exp_desc, !self_coercion, (repr ty').desc with
Texp_ident(_, _, {val_kind=Val_self _}), (path,r) :: _,
Tconstr(path',_,_) when Path.same path path' ->
(* prerr_endline "self coercion"; *)
r := loc :: !r;
force ()
| _ when free_variables ~env arg.exp_type = []
&& free_variables ~env ty' = [] ->
if not gen && (* first try a single coercion *)
let snap = snapshot () in
let ty, _b = enlarge_type env ty' in
try
force (); Ctype.unify env arg.exp_type ty; true
with Unify _ ->
backtrack snap; false
then ()
else begin try
let force' = subtype env arg.exp_type ty' in
force (); force' ();
if not gen && !Clflags.principal then
Location.prerr_warning loc
(Warnings.Not_principal "this ground coercion");
with Subtype (tr1, tr2) ->
(* prerr_endline "coercion failed"; *)
raise(Error(loc, env, Not_subtype(tr1, tr2)))
end;
| _ ->
let ty, b = enlarge_type env ty' in
force ();
begin try Ctype.unify env arg.exp_type ty with Unify trace ->
raise(Error(sarg.pexp_loc, env,
Coercion_failure(ty', full_expand env ty', trace, b)))
end
end;
(arg, ty', None, cty')
| Some sty ->
begin_def ();
let (cty, ty, force) =
Typetexp.transl_simple_type_delayed env sty
and (cty', ty', force') =
Typetexp.transl_simple_type_delayed env sty'
in
begin try
let force'' = subtype env ty ty' in
force (); force' (); force'' ()
with Subtype (tr1, tr2) ->
raise(Error(loc, env, Not_subtype(tr1, tr2)))
end;
end_def ();
generalize_structure ty;
generalize_structure ty';
(type_argument env sarg ty (instance ty),
instance ty', Some cty, cty')
in
rue {
exp_desc = arg.exp_desc;
exp_loc = arg.exp_loc;
exp_type = ty';
exp_attributes = arg.exp_attributes;
exp_env = env;
exp_extra = (Texp_coerce (cty, cty'), loc, sexp.pexp_attributes) ::
arg.exp_extra;
}
| Pexp_send (e, {txt=met}) ->
if !Clflags.principal then begin_def ();
let obj = type_exp env e in
let obj_meths = ref None in
begin try
let (meth, exp, typ) =
match obj.exp_desc with
Texp_ident(_path, _, {val_kind = Val_self (meths, _, _, privty)}) ->
obj_meths := Some meths;
let (id, typ) =
filter_self_method env met Private meths privty
in
if is_Tvar (repr typ) then
Location.prerr_warning loc
(Warnings.Undeclared_virtual_method met);
(Tmeth_val id, None, typ)
| Texp_ident(_path, lid, {val_kind = Val_anc (methods, cl_num)}) ->
let method_id =
begin try List.assoc met methods with Not_found ->
let valid_methods = List.map fst methods in
raise(Error(e.pexp_loc, env,
Undefined_inherited_method (met, valid_methods)))
end
in
begin match
Env.find_value_by_name
(Longident.Lident ("selfpat-" ^ cl_num)) env,
Env.find_value_by_name
(Longident.Lident ("self-" ^cl_num)) env
with
| (_, ({val_kind = Val_self (meths, _, _, privty)} as desc)),
(path, _) ->
obj_meths := Some meths;
let (_, typ) =
filter_self_method env met Private meths privty
in
let method_type = newvar () in
let (obj_ty, res_ty) = filter_arrow env method_type Nolabel in
unify env obj_ty desc.val_type;
unify env res_ty (instance typ);
let method_desc =
{val_type = method_type;
val_kind = Val_reg;
val_attributes = [];
val_loc = Location.none;
val_uid = Uid.internal_not_actually_unique;
}
in
let exp_env = Env.add_value method_id method_desc env in
let exp =
Texp_apply({exp_desc =
Texp_ident(Path.Pident method_id,
lid, method_desc);
exp_loc = loc; exp_extra = [];
exp_type = method_type;
exp_attributes = []; (* check *)
exp_env = exp_env},
[ Nolabel,
Some {exp_desc = Texp_ident(path, lid, desc);
exp_loc = obj.exp_loc; exp_extra = [];
exp_type = desc.val_type;
exp_attributes = []; (* check *)
exp_env = exp_env}
])
in
(Tmeth_name met, Some (re {exp_desc = exp;
exp_loc = loc; exp_extra = [];
exp_type = typ;
exp_attributes = []; (* check *)
exp_env = exp_env}), typ)
| _ ->
assert false
end
| _ ->
(Tmeth_name met, None,
filter_method env met Public obj.exp_type)
in
if !Clflags.principal then begin
end_def ();
generalize_structure typ;
end;
let typ =
match repr typ with
{desc = Tpoly (ty, [])} ->
instance ty
| {desc = Tpoly (ty, tl); level = l} ->
if !Clflags.principal && l <> generic_level then
Location.prerr_warning loc
(Warnings.Not_principal "this use of a polymorphic method");
snd (instance_poly false tl ty)
| {desc = Tvar _} as ty ->
let ty' = newvar () in
unify env (instance ty) (newty(Tpoly(ty',[])));
(* if not !Clflags.nolabels then
Location.prerr_warning loc (Warnings.Unknown_method met); *)
ty'
| _ ->
assert false
in
rue {
exp_desc = Texp_send(obj, meth, exp);
exp_loc = loc; exp_extra = [];
exp_type = typ;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
with Unify _ ->
let valid_methods =
match !obj_meths with
| Some meths ->
Some (Meths.fold (fun meth _meth_ty li -> meth::li) !meths [])
| None ->
match (expand_head env obj.exp_type).desc with
| Tobject (fields, _) ->
let (fields, _) = Ctype.flatten_fields fields in
let collect_fields li (meth, meth_kind, _meth_ty) =
if meth_kind = Fpresent then meth::li else li in
Some (List.fold_left collect_fields [] fields)
| _ -> None
in
raise(Error(e.pexp_loc, env,
Undefined_method (obj.exp_type, met, valid_methods)))
end
| Pexp_new cl ->
let (cl_path, cl_decl) = Env.lookup_class ~loc:cl.loc cl.txt env in
begin match cl_decl.cty_new with
None ->
raise(Error(loc, env, Virtual_class cl.txt))
| Some ty ->
rue {
exp_desc = Texp_new (cl_path, cl, cl_decl);
exp_loc = loc; exp_extra = [];
exp_type = instance ty;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
end
| Pexp_setinstvar (lab, snewval) -> begin
let (path, mut, cl_num, ty) =
Env.lookup_instance_variable ~loc lab.txt env
in
match mut with
| Mutable ->
let newval =
type_expect env snewval (mk_expected (instance ty))
in
let (path_self, _) =
Env.find_value_by_name (Longident.Lident ("self-" ^ cl_num)) env
in
rue {
exp_desc = Texp_setinstvar(path_self, path, lab, newval);
exp_loc = loc; exp_extra = [];
exp_type = instance Predef.type_unit;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| _ ->
raise(Error(loc, env, Instance_variable_not_mutable lab.txt))
end
| Pexp_override lst ->
let _ =
List.fold_right
(fun (lab, _) l ->
if List.exists (fun l -> l.txt = lab.txt) l then
raise(Error(loc, env,
Value_multiply_overridden lab.txt));
lab::l)
lst
[] in
begin match
try
Env.find_value_by_name (Longident.Lident "selfpat-*") env,
Env.find_value_by_name (Longident.Lident "self-*") env
with Not_found ->
raise(Error(loc, env, Outside_class))
with
(_, {val_type = self_ty; val_kind = Val_self (_, vars, _, _)}),
(path_self, _) ->
let type_override (lab, snewval) =
begin try
let (id, _, _, ty) = Vars.find lab.txt !vars in
(Path.Pident id, lab,
type_expect env snewval (mk_expected (instance ty)))
with
Not_found ->
let vars = Vars.fold (fun var _ li -> var::li) !vars [] in
raise(Error(loc, env,
Unbound_instance_variable (lab.txt, vars)))
end
in
let modifs = List.map type_override lst in
rue {
exp_desc = Texp_override(path_self, modifs);
exp_loc = loc; exp_extra = [];
exp_type = self_ty;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| _ ->
assert false
end
| Pexp_letmodule(name, smodl, sbody) ->
let ty = newvar() in
(* remember original level *)
begin_def ();
let context = Typetexp.narrow () in
let modl = !type_module env smodl in
Mtype.lower_nongen ty.level modl.mod_type;
let pres =
match modl.mod_type with
| Mty_alias _ -> Mp_absent
| _ -> Mp_present
in
let scope = create_scope () in
let md =
{ md_type = modl.mod_type; md_attributes = []; md_loc = name.loc;
md_uid = Uid.mk ~current_unit:(Env.get_unit_name ()); }
in
let (id, new_env) =
match name.txt with
| None -> None, env
| Some name ->
let id, env = Env.enter_module_declaration ~scope name pres md env in
Some id, env
in
Typetexp.widen context;
(* ideally, we should catch Expr_type_clash errors
in type_expect triggered by escaping identifiers from the local module
and refine them into Scoping_let_module errors
*)
let body = type_expect new_env sbody ty_expected_explained in
(* go back to original level *)
end_def ();
Ctype.unify_var new_env ty body.exp_type;
re {
exp_desc = Texp_letmodule(id, name, pres, modl, body);
exp_loc = loc; exp_extra = [];
exp_type = ty;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_letexception(cd, sbody) ->
let (cd, newenv) = Typedecl.transl_exception env cd in
let body = type_expect newenv sbody ty_expected_explained in
re {
exp_desc = Texp_letexception(cd, body);
exp_loc = loc; exp_extra = [];
exp_type = body.exp_type;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_assert (e) ->
let cond = type_expect env e
(mk_expected ~explanation:Assert_condition Predef.type_bool) in
let exp_type =
match cond.exp_desc with
| Texp_construct(_, {cstr_name="false"}, _) ->
instance ty_expected
| _ ->
instance Predef.type_unit
in
rue {
exp_desc = Texp_assert cond;
exp_loc = loc; exp_extra = [];
exp_type;
exp_attributes = sexp.pexp_attributes;
exp_env = env;
}
| Pexp_lazy e ->
let ty = newgenvar () in
let to_unify = Predef.type_lazy_t ty in
with_explanation (fun () ->
unify_exp_types loc env to_unify (generic_instance ty_expected));
let arg = type_expect env e (mk_expected ty) in
re {
exp_desc = Texp_lazy arg;
exp_loc = loc; exp_extra = [];
exp_type = instance ty_expected;
exp_attributes = sexp.pexp_attributes;
exp_env = env;
}
| Pexp_object s ->
let desc, sign, meths = !type_object env loc s in
rue {
exp_desc = Texp_object (desc, (*sign,*) meths);
exp_loc = loc; exp_extra = [];
exp_type = sign.csig_self;
exp_attributes = sexp.pexp_attributes;
exp_env = env;
}
| Pexp_poly(sbody, sty) ->
if !Clflags.principal then begin_def ();
let ty, cty =
match sty with None -> repr ty_expected, None
| Some sty ->
let sty = Ast_helper.Typ.force_poly sty in
let cty = Typetexp.transl_simple_type env false sty in
repr cty.ctyp_type, Some cty
in
if !Clflags.principal then begin
end_def ();
generalize_structure ty
end;
if sty <> None then
with_explanation (fun () ->
unify_exp_types loc env (instance ty) (instance ty_expected));
let exp =
match (expand_head env ty).desc with
Tpoly (ty', []) ->
let exp = type_expect env sbody (mk_expected ty') in
{ exp with exp_type = instance ty }
| Tpoly (ty', tl) ->
(* One more level to generalize locally *)
begin_def ();
if !Clflags.principal then begin_def ();
let vars, ty'' = instance_poly true tl ty' in
if !Clflags.principal then begin
end_def ();
generalize_structure ty''
end;
let exp = type_expect env sbody (mk_expected ty'') in
end_def ();
generalize_and_check_univars env "method" exp ty_expected vars;
{ exp with exp_type = instance ty }
| Tvar _ ->
let exp = type_exp env sbody in
let exp = {exp with exp_type = newty (Tpoly (exp.exp_type, []))} in
unify_exp env exp ty;
exp
| _ -> assert false
in
re { exp with exp_extra =
(Texp_poly cty, loc, sexp.pexp_attributes) :: exp.exp_extra }
| Pexp_newtype({txt=name}, sbody) ->
let ty =
if Typetexp.valid_tyvar_name name then
newvar ~name ()
else
newvar ()
in
(* remember original level *)
begin_def ();
(* Create a fake abstract type declaration for name. *)
let decl = {
type_params = [];
type_arity = 0;
type_kind = Type_abstract;
type_private = Public;
type_manifest = None;
type_variance = [];
type_separability = [];
type_is_newtype = true;
type_expansion_scope = Btype.lowest_level;
type_loc = loc;
type_attributes = [];
type_immediate = Unknown;
type_unboxed = unboxed_false_default_false;
type_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
in
let scope = create_scope () in
let (id, new_env) = Env.enter_type ~scope name decl env in
let body = type_exp new_env sbody in
(* Replace every instance of this type constructor in the resulting
type. *)
let seen = Hashtbl.create 8 in
let rec replace t =
if Hashtbl.mem seen t.id then ()
else begin
Hashtbl.add seen t.id ();
match t.desc with
| Tconstr (Path.Pident id', _, _) when id == id' -> link_type t ty
| _ -> Btype.iter_type_expr replace t
end
in
let ety = Subst.type_expr Subst.identity body.exp_type in
replace ety;
(* back to original level *)
end_def ();
(* lower the levels of the result type *)
(* unify_var env ty ety; *)
(* non-expansive if the body is non-expansive, so we don't introduce
any new extra node in the typed AST. *)
rue { body with exp_loc = loc; exp_type = ety;
exp_extra =
(Texp_newtype name, loc, sexp.pexp_attributes) :: body.exp_extra }
| Pexp_pack m ->
let (p, nl) =
match Ctype.expand_head env (instance ty_expected) with
{desc = Tpackage (p, nl, _tl)} ->
if !Clflags.principal &&
(Ctype.expand_head env ty_expected).level < Btype.generic_level
then
Location.prerr_warning loc
(Warnings.Not_principal "this module packing");
(p, nl)
| {desc = Tvar _} ->
raise (Error (loc, env, Cannot_infer_signature))
| _ ->
raise (Error (loc, env, Not_a_packed_module ty_expected))
in
let (modl, tl') = !type_package env m p nl in
rue {
exp_desc = Texp_pack modl;
exp_loc = loc; exp_extra = [];
exp_type = newty (Tpackage (p, nl, tl'));
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| Pexp_open (od, e) ->
let (od, _, newenv) = !type_open_decl env od in
let exp = type_expect newenv e ty_expected_explained in
rue {
exp_desc = Texp_open (od, exp);
exp_type = exp.exp_type;
exp_loc = loc;
exp_extra = [];
exp_attributes = sexp.pexp_attributes;
exp_env = env;
}
| Pexp_letop{ let_ = slet; ands = sands; body = sbody } ->
let rec loop spat_acc ty_acc sands =
match sands with
| [] -> spat_acc, ty_acc
| { pbop_pat = spat; _} :: rest ->
let ty = newvar () in
let loc = { slet.pbop_op.loc with Location.loc_ghost = true } in
let spat_acc = Ast_helper.Pat.tuple ~loc [spat_acc; spat] in
let ty_acc = newty (Ttuple [ty_acc; ty]) in
loop spat_acc ty_acc rest
in
if !Clflags.principal then begin_def ();
let let_loc = slet.pbop_op.loc in
let op_path, op_desc = type_binding_op_ident env slet.pbop_op in
let op_type = instance op_desc.val_type in
let spat_params, ty_params = loop slet.pbop_pat (newvar ()) sands in
let ty_func_result = newvar () in
let ty_func = newty (Tarrow(Nolabel, ty_params, ty_func_result, Cok)) in
let ty_result = newvar () in
let ty_andops = newvar () in
let ty_op =
newty (Tarrow(Nolabel, ty_andops,
newty (Tarrow(Nolabel, ty_func, ty_result, Cok)), Cok))
in
begin try
unify env op_type ty_op
with Unify trace ->
raise(Error(let_loc, env, Letop_type_clash(slet.pbop_op.txt, trace)))
end;
if !Clflags.principal then begin
end_def ();
generalize_structure ty_andops;
generalize_structure ty_params;
generalize_structure ty_func_result;
generalize_structure ty_result
end;
let exp, ands = type_andops env slet.pbop_exp sands ty_andops in
let scase = Ast_helper.Exp.case spat_params sbody in
let cases, partial =
type_cases Value env ty_params ty_func_result true loc [scase]
in
let body =
match cases with
| [case] -> case
| _ -> assert false
in
let param = name_cases "param" cases in
let let_ =
{ bop_op_name = slet.pbop_op;
bop_op_path = op_path;
bop_op_val = op_desc;
bop_op_type = op_type;
bop_exp = exp;
bop_loc = slet.pbop_loc; }
in
let desc =
Texp_letop{let_; ands; param; body; partial}
in
rue { exp_desc = desc;
exp_loc = sexp.pexp_loc;
exp_extra = [];
exp_type = instance ty_result;
exp_env = env;
exp_attributes = sexp.pexp_attributes; }
| Pexp_extension ({ txt = ("ocaml.extension_constructor"
|"extension_constructor"); _ },
payload) ->
begin match payload with
| PStr [ { pstr_desc =
Pstr_eval ({ pexp_desc = Pexp_construct (lid, None); _ }, _)
} ] ->
let path =
let cd =
Env.lookup_constructor Env.Positive ~loc:lid.loc lid.txt env
in
match cd.cstr_tag with
| Cstr_extension (path, _) -> path
| _ -> raise (Error (lid.loc, env, Not_an_extension_constructor))
in
rue {
exp_desc = Texp_extension_constructor (lid, path);
exp_loc = loc; exp_extra = [];
exp_type = instance Predef.type_extension_constructor;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
| _ ->
raise (Error (loc, env, Invalid_extension_constructor_payload))
end
| Pexp_extension ext ->
raise (Error_forward (Builtin_attributes.error_of_extension ext))
| Pexp_unreachable ->
re { exp_desc = Texp_unreachable;
exp_loc = loc; exp_extra = [];
exp_type = instance ty_expected;
exp_attributes = sexp.pexp_attributes;
exp_env = env }
and type_ident env ?(recarg=Rejected) lid =
let (path, desc) = Env.lookup_value ~loc:lid.loc lid.txt env in
let is_recarg =
match (repr desc.val_type).desc with
| Tconstr(p, _, _) -> Path.is_constructor_typath p
| _ -> false
in
begin match is_recarg, recarg, (repr desc.val_type).desc with
| _, Allowed, _
| true, Required, _
| false, Rejected, _ -> ()
| true, Rejected, _
| false, Required, (Tvar _ | Tconstr _) ->
raise (Error (lid.loc, env, Inlined_record_escape))
| false, Required, _ -> () (* will fail later *)
end;
path, desc
and type_binding_op_ident env s =
let loc = s.loc in
let lid = Location.mkloc (Longident.Lident s.txt) loc in
let path, desc = type_ident env lid in
let path =
match desc.val_kind with
| Val_ivar _ ->
fatal_error "Illegal name for instance variable"
| Val_self (_, _, cl_num, _) ->
let path, _ =
Env.find_value_by_name (Longident.Lident ("self-" ^ cl_num)) env
in
path
| _ -> path
in
path, desc
and type_function ?in_function loc attrs env ty_expected_explained l caselist =
let { ty = ty_expected; explanation } = ty_expected_explained in
let (loc_fun, ty_fun) =
match in_function with Some p -> p
| None -> (loc, instance ty_expected)
in
let separate = !Clflags.principal || Env.has_local_constraints env in
if separate then begin_def ();
let (ty_arg, ty_res) =
try filter_arrow env (instance ty_expected) l
with Unify _ ->
match expand_head env ty_expected with
{desc = Tarrow _} as ty ->
raise(Error(loc, env, Abstract_wrong_label(l, ty, explanation)))
| _ ->
raise(Error(loc_fun, env,
Too_many_arguments (in_function <> None,
ty_fun,
explanation)))
in
let ty_arg =
if is_optional l then
let tv = newvar() in
begin
try unify env ty_arg (type_option tv)
with Unify _ -> assert false
end;
type_option tv
else ty_arg
in
if separate then begin
end_def ();
generalize_structure ty_arg;
generalize_structure ty_res
end;
let cases, partial =
type_cases Value ~in_function:(loc_fun,ty_fun) env ty_arg ty_res
true loc caselist in
let not_nolabel_function ty =
let ls, tvar = list_labels env ty in
List.for_all ((<>) Nolabel) ls && not tvar
in
if is_optional l && not_nolabel_function ty_res then
Location.prerr_warning (List.hd cases).c_lhs.pat_loc
Warnings.Unerasable_optional_argument;
let param = name_cases "param" cases in
re {
exp_desc = Texp_function { arg_label = l; param; cases; partial; };
exp_loc = loc; exp_extra = [];
exp_type = instance (newgenty (Tarrow(l, ty_arg, ty_res, Cok)));
exp_attributes = attrs;
exp_env = env }
and type_label_access env srecord lid =
if !Clflags.principal then begin_def ();
let record = type_exp ~recarg:Allowed env srecord in
if !Clflags.principal then begin
end_def ();
generalize_structure record.exp_type
end;
let ty_exp = record.exp_type in
let expected_type =
try
let (p0, p,_) = extract_concrete_record env ty_exp in
Some(p0, p, (repr ty_exp).level = generic_level || not !Clflags.principal)
with Not_found -> None
in
let labels = Env.lookup_all_labels ~loc:lid.loc lid.txt env in
let label =
wrap_disambiguate "This expression has" (mk_expected ty_exp)
(Label.disambiguate () lid env expected_type) labels in
(record, label, expected_type)
(* Typing format strings for printing or reading.
These formats are used by functions in modules Printf, Format, and Scanf.
(Handling of * modifiers contributed by Thorsten Ohl.) *)
and type_format loc str env =
let loc = {loc with Location.loc_ghost = true} in
try
CamlinternalFormatBasics.(CamlinternalFormat.(
let mk_exp_loc pexp_desc = {
pexp_desc = pexp_desc;
pexp_loc = loc;
pexp_loc_stack = [];
pexp_attributes = [];
} and mk_lid_loc lid = {
txt = lid;
loc = loc;
} in
let mk_constr name args =
let lid = Longident.(Ldot(Lident "CamlinternalFormatBasics", name)) in
let arg = match args with
| [] -> None
| [ e ] -> Some e
| _ :: _ :: _ -> Some (mk_exp_loc (Pexp_tuple args)) in
mk_exp_loc (Pexp_construct (mk_lid_loc lid, arg)) in
let mk_cst cst = mk_exp_loc (Pexp_constant cst) in
let mk_int n = mk_cst (Pconst_integer (Int.to_string n, None))
and mk_string str = mk_cst (Pconst_string (str, loc, None))
and mk_char chr = mk_cst (Pconst_char chr) in
let rec mk_formatting_lit fmting = match fmting with
| Close_box ->
mk_constr "Close_box" []
| Close_tag ->
mk_constr "Close_tag" []
| Break (org, ns, ni) ->
mk_constr "Break" [ mk_string org; mk_int ns; mk_int ni ]
| FFlush ->
mk_constr "FFlush" []
| Force_newline ->
mk_constr "Force_newline" []
| Flush_newline ->
mk_constr "Flush_newline" []
| Magic_size (org, sz) ->
mk_constr "Magic_size" [ mk_string org; mk_int sz ]
| Escaped_at ->
mk_constr "Escaped_at" []
| Escaped_percent ->
mk_constr "Escaped_percent" []
| Scan_indic c ->
mk_constr "Scan_indic" [ mk_char c ]
and mk_formatting_gen : type a b c d e f .
(a, b, c, d, e, f) formatting_gen -> Parsetree.expression =
fun fmting -> match fmting with
| Open_tag (Format (fmt', str')) ->
mk_constr "Open_tag" [ mk_format fmt' str' ]
| Open_box (Format (fmt', str')) ->
mk_constr "Open_box" [ mk_format fmt' str' ]
and mk_format : type a b c d e f .
(a, b, c, d, e, f) CamlinternalFormatBasics.fmt -> string ->
Parsetree.expression = fun fmt str ->
mk_constr "Format" [ mk_fmt fmt; mk_string str ]
and mk_side side = match side with
| Left -> mk_constr "Left" []
| Right -> mk_constr "Right" []
| Zeros -> mk_constr "Zeros" []
and mk_iconv iconv = match iconv with
| Int_d -> mk_constr "Int_d" [] | Int_pd -> mk_constr "Int_pd" []
| Int_sd -> mk_constr "Int_sd" [] | Int_i -> mk_constr "Int_i" []
| Int_pi -> mk_constr "Int_pi" [] | Int_si -> mk_constr "Int_si" []
| Int_x -> mk_constr "Int_x" [] | Int_Cx -> mk_constr "Int_Cx" []
| Int_X -> mk_constr "Int_X" [] | Int_CX -> mk_constr "Int_CX" []
| Int_o -> mk_constr "Int_o" [] | Int_Co -> mk_constr "Int_Co" []
| Int_u -> mk_constr "Int_u" [] | Int_Cd -> mk_constr "Int_Cd" []
| Int_Ci -> mk_constr "Int_Ci" [] | Int_Cu -> mk_constr "Int_Cu" []
and mk_fconv fconv =
let flag = match fst fconv with
| Float_flag_ -> mk_constr "Float_flag_" []
| Float_flag_p -> mk_constr "Float_flag_p" []
| Float_flag_s -> mk_constr "Float_flag_s" [] in
let kind = match snd fconv with
| Float_f -> mk_constr "Float_f" []
| Float_e -> mk_constr "Float_e" []
| Float_E -> mk_constr "Float_E" []
| Float_g -> mk_constr "Float_g" []
| Float_G -> mk_constr "Float_G" []
| Float_h -> mk_constr "Float_h" []
| Float_H -> mk_constr "Float_H" []
| Float_F -> mk_constr "Float_F" []
| Float_CF -> mk_constr "Float_CF" [] in
mk_exp_loc (Pexp_tuple [flag; kind])
and mk_counter cnt = match cnt with
| Line_counter -> mk_constr "Line_counter" []
| Char_counter -> mk_constr "Char_counter" []
| Token_counter -> mk_constr "Token_counter" []
and mk_int_opt n_opt = match n_opt with
| None ->
let lid_loc = mk_lid_loc (Longident.Lident "None") in
mk_exp_loc (Pexp_construct (lid_loc, None))
| Some n ->
let lid_loc = mk_lid_loc (Longident.Lident "Some") in
mk_exp_loc (Pexp_construct (lid_loc, Some (mk_int n)))
and mk_fmtty : type a b c d e f g h i j k l .
(a, b, c, d, e, f, g, h, i, j, k, l) fmtty_rel -> Parsetree.expression
=
fun fmtty -> match fmtty with
| Char_ty rest -> mk_constr "Char_ty" [ mk_fmtty rest ]
| String_ty rest -> mk_constr "String_ty" [ mk_fmtty rest ]
| Int_ty rest -> mk_constr "Int_ty" [ mk_fmtty rest ]
| Int32_ty rest -> mk_constr "Int32_ty" [ mk_fmtty rest ]
| Nativeint_ty rest -> mk_constr "Nativeint_ty" [ mk_fmtty rest ]
| Int64_ty rest -> mk_constr "Int64_ty" [ mk_fmtty rest ]
| Float_ty rest -> mk_constr "Float_ty" [ mk_fmtty rest ]
| Bool_ty rest -> mk_constr "Bool_ty" [ mk_fmtty rest ]
| Alpha_ty rest -> mk_constr "Alpha_ty" [ mk_fmtty rest ]
| Theta_ty rest -> mk_constr "Theta_ty" [ mk_fmtty rest ]
| Any_ty rest -> mk_constr "Any_ty" [ mk_fmtty rest ]
| Reader_ty rest -> mk_constr "Reader_ty" [ mk_fmtty rest ]
| Ignored_reader_ty rest ->
mk_constr "Ignored_reader_ty" [ mk_fmtty rest ]
| Format_arg_ty (sub_fmtty, rest) ->
mk_constr "Format_arg_ty" [ mk_fmtty sub_fmtty; mk_fmtty rest ]
| Format_subst_ty (sub_fmtty1, sub_fmtty2, rest) ->
mk_constr "Format_subst_ty"
[ mk_fmtty sub_fmtty1; mk_fmtty sub_fmtty2; mk_fmtty rest ]
| End_of_fmtty -> mk_constr "End_of_fmtty" []
and mk_ignored : type a b c d e f .
(a, b, c, d, e, f) ignored -> Parsetree.expression =
fun ign -> match ign with
| Ignored_char ->
mk_constr "Ignored_char" []
| Ignored_caml_char ->
mk_constr "Ignored_caml_char" []
| Ignored_string pad_opt ->
mk_constr "Ignored_string" [ mk_int_opt pad_opt ]
| Ignored_caml_string pad_opt ->
mk_constr "Ignored_caml_string" [ mk_int_opt pad_opt ]
| Ignored_int (iconv, pad_opt) ->
mk_constr "Ignored_int" [ mk_iconv iconv; mk_int_opt pad_opt ]
| Ignored_int32 (iconv, pad_opt) ->
mk_constr "Ignored_int32" [ mk_iconv iconv; mk_int_opt pad_opt ]
| Ignored_nativeint (iconv, pad_opt) ->
mk_constr "Ignored_nativeint" [ mk_iconv iconv; mk_int_opt pad_opt ]
| Ignored_int64 (iconv, pad_opt) ->
mk_constr "Ignored_int64" [ mk_iconv iconv; mk_int_opt pad_opt ]
| Ignored_float (pad_opt, prec_opt) ->
mk_constr "Ignored_float" [ mk_int_opt pad_opt; mk_int_opt prec_opt ]
| Ignored_bool pad_opt ->
mk_constr "Ignored_bool" [ mk_int_opt pad_opt ]
| Ignored_format_arg (pad_opt, fmtty) ->
mk_constr "Ignored_format_arg" [ mk_int_opt pad_opt; mk_fmtty fmtty ]
| Ignored_format_subst (pad_opt, fmtty) ->
mk_constr "Ignored_format_subst" [
mk_int_opt pad_opt; mk_fmtty fmtty ]
| Ignored_reader ->
mk_constr "Ignored_reader" []
| Ignored_scan_char_set (width_opt, char_set) ->
mk_constr "Ignored_scan_char_set" [
mk_int_opt width_opt; mk_string char_set ]
| Ignored_scan_get_counter counter ->
mk_constr "Ignored_scan_get_counter" [
mk_counter counter
]
| Ignored_scan_next_char ->
mk_constr "Ignored_scan_next_char" []
and mk_padding : type x y . (x, y) padding -> Parsetree.expression =
fun pad -> match pad with
| No_padding -> mk_constr "No_padding" []
| Lit_padding (s, w) -> mk_constr "Lit_padding" [ mk_side s; mk_int w ]
| Arg_padding s -> mk_constr "Arg_padding" [ mk_side s ]
and mk_precision : type x y . (x, y) precision -> Parsetree.expression =
fun prec -> match prec with
| No_precision -> mk_constr "No_precision" []
| Lit_precision w -> mk_constr "Lit_precision" [ mk_int w ]
| Arg_precision -> mk_constr "Arg_precision" []
and mk_fmt : type a b c d e f .
(a, b, c, d, e, f) fmt -> Parsetree.expression =
fun fmt -> match fmt with
| Char rest ->
mk_constr "Char" [ mk_fmt rest ]
| Caml_char rest ->
mk_constr "Caml_char" [ mk_fmt rest ]
| String (pad, rest) ->
mk_constr "String" [ mk_padding pad; mk_fmt rest ]
| Caml_string (pad, rest) ->
mk_constr "Caml_string" [ mk_padding pad; mk_fmt rest ]
| Int (iconv, pad, prec, rest) ->
mk_constr "Int" [
mk_iconv iconv; mk_padding pad; mk_precision prec; mk_fmt rest ]
| Int32 (iconv, pad, prec, rest) ->
mk_constr "Int32" [
mk_iconv iconv; mk_padding pad; mk_precision prec; mk_fmt rest ]
| Nativeint (iconv, pad, prec, rest) ->
mk_constr "Nativeint" [
mk_iconv iconv; mk_padding pad; mk_precision prec; mk_fmt rest ]
| Int64 (iconv, pad, prec, rest) ->
mk_constr "Int64" [
mk_iconv iconv; mk_padding pad; mk_precision prec; mk_fmt rest ]
| Float (fconv, pad, prec, rest) ->
mk_constr "Float" [
mk_fconv fconv; mk_padding pad; mk_precision prec; mk_fmt rest ]
| Bool (pad, rest) ->
mk_constr "Bool" [ mk_padding pad; mk_fmt rest ]
| Flush rest ->
mk_constr "Flush" [ mk_fmt rest ]
| String_literal (s, rest) ->
mk_constr "String_literal" [ mk_string s; mk_fmt rest ]
| Char_literal (c, rest) ->
mk_constr "Char_literal" [ mk_char c; mk_fmt rest ]
| Format_arg (pad_opt, fmtty, rest) ->
mk_constr "Format_arg" [
mk_int_opt pad_opt; mk_fmtty fmtty; mk_fmt rest ]
| Format_subst (pad_opt, fmtty, rest) ->
mk_constr "Format_subst" [
mk_int_opt pad_opt; mk_fmtty fmtty; mk_fmt rest ]
| Alpha rest ->
mk_constr "Alpha" [ mk_fmt rest ]
| Theta rest ->
mk_constr "Theta" [ mk_fmt rest ]
| Formatting_lit (fmting, rest) ->
mk_constr "Formatting_lit" [ mk_formatting_lit fmting; mk_fmt rest ]
| Formatting_gen (fmting, rest) ->
mk_constr "Formatting_gen" [ mk_formatting_gen fmting; mk_fmt rest ]
| Reader rest ->
mk_constr "Reader" [ mk_fmt rest ]
| Scan_char_set (width_opt, char_set, rest) ->
mk_constr "Scan_char_set" [
mk_int_opt width_opt; mk_string char_set; mk_fmt rest ]
| Scan_get_counter (cnt, rest) ->
mk_constr "Scan_get_counter" [ mk_counter cnt; mk_fmt rest ]
| Scan_next_char rest ->
mk_constr "Scan_next_char" [ mk_fmt rest ]
| Ignored_param (ign, rest) ->
mk_constr "Ignored_param" [ mk_ignored ign; mk_fmt rest ]
| End_of_format ->
mk_constr "End_of_format" []
| Custom _ ->
(* Custom formatters have no syntax so they will never appear
in formats parsed from strings. *)
assert false
in
let legacy_behavior = not !Clflags.strict_formats in
let Fmt_EBB fmt = fmt_ebb_of_string ~legacy_behavior str in
mk_constr "Format" [ mk_fmt fmt; mk_string str ]
))
with Failure msg ->
raise (Error (loc, env, Invalid_format msg))
and type_label_exp create env loc ty_expected
(lid, label, sarg) =
(* Here also ty_expected may be at generic_level *)
begin_def ();
let separate = !Clflags.principal || Env.has_local_constraints env in
if separate then (begin_def (); begin_def ());
let (vars, ty_arg, ty_res) = instance_label true label in
if separate then begin
end_def ();
(* Generalize label information *)
generalize_structure ty_arg;
generalize_structure ty_res
end;
begin try
unify env (instance ty_res) (instance ty_expected)
with Unify trace ->
raise (Error(lid.loc, env, Label_mismatch(lid.txt, trace)))
end;
(* Instantiate so that we can generalize internal nodes *)
let ty_arg = instance ty_arg in
if separate then begin
end_def ();
(* Generalize information merged from ty_expected *)
generalize_structure ty_arg
end;
if label.lbl_private = Private then
if create then
raise (Error(loc, env, Private_type ty_expected))
else
raise (Error(lid.loc, env, Private_label(lid.txt, ty_expected)));
let arg =
let snap = if vars = [] then None else Some (Btype.snapshot ()) in
let arg = type_argument env sarg ty_arg (instance ty_arg) in
end_def ();
try
if (vars = []) then arg
else begin
if maybe_expansive arg then
lower_contravariant env arg.exp_type;
generalize_and_check_univars env "field value" arg label.lbl_arg vars;
{arg with exp_type = instance arg.exp_type}
end
with exn when maybe_expansive arg -> try
(* Try to retype without propagating ty_arg, cf PR#4862 *)
Option.iter Btype.backtrack snap;
begin_def ();
let arg = type_exp env sarg in
end_def ();
lower_contravariant env arg.exp_type;
begin_def ();
let arg = {arg with exp_type = instance arg.exp_type} in
unify_exp env arg (instance ty_arg);
end_def ();
generalize_and_check_univars env "field value" arg label.lbl_arg vars;
{arg with exp_type = instance arg.exp_type}
with Error (_, _, Less_general _) as e -> raise e
| _ -> raise exn (* In case of failure return the first error *)
in
(lid, label, arg)
and type_argument ?explanation ?recarg env sarg ty_expected' ty_expected =
(* ty_expected' may be generic *)
let no_labels ty =
let ls, tvar = list_labels env ty in
not tvar && List.for_all ((=) Nolabel) ls
in
let rec is_inferred sexp =
match sexp.pexp_desc with
Pexp_ident _ | Pexp_apply _ | Pexp_field _ | Pexp_constraint _
| Pexp_coerce _ | Pexp_send _ | Pexp_new _ -> true
| Pexp_sequence (_, e) | Pexp_open (_, e) -> is_inferred e
| Pexp_ifthenelse (_, e1, Some e2) -> is_inferred e1 && is_inferred e2
| _ -> false
in
match expand_head env ty_expected' with
{desc = Tarrow(Nolabel,ty_arg,ty_res,_); level = lv}
when is_inferred sarg ->
(* apply optional arguments when expected type is "" *)
(* we must be very careful about not breaking the semantics *)
if !Clflags.principal then begin_def ();
let texp = type_exp env sarg in
if !Clflags.principal then begin
end_def ();
generalize_structure texp.exp_type
end;
let rec make_args args ty_fun =
match (expand_head env ty_fun).desc with
| Tarrow (l,ty_arg,ty_fun,_) when is_optional l ->
let ty = option_none env (instance ty_arg) sarg.pexp_loc in
make_args ((l, Some ty) :: args) ty_fun
| Tarrow (l,_,ty_res',_) when l = Nolabel || !Clflags.classic ->
List.rev args, ty_fun, no_labels ty_res'
| Tvar _ -> List.rev args, ty_fun, false
| _ -> [], texp.exp_type, false
in
let args, ty_fun', simple_res = make_args [] texp.exp_type in
let warn = !Clflags.principal &&
(lv <> generic_level || (repr ty_fun').level <> generic_level)
and texp = {texp with exp_type = instance texp.exp_type}
and ty_fun = instance ty_fun' in
if not (simple_res || no_labels ty_res) then begin
unify_exp env texp ty_expected;
texp
end else begin
unify_exp env {texp with exp_type = ty_fun} ty_expected;
if args = [] then texp else
(* eta-expand to avoid side effects *)
let var_pair name ty =
let id = Ident.create_local name in
let desc =
{ val_type = ty; val_kind = Val_reg;
val_attributes = [];
val_loc = Location.none;
val_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
in
let exp_env = Env.add_value id desc env in
{pat_desc = Tpat_var (id, mknoloc name); pat_type = ty;pat_extra=[];
pat_attributes = [];
pat_loc = Location.none; pat_env = env},
{exp_type = ty; exp_loc = Location.none; exp_env = exp_env;
exp_extra = []; exp_attributes = [];
exp_desc =
Texp_ident(Path.Pident id, mknoloc (Longident.Lident name), desc)}
in
let eta_pat, eta_var = var_pair "eta" ty_arg in
let func texp =
let e =
{texp with exp_type = ty_res; exp_desc =
Texp_apply
(texp,
args @ [Nolabel, Some eta_var])}
in
let cases = [case eta_pat e] in
let param = name_cases "param" cases in
{ texp with exp_type = ty_fun; exp_desc =
Texp_function { arg_label = Nolabel; param; cases;
partial = Total; } }
in
Location.prerr_warning texp.exp_loc
(Warnings.Eliminated_optional_arguments
(List.map (fun (l, _) -> Printtyp.string_of_label l) args));
if warn then Location.prerr_warning texp.exp_loc
(Warnings.Non_principal_labels "eliminated optional argument");
(* let-expand to have side effects *)
let let_pat, let_var = var_pair "arg" texp.exp_type in
re { texp with exp_type = ty_fun; exp_desc =
Texp_let (Nonrecursive,
[{vb_pat=let_pat; vb_expr=texp; vb_attributes=[];
vb_loc=Location.none;
}],
func let_var) }
end
| _ ->
let texp = type_expect ?recarg env sarg
(mk_expected ?explanation ty_expected') in
unify_exp env texp ty_expected;
texp
and type_application env funct sargs =
(* funct.exp_type may be generic *)
let result_type omitted ty_fun =
List.fold_left
(fun ty_fun (l,ty,lv) -> newty2 lv (Tarrow(l,ty,ty_fun,Cok)))
ty_fun omitted
in
let has_label l ty_fun =
let ls, tvar = list_labels env ty_fun in
tvar || List.mem l ls
in
let eliminated_optional_arguments = ref [] in
let omitted_parameters = ref [] in
let type_unknown_arg (ty_fun, typed_args) (lbl, sarg) =
let (ty_arg, ty_res) =
let ty_fun = expand_head env ty_fun in
match ty_fun.desc with
| Tvar _ ->
let t1 = newvar () and t2 = newvar () in
if ty_fun.level >= t1.level &&
not (is_prim ~name:"%identity" funct)
then
Location.prerr_warning sarg.pexp_loc
Warnings.Ignored_extra_argument;
unify env ty_fun (newty (Tarrow(lbl,t1,t2,Clink(ref Cunknown))));
(t1, t2)
| Tarrow (l,t1,t2,_) when l = lbl
|| !Clflags.classic && lbl = Nolabel && not (is_optional l) ->
(t1, t2)
| td ->
let ty_fun = match td with Tarrow _ -> newty td | _ -> ty_fun in
let ty_res =
result_type (!omitted_parameters @ !eliminated_optional_arguments)
ty_fun
in
match ty_res.desc with
| Tarrow _ ->
if !Clflags.classic || not (has_label lbl ty_fun) then
raise (Error(sarg.pexp_loc, env,
Apply_wrong_label(lbl, ty_res, false)))
else
raise (Error(funct.exp_loc, env, Incoherent_label_order))
| _ ->
raise(Error(funct.exp_loc, env, Apply_non_function
(expand_head env funct.exp_type)))
in
let arg () =
let arg = type_expect env sarg (mk_expected ty_arg) in
if is_optional lbl then
unify_exp env arg (type_option(newvar()));
arg
in
(ty_res, (lbl, Some arg) :: typed_args)
in
let ignore_labels =
!Clflags.classic ||
begin
let ls, tvar = list_labels env funct.exp_type in
not tvar &&
let labels = List.filter (fun l -> not (is_optional l)) ls in
List.length labels = List.length sargs &&
List.for_all (fun (l,_) -> l = Nolabel) sargs &&
List.exists (fun l -> l <> Nolabel) labels &&
(Location.prerr_warning
funct.exp_loc
(Warnings.Labels_omitted
(List.map Printtyp.string_of_label
(List.filter ((<>) Nolabel) labels)));
true)
end
in
let warned = ref false in
let rec type_args args ty_fun ty_fun0 sargs =
match expand_head env ty_fun, expand_head env ty_fun0 with
| {desc=Tarrow (l, ty, ty_fun, com); level=lv} as ty_fun',
{desc=Tarrow (_, ty0, ty_fun0, _)}
when sargs <> [] && commu_repr com = Cok ->
let may_warn loc w =
if not !warned && !Clflags.principal && lv <> generic_level
then begin
warned := true;
Location.prerr_warning loc w
end
in
let name = label_name l
and optional = is_optional l in
let use_arg sarg l' =
Some (
if not optional || is_optional l' then
(fun () -> type_argument env sarg ty ty0)
else begin
may_warn sarg.pexp_loc
(Warnings.Not_principal "using an optional argument here");
(fun () -> option_some env (type_argument env sarg
(extract_option_type env ty)
(extract_option_type env ty0)))
end
)
in
let eliminate_optional_arg () =
may_warn funct.exp_loc
(Warnings.Non_principal_labels "eliminated optional argument");
eliminated_optional_arguments :=
(l,ty,lv) :: !eliminated_optional_arguments;
Some (fun () -> option_none env (instance ty) Location.none)
in
let remaining_sargs, arg =
if ignore_labels then begin
(* No reordering is allowed, process arguments in order *)
match sargs with
| [] -> assert false
| (l', sarg) :: remaining_sargs ->
if name = label_name l' || (not optional && l' = Nolabel) then
(remaining_sargs, use_arg sarg l')
else if
optional &&
not (List.exists (fun (l, _) -> name = label_name l)
remaining_sargs) &&
List.exists (function (Nolabel, _) -> true | _ -> false)
sargs
then
(sargs, eliminate_optional_arg ())
else
raise(Error(sarg.pexp_loc, env,
Apply_wrong_label(l', ty_fun', optional)))
end else
(* Arguments can be commuted, try to fetch the argument
corresponding to the first parameter. *)
match extract_label name sargs with
| Some (l', sarg, commuted, remaining_sargs) ->
if commuted then begin
may_warn sarg.pexp_loc
(Warnings.Not_principal "commuting this argument")
end;
if not optional && is_optional l' then
Location.prerr_warning sarg.pexp_loc
(Warnings.Nonoptional_label (Printtyp.string_of_label l));
remaining_sargs, use_arg sarg l'
| None ->
sargs,
if optional && List.mem_assoc Nolabel sargs then
eliminate_optional_arg ()
else begin
(* No argument was given for this parameter, we abstract over
it. *)
may_warn funct.exp_loc
(Warnings.Non_principal_labels "commuted an argument");
omitted_parameters := (l,ty,lv) :: !omitted_parameters;
None
end
in
type_args ((l,arg)::args) ty_fun ty_fun0 remaining_sargs
| _ ->
(* We're not looking at a *known* function type anymore, or there are no
arguments left. *)
let ty_fun, typed_args =
List.fold_left type_unknown_arg (ty_fun0, args) sargs
in
let args =
(* Force typing of arguments.
Careful: the order matters here. Using [List.rev_map] would be
incorrect. *)
List.map
(function
| l, None -> l, None
| l, Some f -> l, Some (f ()))
(List.rev typed_args)
in
let result_ty = instance (result_type !omitted_parameters ty_fun) in
args, result_ty
in
let is_ignore funct =
is_prim ~name:"%ignore" funct &&
(try ignore (filter_arrow env (instance funct.exp_type) Nolabel); true
with Unify _ -> false)
in
match sargs with
| (* Special case for ignore: avoid discarding warning *)
[Nolabel, sarg] when is_ignore funct ->
let ty_arg, ty_res = filter_arrow env (instance funct.exp_type) Nolabel in
let exp = type_expect env sarg (mk_expected ty_arg) in
check_partial_application false exp;
([Nolabel, Some exp], ty_res)
| _ ->
let ty = funct.exp_type in
type_args [] ty (instance ty) sargs
and type_construct env loc lid sarg ty_expected_explained attrs =
let { ty = ty_expected; explanation } = ty_expected_explained in
let expected_type =
try
let (p0, p,_) = extract_concrete_variant env ty_expected in
let principal =
(repr ty_expected).level = generic_level || not !Clflags.principal
in
Some(p0, p, principal)
with Not_found -> None
in
let constrs =
Env.lookup_all_constructors ~loc:lid.loc Env.Positive lid.txt env
in
let constr =
wrap_disambiguate "This variant expression is expected to have"
ty_expected_explained
(Constructor.disambiguate Env.Positive lid env expected_type) constrs
in
let sargs =
match sarg with
None -> []
| Some {pexp_desc = Pexp_tuple sel} when
constr.cstr_arity > 1 || Builtin_attributes.explicit_arity attrs
-> sel
| Some se -> [se] in
if List.length sargs <> constr.cstr_arity then
raise(Error(loc, env, Constructor_arity_mismatch
(lid.txt, constr.cstr_arity, List.length sargs)));
let separate = !Clflags.principal || Env.has_local_constraints env in
if separate then (begin_def (); begin_def ());
let (ty_args, ty_res) = instance_constructor constr in
let texp =
re {
exp_desc = Texp_construct(lid, constr, []);
exp_loc = loc; exp_extra = [];
exp_type = ty_res;
exp_attributes = attrs;
exp_env = env } in
if separate then begin
end_def ();
generalize_structure ty_res;
with_explanation explanation (fun () ->
unify_exp env {texp with exp_type = instance ty_res}
(instance ty_expected));
end_def ();
List.iter generalize_structure ty_args;
generalize_structure ty_res;
end;
let ty_args0, ty_res =
match instance_list (ty_res :: ty_args) with
t :: tl -> tl, t
| _ -> assert false
in
let texp = {texp with exp_type = ty_res} in
if not separate then unify_exp env texp (instance ty_expected);
let recarg =
match constr.cstr_inlined with
| None -> Rejected
| Some _ ->
begin match sargs with
| [{pexp_desc =
Pexp_ident _ |
Pexp_record (_, (Some {pexp_desc = Pexp_ident _}| None))}] ->
Required
| _ ->
raise (Error(loc, env, Inlined_record_expected))
end
in
let args =
List.map2 (fun e (t,t0) -> type_argument ~recarg env e t t0) sargs
(List.combine ty_args ty_args0) in
if constr.cstr_private = Private then
begin match constr.cstr_tag with
| Cstr_extension _ ->
raise(Error(loc, env, Private_constructor (constr, ty_res)))
| Cstr_constant _ | Cstr_block _ | Cstr_unboxed ->
raise (Error(loc, env, Private_type ty_res));
end;
(* NOTE: shouldn't we call "re" on this final expression? -- AF *)
{ texp with
exp_desc = Texp_construct(lid, constr, args) }
(* Typing of statements (expressions whose values are discarded) *)
and type_statement ?explanation env sexp =
begin_def();
let exp = type_exp env sexp in
end_def();
let ty = expand_head env exp.exp_type and tv = newvar() in
if is_Tvar ty && ty.level > tv.level then
Location.prerr_warning
(final_subexpression exp).exp_loc
Warnings.Nonreturning_statement;
if !Clflags.strict_sequence then
let expected_ty = instance Predef.type_unit in
with_explanation explanation (fun () ->
unify_exp env exp expected_ty);
exp
else begin
check_partial_application true exp;
unify_var env tv ty;
exp
end
and type_unpacks ?in_function env unpacks sbody expected_ty =
let ty = newvar() in
(* remember original level *)
let extended_env, tunpacks =
List.fold_left (fun (env, unpacks) (name, loc, uid) ->
begin_def ();
let context = Typetexp.narrow () in
let modl =
!type_module env
Ast_helper.(
Mod.unpack ~loc
(Exp.ident ~loc:name.loc (mkloc (Longident.Lident name.txt)
name.loc)))
in
Mtype.lower_nongen ty.level modl.mod_type;
let pres =
match modl.mod_type with
| Mty_alias _ -> Mp_absent
| _ -> Mp_present
in
let scope = create_scope () in
let md =
{ md_type = modl.mod_type; md_attributes = []; md_loc = name.loc;
md_uid = uid; }
in
let (id, env) =
Env.enter_module_declaration ~scope name.txt pres md env
in
Typetexp.widen context;
env, (id, name, pres, modl) :: unpacks
) (env, []) unpacks
in
(* ideally, we should catch Expr_type_clash errors
in type_expect triggered by escaping identifiers from the local module
and refine them into Scoping_let_module errors
*)
let body = type_expect ?in_function extended_env sbody expected_ty in
let exp_loc = { body.exp_loc with loc_ghost = true } in
let exp_attributes = [Ast_helper.Attr.mk (mknoloc "#modulepat") (PStr [])] in
List.fold_left (fun body (id, name, pres, modl) ->
(* go back to parent level *)
end_def ();
Ctype.unify_var extended_env ty body.exp_type;
re {
exp_desc = Texp_letmodule(Some id, { name with txt = Some name.txt },
pres, modl, body);
exp_loc;
exp_attributes;
exp_extra = [];
exp_type = ty;
exp_env = env }
) body tunpacks
(* Typing of match cases *)
and type_cases
: type k . k pattern_category ->
?in_function:_ -> _ -> _ -> _ -> _ -> _ -> Parsetree.case list ->
k case list * partial
= fun category ?in_function env ty_arg ty_res partial_flag loc caselist ->
(* ty_arg is _fully_ generalized *)
let patterns = List.map (fun {pc_lhs=p} -> p) caselist in
let contains_polyvars = List.exists contains_polymorphic_variant patterns in
let erase_either = contains_polyvars && contains_variant_either ty_arg in
let may_contain_gadts = List.exists may_contain_gadts patterns in
let ty_arg =
if (may_contain_gadts || erase_either) && not !Clflags.principal
then correct_levels ty_arg else ty_arg
in
let rec is_var spat =
match spat.ppat_desc with
Ppat_any | Ppat_var _ -> true
| Ppat_alias (spat, _) -> is_var spat
| _ -> false in
let needs_exhaust_check =
match caselist with
[{pc_rhs = {pexp_desc = Pexp_unreachable}}] -> true
| [{pc_lhs}] when is_var pc_lhs -> false
| _ -> true
in
let outer_level = get_current_level () in
let lev =
if may_contain_gadts then begin_def ();
get_current_level ()
in
let take_partial_instance =
if erase_either
then Some false else None
in
begin_def (); (* propagation of the argument *)
let pattern_force = ref [] in
(* Format.printf "@[%i %i@ %a@]@." lev (get_current_level())
Printtyp.raw_type_expr ty_arg; *)
let half_typed_cases =
List.map
(fun ({pc_lhs; pc_guard = _; pc_rhs = _} as case) ->
if !Clflags.principal then begin_def (); (* propagation of pattern *)
begin_def ();
let ty_arg = instance ?partial:take_partial_instance ty_arg in
end_def ();
generalize_structure ty_arg;
let (pat, ext_env, force, pvs, unpacks) =
type_pattern category ~lev env pc_lhs ty_arg
in
pattern_force := force @ !pattern_force;
let pat =
if !Clflags.principal then begin
end_def ();
iter_pattern_variables_type generalize_structure pvs;
{ pat with pat_type = instance pat.pat_type }
end else pat
in
(* Ensure that no ambivalent pattern type escapes its branch *)
check_scope_escape pat.pat_loc env outer_level ty_arg;
{ typed_pat = pat;
pat_type_for_unif = ty_arg;
untyped_case = case;
branch_env = ext_env;
pat_vars = pvs;
unpacks;
contains_gadt = contains_gadt (as_comp_pattern category pat); }
)
caselist in
let patl = List.map (fun { typed_pat; _ } -> typed_pat) half_typed_cases in
let does_contain_gadt =
List.exists (fun { contains_gadt; _ } -> contains_gadt) half_typed_cases
in
let ty_res, do_copy_types =
if does_contain_gadt && not !Clflags.principal then
correct_levels ty_res, Env.make_copy_of_types env
else ty_res, (fun env -> env)
in
(* Unify all cases (delayed to keep it order-free) *)
let ty_arg' = newvar () in
let unify_pats ty =
List.iter (fun { typed_pat = pat; pat_type_for_unif = pat_ty; _ } ->
unify_pat_types pat.pat_loc (ref env) pat_ty ty
) half_typed_cases
in
unify_pats ty_arg';
(* Check for polymorphic variants to close *)
if List.exists has_variants patl then begin
Parmatch.pressure_variants_in_computation_pattern env
(List.map (as_comp_pattern category) patl);
List.iter finalize_variants patl
end;
(* `Contaminating' unifications start here *)
List.iter (fun f -> f()) !pattern_force;
(* Post-processing and generalization *)
if take_partial_instance <> None then unify_pats (instance ty_arg);
List.iter (fun { pat_vars; _ } ->
iter_pattern_variables_type (fun t -> unify_var env (newvar()) t) pat_vars
) half_typed_cases;
end_def ();
generalize ty_arg';
List.iter (fun { pat_vars; _ } ->
iter_pattern_variables_type generalize pat_vars
) half_typed_cases;
(* type bodies *)
let in_function = if List.length caselist = 1 then in_function else None in
let mk_cases interbranch_propagation =
List.map
(fun { typed_pat = pat; branch_env = ext_env; pat_vars = pvs; unpacks;
untyped_case = {pc_lhs = _; pc_guard; pc_rhs};
contains_gadt; _ } ->
let ext_env =
if contains_gadt then
do_copy_types ext_env
else
ext_env
in
let ext_env =
add_pattern_variables ext_env pvs
~check:(fun s -> Warnings.Unused_var_strict s)
~check_as:(fun s -> Warnings.Unused_var s)
in
let unpacks =
List.map (fun (name, loc) ->
name, loc, Uid.mk ~current_unit:(Env.get_unit_name ())
) unpacks
in
let ty_res' =
if !Clflags.principal then begin
begin_def ();
let ty = instance ~partial:true ty_res in
end_def ();
generalize_structure ty; ty
end
else if contains_gadt && interbranch_propagation then
correct_levels ty_res
else ty_res in
let guard =
match pc_guard with
| None -> None
| Some scond ->
Some
(type_unpacks ext_env unpacks scond
(mk_expected ~explanation:When_guard Predef.type_bool))
in
let exp =
type_unpacks ?in_function ext_env unpacks pc_rhs (mk_expected ty_res')
in
{
c_lhs = pat;
c_guard = guard;
c_rhs = {exp with exp_type = instance ty_res'}
}
)
half_typed_cases
in
let cases =
let may_backtrack = does_contain_gadt && not !Clflags.principal in
if not may_backtrack then mk_cases false else
let state = save_state (ref env) in
let has_equation_escape err =
match trace_of_error err with
Some tr ->
List.exists Ctype.Unification_trace.
(function Escape {kind=Equation _} -> true | _ -> false) tr
| None -> false
in
try mk_cases false
with Error(_,_,err) when has_equation_escape err ->
set_state state (ref env);
let cases = mk_cases true in
let msg =
Format.asprintf
"@[<v2>@ @[<hov>The return type of this pattern-matching \
is ambiguous.@ \
Please add a type annotation,@ as the choice of `@[%a@]'@]@]"
Printtyp.type_expr ty_res
in
Location.prerr_warning loc (Warnings.Not_principal msg);
cases
in
if !Clflags.principal || does_contain_gadt then begin
let ty_res' = instance ty_res in
List.iter (fun c -> unify_exp env c.c_rhs ty_res') cases
end;
let do_init = may_contain_gadts || needs_exhaust_check in
let ty_arg_check =
if do_init then
(* Hack: use for_saving to copy variables too *)
Subst.type_expr (Subst.for_saving Subst.identity) ty_arg'
else ty_arg'
in
let val_cases, exn_cases =
match category with
| Value -> (cases : value case list), []
| Computation -> split_cases env cases in
if val_cases = [] && exn_cases <> [] then
raise (Error (loc, env, No_value_clauses));
let partial =
if partial_flag then
check_partial ~lev env ty_arg_check loc val_cases
else
Partial
in
let unused_check delayed =
List.iter (fun { typed_pat; branch_env; _ } ->
check_absent_variant branch_env (as_comp_pattern category typed_pat)
) half_typed_cases;
if delayed then (begin_def (); init_def lev);
check_unused ~lev env ty_arg_check val_cases ;
check_unused ~lev env Predef.type_exn exn_cases ;
if delayed then end_def ();
Parmatch.check_ambiguous_bindings val_cases ;
Parmatch.check_ambiguous_bindings exn_cases
in
if contains_polyvars then
add_delayed_check (fun () -> unused_check true)
else
(* Check for unused cases, do not delay because of gadts *)
unused_check false;
if may_contain_gadts then begin
end_def ();
(* Ensure that existential types do not escape *)
unify_exp_types loc env (instance ty_res) (newvar ()) ;
end;
cases, partial
(* Typing of let bindings *)
and type_let
?(check = fun s -> Warnings.Unused_var s)
?(check_strict = fun s -> Warnings.Unused_var_strict s)
existential_context
env rec_flag spat_sexp_list allow =
let open Ast_helper in
begin_def();
if !Clflags.principal then begin_def ();
let is_fake_let =
match spat_sexp_list with
| [{pvb_expr={pexp_desc=Pexp_match(
{pexp_desc=Pexp_ident({ txt = Longident.Lident "*opt*"})},_)}}] ->
true (* the fake let-declaration introduced by fun ?(x = e) -> ... *)
| _ ->
false
in
let check = if is_fake_let then check_strict else check in
let spatl =
List.map
(fun {pvb_pat=spat; pvb_expr=sexp; pvb_attributes=attrs} ->
attrs,
match spat.ppat_desc, sexp.pexp_desc with
(Ppat_any | Ppat_constraint _), _ -> spat
| _, Pexp_coerce (_, _, sty)
| _, Pexp_constraint (_, sty) when !Clflags.principal ->
(* propagate type annotation to pattern,
to allow it to be generalized in -principal mode *)
Pat.constraint_
~loc:{spat.ppat_loc with Location.loc_ghost=true}
spat
sty
| _ -> spat)
spat_sexp_list in
let nvs = List.map (fun _ -> newvar ()) spatl in
let (pat_list, new_env, force, pvs, unpacks) =
type_pattern_list Value existential_context env spatl nvs allow in
let attrs_list = List.map fst spatl in
let is_recursive = (rec_flag = Recursive) in
(* If recursive, first unify with an approximation of the expression *)
if is_recursive then
List.iter2
(fun pat binding ->
let pat =
match pat.pat_type.desc with
| Tpoly (ty, tl) ->
{pat with pat_type =
snd (instance_poly ~keep_names:true false tl ty)}
| _ -> pat
in unify_pat (ref env) pat (type_approx env binding.pvb_expr))
pat_list spat_sexp_list;
(* Polymorphic variant processing *)
List.iter
(fun pat ->
if has_variants pat then begin
Parmatch.pressure_variants env [pat];
finalize_variants pat
end)
pat_list;
(* Generalize the structure *)
let pat_list =
if !Clflags.principal then begin
end_def ();
iter_pattern_variables_type generalize_structure pvs;
List.map (fun pat ->
generalize_structure pat.pat_type;
{pat with pat_type = instance pat.pat_type}
) pat_list
end else
pat_list
in
(* Only bind pattern variables after generalizing *)
List.iter (fun f -> f()) force;
let sexp_is_fun { pvb_expr = sexp; _ } =
match sexp.pexp_desc with
| Pexp_fun _ | Pexp_function _ -> true
| _ -> false
in
let exp_env =
if is_recursive then new_env
else if List.for_all sexp_is_fun spat_sexp_list
then begin
(* Add ghost bindings to help detecting missing "rec" keywords.
We only add those if the body of the definition is obviously a
function. The rationale is that, in other cases, the hint is probably
wrong (and the user is using "advanced features" anyway (lazy,
recursive values...)).
[pvb_loc] (below) is the location of the first let-binding (in case of
a let .. and ..), and is where the missing "rec" hint suggests to add a
"rec" keyword. *)
match spat_sexp_list with
| {pvb_loc; _} :: _ -> maybe_add_pattern_variables_ghost pvb_loc env pvs
| _ -> assert false
end
else env in
let current_slot = ref None in
let rec_needed = ref false in
let warn_about_unused_bindings =
List.exists
(fun attrs ->
Builtin_attributes.warning_scope ~ppwarning:false attrs (fun () ->
Warnings.is_active (check "") || Warnings.is_active (check_strict "")
|| (is_recursive && (Warnings.is_active Warnings.Unused_rec_flag))))
attrs_list
in
let pat_slot_list =
(* Algorithm to detect unused declarations in recursive bindings:
- During type checking of the definitions, we capture the 'value_used'
events on the bound identifiers and record them in a slot corresponding
to the current definition (!current_slot).
In effect, this creates a dependency graph between definitions.
- After type checking the definition (!current_slot = None),
when one of the bound identifier is effectively used, we trigger
again all the events recorded in the corresponding slot.
The effect is to traverse the transitive closure of the graph created
in the first step.
We also keep track of whether *all* variables in a given pattern
are unused. If this is the case, for local declarations, the issued
warning is 26, not 27.
*)
List.map2
(fun attrs pat ->
Builtin_attributes.warning_scope ~ppwarning:false attrs (fun () ->
if not warn_about_unused_bindings then pat, None
else
let some_used = ref false in
(* has one of the identifier of this pattern been used? *)
let slot = ref [] in
List.iter
(fun id ->
let vd = Env.find_value (Path.Pident id) new_env in
(* note: Env.find_value does not trigger the value_used
event *)
let name = Ident.name id in
let used = ref false in
if not (name = "" || name.[0] = '_' || name.[0] = '#') then
add_delayed_check
(fun () ->
if not !used then
Location.prerr_warning vd.Types.val_loc
((if !some_used then check_strict else check) name)
);
Env.set_value_used_callback
vd
(fun () ->
match !current_slot with
| Some slot ->
slot := vd.val_uid :: !slot; rec_needed := true
| None ->
List.iter Env.mark_value_used (get_ref slot);
used := true;
some_used := true
)
)
(Typedtree.pat_bound_idents pat);
pat, Some slot
))
attrs_list
pat_list
in
let exp_list =
List.map2
(fun {pvb_expr=sexp; pvb_attributes; _} (pat, slot) ->
if is_recursive then current_slot := slot;
match pat.pat_type.desc with
| Tpoly (ty, tl) ->
if !Clflags.principal then begin_def ();
let vars, ty' = instance_poly ~keep_names:true true tl ty in
if !Clflags.principal then begin
end_def ();
generalize_structure ty'
end;
let exp =
Builtin_attributes.warning_scope pvb_attributes (fun () ->
if rec_flag = Recursive then
type_unpacks exp_env unpacks sexp (mk_expected ty')
else
type_expect exp_env sexp (mk_expected ty')
)
in
exp, Some vars
| _ ->
let exp =
Builtin_attributes.warning_scope pvb_attributes (fun () ->
if rec_flag = Recursive then
type_unpacks exp_env unpacks sexp (mk_expected pat.pat_type)
else
type_expect exp_env sexp (mk_expected pat.pat_type))
in
exp, None)
spat_sexp_list pat_slot_list in
current_slot := None;
if is_recursive && not !rec_needed then begin
let {pvb_pat; pvb_attributes} = List.hd spat_sexp_list in
(* See PR#6677 *)
Builtin_attributes.warning_scope ~ppwarning:false pvb_attributes
(fun () ->
Location.prerr_warning pvb_pat.ppat_loc Warnings.Unused_rec_flag
)
end;
List.iter2
(fun pat (attrs, exp) ->
Builtin_attributes.warning_scope ~ppwarning:false attrs
(fun () ->
ignore(check_partial env pat.pat_type pat.pat_loc
[case pat exp])
)
)
pat_list
(List.map2 (fun (attrs, _) (e, _) -> attrs, e) spatl exp_list);
let pvs = List.map (fun pv -> { pv with pv_type = instance pv.pv_type}) pvs in
end_def();
List.iter2
(fun pat (exp, _) ->
if maybe_expansive exp then
lower_contravariant env pat.pat_type)
pat_list exp_list;
iter_pattern_variables_type generalize pvs;
List.iter2
(fun pat (exp, vars) ->
match vars with
| None ->
(* We generalize expressions even if they are not bound to a variable
and do not have an expliclit polymorphic type annotation. This is
not needed in general, however those types may be shown by the
interactive toplevel, for example:
{[
let _ = Array.get;;
- : 'a array -> int -> 'a = <fun>
]}
so we do it anyway. *)
generalize exp.exp_type
| Some vars ->
if maybe_expansive exp then
lower_contravariant env exp.exp_type;
generalize_and_check_univars env "definition" exp pat.pat_type vars)
pat_list exp_list;
let l = List.combine pat_list exp_list in
let l =
List.map2
(fun (p, (e, _)) pvb ->
{vb_pat=p; vb_expr=e; vb_attributes=pvb.pvb_attributes;
vb_loc=pvb.pvb_loc;
})
l spat_sexp_list
in
if is_recursive then
List.iter
(fun {vb_pat=pat} -> match pat.pat_desc with
Tpat_var _ -> ()
| Tpat_alias ({pat_desc=Tpat_any}, _, _) -> ()
| _ -> raise(Error(pat.pat_loc, env, Illegal_letrec_pat)))
l;
List.iter (function
| {vb_pat = {pat_desc = Tpat_any; pat_extra; _}; vb_expr; _} ->
if not (List.exists (function (Tpat_constraint _, _, _) -> true
| _ -> false) pat_extra) then
check_partial_application false vb_expr
| _ -> ()) l;
(l, new_env, unpacks)
and type_andops env sarg sands expected_ty =
let rec loop env let_sarg rev_sands expected_ty =
match rev_sands with
| [] -> type_expect env let_sarg (mk_expected expected_ty), []
| { pbop_op = sop; pbop_exp = sexp; pbop_loc = loc; _ } :: rest ->
if !Clflags.principal then begin_def ();
let op_path, op_desc = type_binding_op_ident env sop in
let op_type = instance op_desc.val_type in
let ty_arg = newvar () in
let ty_rest = newvar () in
let ty_result = newvar() in
let ty_rest_fun = newty (Tarrow(Nolabel, ty_arg, ty_result, Cok)) in
let ty_op = newty (Tarrow(Nolabel, ty_rest, ty_rest_fun, Cok)) in
begin try
unify env op_type ty_op
with Unify trace ->
raise(Error(sop.loc, env, Andop_type_clash(sop.txt, trace)))
end;
if !Clflags.principal then begin
end_def ();
generalize_structure ty_rest;
generalize_structure ty_arg;
generalize_structure ty_result
end;
let let_arg, rest = loop env let_sarg rest ty_rest in
let exp = type_expect env sexp (mk_expected ty_arg) in
begin try
unify env (instance ty_result) (instance expected_ty)
with Unify trace ->
raise(Error(loc, env, Bindings_type_clash(trace)))
end;
let andop =
{ bop_op_name = sop;
bop_op_path = op_path;
bop_op_val = op_desc;
bop_op_type = op_type;
bop_exp = exp;
bop_loc = loc }
in
let_arg, andop :: rest
in
let let_arg, rev_ands = loop env sarg (List.rev sands) expected_ty in
let_arg, List.rev rev_ands
(* Typing of toplevel bindings *)
let type_binding env rec_flag spat_sexp_list =
Typetexp.reset_type_variables();
let (pat_exp_list, new_env, _unpacks) =
type_let
~check:(fun s -> Warnings.Unused_value_declaration s)
~check_strict:(fun s -> Warnings.Unused_value_declaration s)
At_toplevel
env rec_flag spat_sexp_list false
in
(pat_exp_list, new_env)
let type_let existential_ctx env rec_flag spat_sexp_list =
let (pat_exp_list, new_env, _unpacks) =
type_let existential_ctx env rec_flag spat_sexp_list false in
(pat_exp_list, new_env)
(* Typing of toplevel expressions *)
let type_expression env sexp =
Typetexp.reset_type_variables();
begin_def();
let exp = type_exp env sexp in
end_def();
if maybe_expansive exp then lower_contravariant env exp.exp_type;
generalize exp.exp_type;
match sexp.pexp_desc with
Pexp_ident lid ->
let loc = sexp.pexp_loc in
(* Special case for keeping type variables when looking-up a variable *)
let (_path, desc) = Env.lookup_value ~use:false ~loc lid.txt env in
{exp with exp_type = desc.val_type}
| _ -> exp
(* Error report *)
let spellcheck ppf unbound_name valid_names =
Misc.did_you_mean ppf (fun () ->
Misc.spellcheck valid_names unbound_name
)
let spellcheck_idents ppf unbound valid_idents =
spellcheck ppf (Ident.name unbound) (List.map Ident.name valid_idents)
open Format
let longident = Printtyp.longident
(* Returns the first diff of the trace *)
let type_clash_of_trace trace =
Ctype.Unification_trace.(explain trace (fun ~prev:_ -> function
| Diff diff -> Some diff
| _ -> None
))
(* Hint on type error on integer literals
To avoid confusion, it is disabled on float literals
and when the expected type is `int` *)
let report_literal_type_constraint expected_type const =
let const_str = match const with
| Const_int n -> Some (Int.to_string n)
| Const_int32 n -> Some (Int32.to_string n)
| Const_int64 n -> Some (Int64.to_string n)
| Const_nativeint n -> Some (Nativeint.to_string n)
| _ -> None
in
let suffix =
if Path.same expected_type Predef.path_int32 then
Some 'l'
else if Path.same expected_type Predef.path_int64 then
Some 'L'
else if Path.same expected_type Predef.path_nativeint then
Some 'n'
else if Path.same expected_type Predef.path_float then
Some '.'
else None
in
match const_str, suffix with
| Some c, Some s -> [ Location.msg "@[Hint: Did you mean `%s%c'?@]" c s ]
| _, _ -> []
let report_literal_type_constraint const = function
| Some Unification_trace.
{ expected = { t = { desc = Tconstr (typ, [], _) } } } ->
report_literal_type_constraint typ const
| Some _ | None -> []
let report_expr_type_clash_hints exp diff =
match exp with
| Some (Texp_constant const) -> report_literal_type_constraint const diff
| _ -> []
let report_pattern_type_clash_hints
(type k) (pat : k pattern_desc option) diff =
match pat with
| Some (Tpat_constant const) -> report_literal_type_constraint const diff
| _ -> []
let report_type_expected_explanation expl ppf =
let because expl_str = fprintf ppf "@ because it is in %s" expl_str in
match expl with
| If_conditional ->
because "the condition of an if-statement"
| If_no_else_branch ->
because "the result of a conditional with no else branch"
| While_loop_conditional ->
because "the condition of a while-loop"
| While_loop_body ->
because "the body of a while-loop"
| For_loop_start_index ->
because "a for-loop start index"
| For_loop_stop_index ->
because "a for-loop stop index"
| For_loop_body ->
because "the body of a for-loop"
| Assert_condition ->
because "the condition of an assertion"
| Sequence_left_hand_side ->
because "the left-hand side of a sequence"
| When_guard ->
because "a when-guard"
let report_type_expected_explanation_opt expl ppf =
match expl with
| None -> ()
| Some expl -> report_type_expected_explanation expl ppf
let report_unification_error ~loc ?sub env trace
?type_expected_explanation txt1 txt2 =
Location.error_of_printer ~loc ?sub (fun ppf () ->
Printtyp.report_unification_error ppf env trace
?type_expected_explanation txt1 txt2
) ()
let report_error ~loc env = function
| Constructor_arity_mismatch(lid, expected, provided) ->
Location.errorf ~loc
"@[The constructor %a@ expects %i argument(s),@ \
but is applied here to %i argument(s)@]"
longident lid expected provided
| Label_mismatch(lid, trace) ->
report_unification_error ~loc env trace
(function ppf ->
fprintf ppf "The record field %a@ belongs to the type"
longident lid)
(function ppf ->
fprintf ppf "but is mixed here with fields of type")
| Pattern_type_clash (trace, pat) ->
let diff = type_clash_of_trace trace in
let sub = report_pattern_type_clash_hints pat diff in
Location.error_of_printer ~loc ~sub (fun ppf () ->
Printtyp.report_unification_error ppf env trace
(function ppf ->
fprintf ppf "This pattern matches values of type")
(function ppf ->
fprintf ppf "but a pattern was expected which matches values of \
type");
) ()
| Or_pattern_type_clash (id, trace) ->
report_unification_error ~loc env trace
(function ppf ->
fprintf ppf "The variable %s on the left-hand side of this \
or-pattern has type" (Ident.name id))
(function ppf ->
fprintf ppf "but on the right-hand side it has type")
| Multiply_bound_variable name ->
Location.errorf ~loc
"Variable %s is bound several times in this matching"
name
| Orpat_vars (id, valid_idents) ->
Location.error_of_printer ~loc (fun ppf () ->
fprintf ppf
"Variable %s must occur on both sides of this | pattern"
(Ident.name id);
spellcheck_idents ppf id valid_idents
) ()
| Expr_type_clash (trace, explanation, exp) ->
let diff = type_clash_of_trace trace in
let sub = report_expr_type_clash_hints exp diff in
Location.error_of_printer ~loc ~sub (fun ppf () ->
Printtyp.report_unification_error ppf env trace
~type_expected_explanation:
(report_type_expected_explanation_opt explanation)
(function ppf ->
fprintf ppf "This expression has type")
(function ppf ->
fprintf ppf "but an expression was expected of type");
) ()
| Apply_non_function typ ->
begin match (repr typ).desc with
Tarrow _ ->
Location.errorf ~loc
"@[<v>@[<2>This function has type@ %a@]\
@ @[It is applied to too many arguments;@ %s@]@]"
Printtyp.type_expr typ "maybe you forgot a `;'.";
| _ ->
Location.errorf ~loc "@[<v>@[<2>This expression has type@ %a@]@ %s@]"
Printtyp.type_expr typ
"This is not a function; it cannot be applied."
end
| Apply_wrong_label (l, ty, extra_info) ->
let print_label ppf = function
| Nolabel -> fprintf ppf "without label"
| l -> fprintf ppf "with label %s" (prefixed_label_name l)
in
let extra_info =
if not extra_info then
[]
else
[ Location.msg
"Since OCaml 4.11, optional arguments do not commute when \
-nolabels is given" ]
in
Location.errorf ~loc ~sub:extra_info
"@[<v>@[<2>The function applied to this argument has type@ %a@]@.\
This argument cannot be applied %a@]"
Printtyp.type_expr ty print_label l
| Label_multiply_defined s ->
Location.errorf ~loc "The record field label %s is defined several times"
s
| Label_missing labels ->
let print_labels ppf =
List.iter (fun lbl -> fprintf ppf "@ %s" (Ident.name lbl)) in
Location.errorf ~loc "@[<hov>Some record fields are undefined:%a@]"
print_labels labels
| Label_not_mutable lid ->
Location.errorf ~loc "The record field %a is not mutable" longident lid
| Wrong_name (eorp, ty_expected, { type_path; kind; name; valid_names; }) ->
Location.error_of_printer ~loc (fun ppf () ->
Printtyp.wrap_printing_env ~error:true env (fun () ->
let { ty; explanation } = ty_expected in
if Path.is_constructor_typath type_path then begin
fprintf ppf
"@[The field %s is not part of the record \
argument for the %a constructor@]"
name.txt
Printtyp.type_path type_path;
end else begin
fprintf ppf
"@[@[<2>%s type@ %a%t@]@ \
The %s %s does not belong to type %a@]"
eorp Printtyp.type_expr ty
(report_type_expected_explanation_opt explanation)
(Datatype_kind.label_name kind)
name.txt (*kind*) Printtyp.type_path type_path;
end;
spellcheck ppf name.txt valid_names
)) ()
| Name_type_mismatch (kind, lid, tp, tpl) ->
let type_name = Datatype_kind.type_name kind in
let name = Datatype_kind.label_name kind in
Location.error_of_printer ~loc (fun ppf () ->
Printtyp.report_ambiguous_type_error ppf env tp tpl
(function ppf ->
fprintf ppf "The %s %a@ belongs to the %s type"
name longident lid type_name)
(function ppf ->
fprintf ppf "The %s %a@ belongs to one of the following %s types:"
name longident lid type_name)
(function ppf ->
fprintf ppf "but a %s was expected belonging to the %s type"
name type_name)
) ()
| Invalid_format msg ->
Location.errorf ~loc "%s" msg
| Undefined_method (ty, me, valid_methods) ->
Location.error_of_printer ~loc (fun ppf () ->
Printtyp.wrap_printing_env ~error:true env (fun () ->
fprintf ppf
"@[<v>@[This expression has type@;<1 2>%a@]@,\
It has no method %s@]" Printtyp.type_expr ty me;
begin match valid_methods with
| None -> ()
| Some valid_methods -> spellcheck ppf me valid_methods
end
)) ()
| Undefined_inherited_method (me, valid_methods) ->
Location.error_of_printer ~loc (fun ppf () ->
fprintf ppf "This expression has no method %s" me;
spellcheck ppf me valid_methods;
) ()
| Virtual_class cl ->
Location.errorf ~loc "Cannot instantiate the virtual class %a"
longident cl
| Unbound_instance_variable (var, valid_vars) ->
Location.error_of_printer ~loc (fun ppf () ->
fprintf ppf "Unbound instance variable %s" var;
spellcheck ppf var valid_vars;
) ()
| Instance_variable_not_mutable v ->
Location.errorf ~loc "The instance variable %s is not mutable" v
| Not_subtype(tr1, tr2) ->
Location.error_of_printer ~loc (fun ppf () ->
Printtyp.report_subtyping_error ppf env tr1 "is not a subtype of" tr2
) ()
| Outside_class ->
Location.errorf ~loc
"This object duplication occurs outside a method definition"
| Value_multiply_overridden v ->
Location.errorf ~loc
"The instance variable %s is overridden several times"
v
| Coercion_failure (ty, ty', trace, b) ->
Location.error_of_printer ~loc (fun ppf () ->
Printtyp.report_unification_error ppf env trace
(function ppf ->
let ty, ty' = Printtyp.prepare_expansion (ty, ty') in
fprintf ppf "This expression cannot be coerced to type@;<1 2>%a;@ \
it has type"
(Printtyp.type_expansion ty) ty')
(function ppf ->
fprintf ppf "but is here used with type");
if b then
fprintf ppf ".@.@[<hov>%s@ %s@ %s@]"
"This simple coercion was not fully general."
"Hint: Consider using a fully explicit coercion"
"of the form: `(foo : ty1 :> ty2)'."
) ()
| Too_many_arguments (in_function, ty, explanation) ->
if in_function then begin
Location.errorf ~loc
"This function expects too many arguments,@ \
it should have type@ %a%t"
Printtyp.type_expr ty
(report_type_expected_explanation_opt explanation)
end else begin
Location.errorf ~loc
"This expression should not be a function,@ \
the expected type is@ %a%t"
Printtyp.type_expr ty
(report_type_expected_explanation_opt explanation)
end
| Abstract_wrong_label (l, ty, explanation) ->
let label_mark = function
| Nolabel -> "but its first argument is not labelled"
| l -> sprintf "but its first argument is labelled %s"
(prefixed_label_name l) in
Location.errorf ~loc
"@[<v>@[<2>This function should have type@ %a%t@]@,%s@]"
Printtyp.type_expr ty
(report_type_expected_explanation_opt explanation)
(label_mark l)
| Scoping_let_module(id, ty) ->
Location.errorf ~loc
"This `let module' expression has type@ %a@ \
In this type, the locally bound module name %s escapes its scope"
Printtyp.type_expr ty id
| Private_type ty ->
Location.errorf ~loc "Cannot create values of the private type %a"
Printtyp.type_expr ty
| Private_label (lid, ty) ->
Location.errorf ~loc "Cannot assign field %a of the private type %a"
longident lid Printtyp.type_expr ty
| Private_constructor (constr, ty) ->
Location.errorf ~loc
"Cannot use private constructor %s to create values of type %a"
constr.cstr_name Printtyp.type_expr ty
| Not_a_variant_type lid ->
Location.errorf ~loc "The type %a@ is not a variant type" longident lid
| Incoherent_label_order ->
Location.errorf ~loc
"This function is applied to arguments@ \
in an order different from other calls.@ \
This is only allowed when the real type is known."
| Less_general (kind, trace) ->
report_unification_error ~loc env trace
(fun ppf -> fprintf ppf "This %s has type" kind)
(fun ppf -> fprintf ppf "which is less general than")
| Modules_not_allowed ->
Location.errorf ~loc "Modules are not allowed in this pattern."
| Cannot_infer_signature ->
Location.errorf ~loc
"The signature for this packaged module couldn't be inferred."
| Not_a_packed_module ty ->
Location.errorf ~loc
"This expression is packed module, but the expected type is@ %a"
Printtyp.type_expr ty
| Unexpected_existential (reason, name, types) ->
let reason_str =
match reason with
| In_class_args ->
"Existential types are not allowed in class arguments"
| In_class_def ->
"Existential types are not allowed in bindings inside \
class definition"
| In_self_pattern ->
"Existential types are not allowed in self patterns"
| At_toplevel ->
"Existential types are not allowed in toplevel bindings"
| In_group ->
"Existential types are not allowed in \"let ... and ...\" bindings"
| In_rec ->
"Existential types are not allowed in recursive bindings"
| With_attributes ->
"Existential types are not allowed in presence of attributes"
in
begin match List.find (fun ty -> ty <> "$" ^ name) types with
| example ->
Location.errorf ~loc
"%s,@ but this pattern introduces the existential type %s."
reason_str example
| exception Not_found ->
Location.errorf ~loc
"%s,@ but the constructor %s introduces existential types."
reason_str name
end
| Invalid_interval ->
Location.errorf ~loc
"@[Only character intervals are supported in patterns.@]"
| Invalid_for_loop_index ->
Location.errorf ~loc
"@[Invalid for-loop index: only variables and _ are allowed.@]"
| No_value_clauses ->
Location.errorf ~loc
"None of the patterns in this 'match' expression match values."
| Exception_pattern_disallowed ->
Location.errorf ~loc
"@[Exception patterns are not allowed in this position.@]"
| Mixed_value_and_exception_patterns_under_guard ->
Location.errorf ~loc
"@[Mixing value and exception patterns under when-guards is not \
supported.@]"
| Inlined_record_escape ->
Location.errorf ~loc
"@[This form is not allowed as the type of the inlined record could \
escape.@]"
| Inlined_record_expected ->
Location.errorf ~loc
"@[This constructor expects an inlined record argument.@]"
| Unrefuted_pattern pat ->
Location.errorf ~loc
"@[%s@ %s@ %a@]"
"This match case could not be refuted."
"Here is an example of a value that would reach it:"
Printpat.top_pretty pat
| Invalid_extension_constructor_payload ->
Location.errorf ~loc
"Invalid [%%extension_constructor] payload, a constructor is expected."
| Not_an_extension_constructor ->
Location.errorf ~loc
"This constructor is not an extension constructor."
| Literal_overflow ty ->
Location.errorf ~loc
"Integer literal exceeds the range of representable integers of type %s"
ty
| Unknown_literal (n, m) ->
Location.errorf ~loc "Unknown modifier '%c' for literal %s%c" m n m
| Illegal_letrec_pat ->
Location.errorf ~loc
"Only variables are allowed as left-hand side of `let rec'"
| Illegal_letrec_expr ->
Location.errorf ~loc
"This kind of expression is not allowed as right-hand side of `let rec'"
| Illegal_class_expr ->
Location.errorf ~loc
"This kind of recursive class expression is not allowed"
| Letop_type_clash(name, trace) ->
report_unification_error ~loc env trace
(function ppf ->
fprintf ppf "The operator %s has type" name)
(function ppf ->
fprintf ppf "but it was expected to have type")
| Andop_type_clash(name, trace) ->
report_unification_error ~loc env trace
(function ppf ->
fprintf ppf "The operator %s has type" name)
(function ppf ->
fprintf ppf "but it was expected to have type")
| Bindings_type_clash(trace) ->
report_unification_error ~loc env trace
(function ppf ->
fprintf ppf "These bindings have type")
(function ppf ->
fprintf ppf "but bindings were expected of type")
let report_error ~loc env err =
Printtyp.wrap_printing_env ~error:true env
(fun () -> report_error ~loc env err)
let () =
Location.register_error_of_exn
(function
| Error (loc, env, err) ->
Some (report_error ~loc env err)
| Error_forward err ->
Some err
| _ ->
None
)
let () =
Persistent_env.add_delayed_check_forward := add_delayed_check;
Env.add_delayed_check_forward := add_delayed_check;
()
(* drop ?recarg argument from the external API *)
let type_expect ?in_function env e ty = type_expect ?in_function env e ty
let type_exp env e = type_exp env e
let type_argument env e t1 t2 = type_argument env e t1 t2