ocaml/typing/ctype.ml

4925 lines
167 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Operations on core types *)
open Misc
open Asttypes
open Types
open Btype
open Local_store
(*
Type manipulation after type inference
======================================
If one wants to manipulate a type after type inference (for
instance, during code generation or in the debugger), one must
first make sure that the type levels are correct, using the
function [correct_levels]. Then, this type can be correctly
manipulated by [apply], [expand_head] and [moregeneral].
*)
(*
General notes
=============
- As much sharing as possible should be kept : it makes types
smaller and better abbreviated.
When necessary, some sharing can be lost. Types will still be
printed correctly (+++ TO DO...), and abbreviations defined by a
class do not depend on sharing thanks to constrained
abbreviations. (Of course, even if some sharing is lost, typing
will still be correct.)
- All nodes of a type have a level : that way, one know whether a
node need to be duplicated or not when instantiating a type.
- Levels of a type are decreasing (generic level being considered
as greatest).
- The level of a type constructor is superior to the binding
time of its path.
- Recursive types without limitation should be handled (even if
there is still an occur check). This avoid treating specially the
case for objects, for instance. Furthermore, the occur check
policy can then be easily changed.
*)
(**** Errors ****)
module Unification_trace = struct
type position = First | Second
let swap_position = function
| First -> Second
| Second -> First
type desc = { t: type_expr; expanded: type_expr option }
type 'a diff = { got: 'a; expected: 'a}
type 'a escape =
| Constructor of Path.t
| Univ of type_expr
(* The type_expr argument of [Univ] is always a [Tunivar _],
we keep a [type_expr] to track renaming in {!Printtyp} *)
| Self
| Module_type of Path.t
| Equation of 'a
type fixed_row_case =
| Cannot_be_closed
| Cannot_add_tags of string list
type variant =
| No_intersection
| No_tags of position * (Asttypes.label * row_field) list
| Incompatible_types_for of string
| Fixed_row of position * fixed_row_case * fixed_explanation
type obj =
| Missing_field of position * string
| Abstract_row of position
| Self_cannot_be_closed
type 'a elt =
| Diff of 'a diff
| Variant of variant
| Obj of obj
| Escape of {context:type_expr option; kind: 'a escape}
| Incompatible_fields of {name:string; diff:type_expr diff }
| Rec_occur of type_expr * type_expr
type t = desc elt list
let short t = { t; expanded = None }
let map_diff f r =
(* ordering is often meaningful when dealing with type_expr *)
let got = f r.got in
let expected = f r.expected in
{ got; expected}
let diff got expected = Diff (map_diff short {got;expected})
let map_elt f = function
| Diff x -> Diff (map_diff f x)
| Escape {kind=Equation x; context} -> Escape {kind=Equation(f x); context}
| Rec_occur (_,_)
| Escape {kind=(Univ _ | Self|Constructor _ | Module_type _ ); _}
| Variant _ | Obj _
| Incompatible_fields _ as x -> x
let map f = List.map (map_elt f)
(* Convert desc to type_expr * type_expr *)
let flatten_desc f x = match x.expanded with
| None -> f x.t x.t
| Some expanded -> f x.t expanded
let flatten f = map (flatten_desc f)
(* Permute the expected and actual values *)
let swap_diff x = { got = x.expected; expected = x.got }
let swap_elt = function
| Diff x -> Diff (swap_diff x)
| Incompatible_fields {name;diff} ->
Incompatible_fields { name; diff = swap_diff diff}
| Obj (Missing_field(pos,s)) -> Obj(Missing_field(swap_position pos,s))
| Obj (Abstract_row pos) -> Obj(Abstract_row (swap_position pos))
| Variant (Fixed_row(pos,k,f)) -> Variant (Fixed_row(swap_position pos,k,f))
| Variant (No_tags(pos,f)) -> Variant (No_tags(swap_position pos,f))
| x -> x
let swap x = List.map swap_elt x
exception Unify of t
let escape kind = Escape { kind; context = None}
let scope_escape x = Unify[escape (Equation (short x))]
let rec_occur x y = Unify[Rec_occur(x, y)]
let incompatible_fields name got expected =
Incompatible_fields {name; diff={got; expected} }
let explain trace f =
let rec explain = function
| [] -> None
| [h] -> f ~prev:None h
| h :: (prev :: _ as rem) ->
match f ~prev:(Some prev) h with
| Some _ as m -> m
| None -> explain rem in
explain (List.rev trace)
end
module Trace = Unification_trace
exception Unify = Trace.Unify
exception Tags of label * label
let () =
Location.register_error_of_exn
(function
| Tags (l, l') ->
Some
Location.
(errorf ~loc:(in_file !input_name)
"In this program,@ variant constructors@ `%s and `%s@ \
have the same hash value.@ Change one of them." l l'
)
| _ -> None
)
exception Subtype of Unification_trace.t * Unification_trace.t
exception Cannot_expand
exception Cannot_apply
(**** Type level management ****)
let current_level = s_ref 0
let nongen_level = s_ref 0
let global_level = s_ref 1
let saved_level = s_ref []
type levels =
{ current_level: int; nongen_level: int; global_level: int;
saved_level: (int * int) list; }
let save_levels () =
{ current_level = !current_level;
nongen_level = !nongen_level;
global_level = !global_level;
saved_level = !saved_level }
let set_levels l =
current_level := l.current_level;
nongen_level := l.nongen_level;
global_level := l.global_level;
saved_level := l.saved_level
let get_current_level () = !current_level
let init_def level = current_level := level; nongen_level := level
let begin_def () =
saved_level := (!current_level, !nongen_level) :: !saved_level;
incr current_level; nongen_level := !current_level
let begin_class_def () =
saved_level := (!current_level, !nongen_level) :: !saved_level;
incr current_level
let raise_nongen_level () =
saved_level := (!current_level, !nongen_level) :: !saved_level;
nongen_level := !current_level
let end_def () =
let (cl, nl) = List.hd !saved_level in
saved_level := List.tl !saved_level;
current_level := cl; nongen_level := nl
let create_scope () =
init_def (!current_level + 1);
!current_level
let reset_global_level () =
global_level := !current_level + 1
let increase_global_level () =
let gl = !global_level in
global_level := !current_level;
gl
let restore_global_level gl =
global_level := gl
(**** Whether a path points to an object type (with hidden row variable) ****)
let is_object_type path =
let name =
match path with Path.Pident id -> Ident.name id
| Path.Pdot(_, s) -> s
| Path.Papply _ -> assert false
in name.[0] = '#'
(**** Control tracing of GADT instances *)
let trace_gadt_instances = ref false
let check_trace_gadt_instances env =
not !trace_gadt_instances && Env.has_local_constraints env &&
(trace_gadt_instances := true; cleanup_abbrev (); true)
let reset_trace_gadt_instances b =
if b then trace_gadt_instances := false
let wrap_trace_gadt_instances env f x =
let b = check_trace_gadt_instances env in
let y = f x in
reset_trace_gadt_instances b;
y
(**** Abbreviations without parameters ****)
(* Shall reset after generalizing *)
let simple_abbrevs = ref Mnil
let proper_abbrevs path tl abbrev =
if tl <> [] || !trace_gadt_instances || !Clflags.principal ||
is_object_type path
then abbrev
else simple_abbrevs
(**** Some type creators ****)
(* Re-export generic type creators *)
let newty2 = Btype.newty2
let newty desc = newty2 !current_level desc
let newvar ?name () = newty2 !current_level (Tvar name)
let newvar2 ?name level = newty2 level (Tvar name)
let new_global_var ?name () = newty2 !global_level (Tvar name)
let newobj fields = newty (Tobject (fields, ref None))
let newconstr path tyl = newty (Tconstr (path, tyl, ref Mnil))
let none = newty (Ttuple []) (* Clearly ill-formed type *)
(**** Representative of a type ****)
(* Re-export repr *)
let repr = repr
(**** Type maps ****)
module TypePairs =
Hashtbl.Make (struct
type t = type_expr * type_expr
let equal (t1, t1') (t2, t2') = (t1 == t2) && (t1' == t2')
let hash (t, t') = t.id + 93 * t'.id
end)
(**** unification mode ****)
type unification_mode =
| Expression (* unification in expression *)
| Pattern (* unification in pattern which may add local constraints *)
type equations_generation =
| Forbidden
| Allowed of { equated_types : unit TypePairs.t }
let umode = ref Expression
let equations_generation = ref Forbidden
let assume_injective = ref false
let allow_recursive_equation = ref false
let can_generate_equations () =
match !equations_generation with
| Forbidden -> false
| _ -> true
let set_mode_pattern ~generate ~injective ~allow_recursive f =
Misc.protect_refs
[ Misc.R (umode, Pattern);
Misc.R (equations_generation, generate);
Misc.R (assume_injective, injective);
Misc.R (allow_recursive_equation, allow_recursive);
] f
(*** Checks for type definitions ***)
let in_current_module = function
| Path.Pident _ -> true
| Path.Pdot _ | Path.Papply _ -> false
let in_pervasives p =
in_current_module p &&
try ignore (Env.find_type p Env.initial_safe_string); true
with Not_found -> false
let is_datatype decl=
match decl.type_kind with
Type_record _ | Type_variant _ | Type_open -> true
| Type_abstract -> false
(**********************************************)
(* Miscellaneous operations on object types *)
(**********************************************)
(* Note:
We need to maintain some invariants:
* cty_self must be a Tobject
* ...
*)
(**** Object field manipulation. ****)
let object_fields ty =
match (repr ty).desc with
Tobject (fields, _) -> fields
| _ -> assert false
let flatten_fields ty =
let rec flatten l ty =
let ty = repr ty in
match ty.desc with
Tfield(s, k, ty1, ty2) ->
flatten ((s, k, ty1)::l) ty2
| _ ->
(l, ty)
in
let (l, r) = flatten [] ty in
(List.sort (fun (n, _, _) (n', _, _) -> compare n n') l, r)
let build_fields level =
List.fold_right
(fun (s, k, ty1) ty2 -> newty2 level (Tfield(s, k, ty1, ty2)))
let associate_fields fields1 fields2 =
let rec associate p s s' =
function
(l, []) ->
(List.rev p, (List.rev s) @ l, List.rev s')
| ([], l') ->
(List.rev p, List.rev s, (List.rev s') @ l')
| ((n, k, t)::r, (n', k', t')::r') when n = n' ->
associate ((n, k, t, k', t')::p) s s' (r, r')
| ((n, k, t)::r, ((n', _k', _t')::_ as l')) when n < n' ->
associate p ((n, k, t)::s) s' (r, l')
| (((_n, _k, _t)::_ as l), (n', k', t')::r') (* when n > n' *) ->
associate p s ((n', k', t')::s') (l, r')
in
associate [] [] [] (fields1, fields2)
let rec has_dummy_method ty =
match repr ty with
{desc = Tfield (m, _, _, ty2)} ->
m = dummy_method || has_dummy_method ty2
| _ -> false
let is_self_type = function
| Tobject (ty, _) -> has_dummy_method ty
| _ -> false
(**** Check whether an object is open ****)
(* +++ The abbreviation should eventually be expanded *)
let rec object_row ty =
let ty = repr ty in
match ty.desc with
Tobject (t, _) -> object_row t
| Tfield(_, _, _, t) -> object_row t
| _ -> ty
let opened_object ty =
match (object_row ty).desc with
| Tvar _ | Tunivar _ | Tconstr _ -> true
| _ -> false
let concrete_object ty =
match (object_row ty).desc with
| Tvar _ -> false
| _ -> true
(**** Close an object ****)
let close_object ty =
let rec close ty =
let ty = repr ty in
match ty.desc with
Tvar _ ->
link_type ty (newty2 ty.level Tnil); true
| Tfield(lab, _, _, _) when lab = dummy_method ->
false
| Tfield(_, _, _, ty') -> close ty'
| _ -> assert false
in
match (repr ty).desc with
Tobject (ty, _) -> close ty
| _ -> assert false
(**** Row variable of an object type ****)
let row_variable ty =
let rec find ty =
let ty = repr ty in
match ty.desc with
Tfield (_, _, _, ty) -> find ty
| Tvar _ -> ty
| _ -> assert false
in
match (repr ty).desc with
Tobject (fi, _) -> find fi
| _ -> assert false
(**** Object name manipulation ****)
(* +++ Bientot obsolete *)
let set_object_name id rv params ty =
match (repr ty).desc with
Tobject (_fi, nm) ->
set_name nm (Some (Path.Pident id, rv::params))
| _ ->
assert false
let remove_object_name ty =
match (repr ty).desc with
Tobject (_, nm) -> set_name nm None
| Tconstr (_, _, _) -> ()
| _ -> fatal_error "Ctype.remove_object_name"
(**** Hiding of private methods ****)
let hide_private_methods ty =
match (repr ty).desc with
Tobject (fi, nm) ->
nm := None;
let (fl, _) = flatten_fields fi in
List.iter
(function (_, k, _) ->
match field_kind_repr k with
Fvar r -> set_kind r Fabsent
| _ -> ())
fl
| _ ->
assert false
(*******************************)
(* Operations on class types *)
(*******************************)
let rec signature_of_class_type =
function
Cty_constr (_, _, cty) -> signature_of_class_type cty
| Cty_signature sign -> sign
| Cty_arrow (_, _, cty) -> signature_of_class_type cty
let self_type cty =
repr (signature_of_class_type cty).csig_self
let rec class_type_arity =
function
Cty_constr (_, _, cty) -> class_type_arity cty
| Cty_signature _ -> 0
| Cty_arrow (_, _, cty) -> 1 + class_type_arity cty
(*******************************************)
(* Miscellaneous operations on row types *)
(*******************************************)
let sort_row_fields = List.sort (fun (p,_) (q,_) -> compare p q)
let rec merge_rf r1 r2 pairs fi1 fi2 =
match fi1, fi2 with
(l1,f1 as p1)::fi1', (l2,f2 as p2)::fi2' ->
if l1 = l2 then merge_rf r1 r2 ((l1,f1,f2)::pairs) fi1' fi2' else
if l1 < l2 then merge_rf (p1::r1) r2 pairs fi1' fi2 else
merge_rf r1 (p2::r2) pairs fi1 fi2'
| [], _ -> (List.rev r1, List.rev_append r2 fi2, pairs)
| _, [] -> (List.rev_append r1 fi1, List.rev r2, pairs)
let merge_row_fields fi1 fi2 =
match fi1, fi2 with
[], _ | _, [] -> (fi1, fi2, [])
| [p1], _ when not (List.mem_assoc (fst p1) fi2) -> (fi1, fi2, [])
| _, [p2] when not (List.mem_assoc (fst p2) fi1) -> (fi1, fi2, [])
| _ -> merge_rf [] [] [] (sort_row_fields fi1) (sort_row_fields fi2)
let rec filter_row_fields erase = function
[] -> []
| (_l,f as p)::fi ->
let fi = filter_row_fields erase fi in
match row_field_repr f with
Rabsent -> fi
| Reither(_,_,false,e) when erase -> set_row_field e Rabsent; fi
| _ -> p :: fi
(**************************************)
(* Check genericity of type schemes *)
(**************************************)
exception Non_closed of type_expr * bool
let free_variables = ref []
let really_closed = ref None
(* [free_vars_rec] collects the variables of the input type
expression into the [free_variables] reference. It is used for
several different things in the type-checker, with the following
bells and whistles:
- If [really_closed] is Some typing environment, types in the environment
are expanded to check whether the apparently-free variable would vanish
during expansion.
- We collect both type variables and row variables, paired with a boolean
that is [true] if we have a row variable.
- We do not count "virtual" free variables -- free variables stored in
the abbreviation of an object type that has been expanded (we store
the abbreviations for use when displaying the type).
The functions [free_vars] and [free_variables] below receive
a typing environment as an optional [?env] parameter and
set [really_closed] accordingly.
[free_vars] returns a [(variable * bool) list], while
[free_variables] drops the type/row information
and only returns a [variable list].
*)
let rec free_vars_rec real ty =
let ty = repr ty in
if ty.level >= lowest_level then begin
ty.level <- pivot_level - ty.level;
begin match ty.desc, !really_closed with
Tvar _, _ ->
free_variables := (ty, real) :: !free_variables
| Tconstr (path, tl, _), Some env ->
begin try
let (_, body, _) = Env.find_type_expansion path env in
if (repr body).level <> generic_level then
free_variables := (ty, real) :: !free_variables
with Not_found -> ()
end;
List.iter (free_vars_rec true) tl
(* Do not count "virtual" free variables
| Tobject(ty, {contents = Some (_, p)}) ->
free_vars_rec false ty; List.iter (free_vars_rec true) p
*)
| Tobject (ty, _), _ ->
free_vars_rec false ty
| Tfield (_, _, ty1, ty2), _ ->
free_vars_rec true ty1; free_vars_rec false ty2
| Tvariant row, _ ->
let row = row_repr row in
iter_row (free_vars_rec true) row;
if not (static_row row) then free_vars_rec false row.row_more
| _ ->
iter_type_expr (free_vars_rec true) ty
end;
end
let free_vars ?env ty =
free_variables := [];
really_closed := env;
free_vars_rec true ty;
let res = !free_variables in
free_variables := [];
really_closed := None;
res
let free_variables ?env ty =
let tl = List.map fst (free_vars ?env ty) in
unmark_type ty;
tl
let closed_type ty =
match free_vars ty with
[] -> ()
| (v, real) :: _ -> raise (Non_closed (v, real))
let closed_parameterized_type params ty =
List.iter mark_type params;
let ok =
try closed_type ty; true with Non_closed _ -> false in
List.iter unmark_type params;
unmark_type ty;
ok
let closed_type_decl decl =
try
List.iter mark_type decl.type_params;
begin match decl.type_kind with
Type_abstract ->
()
| Type_variant v ->
List.iter
(fun {cd_args; cd_res; _} ->
match cd_res with
| Some _ -> ()
| None ->
match cd_args with
| Cstr_tuple l -> List.iter closed_type l
| Cstr_record l -> List.iter (fun l -> closed_type l.ld_type) l
)
v
| Type_record(r, _rep) ->
List.iter (fun l -> closed_type l.ld_type) r
| Type_open -> ()
end;
begin match decl.type_manifest with
None -> ()
| Some ty -> closed_type ty
end;
unmark_type_decl decl;
None
with Non_closed (ty, _) ->
unmark_type_decl decl;
Some ty
let closed_extension_constructor ext =
try
List.iter mark_type ext.ext_type_params;
begin match ext.ext_ret_type with
| Some _ -> ()
| None -> iter_type_expr_cstr_args closed_type ext.ext_args
end;
unmark_extension_constructor ext;
None
with Non_closed (ty, _) ->
unmark_extension_constructor ext;
Some ty
type closed_class_failure =
CC_Method of type_expr * bool * string * type_expr
| CC_Value of type_expr * bool * string * type_expr
exception CCFailure of closed_class_failure
let closed_class params sign =
let ty = object_fields (repr sign.csig_self) in
let (fields, rest) = flatten_fields ty in
List.iter mark_type params;
mark_type rest;
List.iter
(fun (lab, _, ty) -> if lab = dummy_method then mark_type ty)
fields;
try
mark_type_node (repr sign.csig_self);
List.iter
(fun (lab, kind, ty) ->
if field_kind_repr kind = Fpresent then
try closed_type ty with Non_closed (ty0, real) ->
raise (CCFailure (CC_Method (ty0, real, lab, ty))))
fields;
mark_type_params (repr sign.csig_self);
List.iter unmark_type params;
unmark_class_signature sign;
None
with CCFailure reason ->
mark_type_params (repr sign.csig_self);
List.iter unmark_type params;
unmark_class_signature sign;
Some reason
(**********************)
(* Type duplication *)
(**********************)
(* Duplicate a type, preserving only type variables *)
let duplicate_type ty =
Subst.type_expr Subst.identity ty
(* Same, for class types *)
let duplicate_class_type ty =
Subst.class_type Subst.identity ty
(*****************************)
(* Type level manipulation *)
(*****************************)
(*
It would be a bit more efficient to remove abbreviation expansions
rather than generalizing them: these expansions will usually not be
used anymore. However, this is not possible in the general case, as
[expand_abbrev] (via [subst]) requires these expansions to be
preserved. Does it worth duplicating this code ?
*)
let rec generalize ty =
let ty = repr ty in
if (ty.level > !current_level) && (ty.level <> generic_level) then begin
set_level ty generic_level;
begin match ty.desc with
Tconstr (_, _, abbrev) ->
iter_abbrev generalize !abbrev
| _ -> ()
end;
iter_type_expr generalize ty
end
let generalize ty =
simple_abbrevs := Mnil;
generalize ty
(* Generalize the structure and lower the variables *)
let rec generalize_structure var_level ty =
let ty = repr ty in
if ty.level <> generic_level then begin
if is_Tvar ty && ty.level > var_level then
set_level ty var_level
else if
ty.level > !current_level &&
match ty.desc with
Tconstr (p, _, abbrev) ->
not (is_object_type p) && (abbrev := Mnil; true)
| _ -> true
then begin
set_level ty generic_level;
iter_type_expr (generalize_structure var_level) ty
end
end
let generalize_structure ty =
simple_abbrevs := Mnil;
generalize_structure !current_level ty
(* Generalize the spine of a function, if the level >= !current_level *)
let rec generalize_spine ty =
let ty = repr ty in
if ty.level < !current_level || ty.level = generic_level then () else
match ty.desc with
Tarrow (_, ty1, ty2, _) ->
set_level ty generic_level;
generalize_spine ty1;
generalize_spine ty2;
| Tpoly (ty', _) ->
set_level ty generic_level;
generalize_spine ty'
| Ttuple tyl
| Tpackage (_, _, tyl) ->
set_level ty generic_level;
List.iter generalize_spine tyl
| Tconstr (p, tyl, memo) when not (is_object_type p) ->
set_level ty generic_level;
memo := Mnil;
List.iter generalize_spine tyl
| _ -> ()
let forward_try_expand_once = (* Forward declaration *)
ref (fun _env _ty -> raise Cannot_expand)
(*
Lower the levels of a type (assume [level] is not
[generic_level]).
*)
let rec normalize_package_path env p =
let t =
try (Env.find_modtype p env).mtd_type
with Not_found -> None
in
match t with
| Some (Mty_ident p) -> normalize_package_path env p
| Some (Mty_signature _ | Mty_functor _ | Mty_alias _) | None ->
match p with
Path.Pdot (p1, s) ->
(* For module aliases *)
let p1' = Env.normalize_module_path None env p1 in
if Path.same p1 p1' then p else
normalize_package_path env (Path.Pdot (p1', s))
| _ -> p
let rec check_scope_escape env level ty =
let mark ty =
(* Mark visited types with [ty.level < lowest_level]. *)
set_level ty (pivot_level - ty.level)
in
let ty = repr ty in
(* If the type hasn't been marked, check it. Otherwise, we have already
checked it.
*)
if ty.level >= lowest_level then begin
if level < ty.scope then
raise(Trace.scope_escape ty);
begin match ty.desc with
| Tconstr (p, _, _) when level < Path.scope p ->
begin match !forward_try_expand_once env ty with
| ty' ->
mark ty;
check_scope_escape env level ty'
| exception Cannot_expand ->
raise Trace.(Unify [escape (Constructor p)])
end
| Tpackage (p, nl, tl) when level < Path.scope p ->
let p' = normalize_package_path env p in
if Path.same p p' then raise Trace.(Unify [escape (Module_type p)]);
let orig_level = ty.level in
mark ty;
check_scope_escape env level
(Btype.newty2 orig_level (Tpackage (p', nl, tl)))
| _ ->
mark ty;
iter_type_expr (check_scope_escape env level) ty
end;
end
let check_scope_escape env level ty =
let snap = snapshot () in
try check_scope_escape env level ty; backtrack snap
with Unify [Trace.Escape x] ->
backtrack snap;
raise Trace.(Unify[Escape { x with context = Some ty }])
let update_scope scope ty =
let ty = repr ty in
let scope = max scope ty.scope in
if ty.level < scope then raise (Trace.scope_escape ty);
set_scope ty scope
(* Note: the level of a type constructor must be greater than its binding
time. That way, a type constructor cannot escape the scope of its
definition, as would be the case in
let x = ref []
module M = struct type t let _ = (x : t list ref) end
(without this constraint, the type system would actually be unsound.)
*)
let rec update_level env level expand ty =
let ty = repr ty in
if ty.level > level then begin
if level < ty.scope then raise (Trace.scope_escape ty);
match ty.desc with
Tconstr(p, _tl, _abbrev) when level < Path.scope p ->
(* Try first to replace an abbreviation by its expansion. *)
begin try
link_type ty (!forward_try_expand_once env ty);
update_level env level expand ty
with Cannot_expand ->
raise Trace.(Unify [escape(Constructor p)])
end
| Tconstr(p, (_ :: _ as tl), _) ->
let variance =
try (Env.find_type p env).type_variance
with Not_found -> List.map (fun _ -> Variance.unknown) tl in
let needs_expand =
expand ||
List.exists2
(fun var ty -> var = Variance.null && (repr ty).level > level)
variance tl
in
begin try
if not needs_expand then raise Cannot_expand;
link_type ty (!forward_try_expand_once env ty);
update_level env level expand ty
with Cannot_expand ->
set_level ty level;
iter_type_expr (update_level env level expand) ty
end
| Tpackage (p, nl, tl) when level < Path.scope p ->
let p' = normalize_package_path env p in
if Path.same p p' then raise Trace.(Unify [escape (Module_type p)]);
set_type_desc ty (Tpackage (p', nl, tl));
update_level env level expand ty
| Tobject(_, ({contents=Some(p, _tl)} as nm))
when level < Path.scope p ->
set_name nm None;
update_level env level expand ty
| Tvariant row ->
let row = row_repr row in
begin match row.row_name with
| Some (p, _tl) when level < Path.scope p ->
set_type_desc ty (Tvariant {row with row_name = None})
| _ -> ()
end;
set_level ty level;
iter_type_expr (update_level env level expand) ty
| Tfield(lab, _, ty1, _)
when lab = dummy_method && (repr ty1).level > level ->
raise Trace.(Unify [escape Self])
| _ ->
set_level ty level;
(* XXX what about abbreviations in Tconstr ? *)
iter_type_expr (update_level env level expand) ty
end
(* First try without expanding, then expand everything,
to avoid combinatorial blow-up *)
let update_level env level ty =
let ty = repr ty in
if ty.level > level then begin
let snap = snapshot () in
try
update_level env level false ty
with Unify _ ->
backtrack snap;
update_level env level true ty
end
(* Lower level of type variables inside contravariant branches *)
let rec lower_contravariant env var_level visited contra ty =
let ty = repr ty in
let must_visit =
ty.level > var_level &&
match Hashtbl.find visited ty.id with
| done_contra -> contra && not done_contra
| exception Not_found -> true
in
if must_visit then begin
Hashtbl.add visited ty.id contra;
let lower_rec = lower_contravariant env var_level visited in
match ty.desc with
Tvar _ -> if contra then set_level ty var_level
| Tconstr (_, [], _) -> ()
| Tconstr (path, tyl, _abbrev) ->
let variance, maybe_expand =
try
let typ = Env.find_type path env in
typ.type_variance,
typ.type_kind = Type_abstract
with Not_found ->
(* See testsuite/tests/typing-missing-cmi-2 for an example *)
List.map (fun _ -> Variance.unknown) tyl,
false
in
if List.for_all ((=) Variance.null) variance then () else
let not_expanded () =
List.iter2
(fun v t ->
if v = Variance.null then () else
if Variance.(mem May_weak v)
then lower_rec true t
else lower_rec contra t)
variance tyl in
if maybe_expand then (* we expand cautiously to avoid missing cmis *)
match !forward_try_expand_once env ty with
| ty -> lower_rec contra ty
| exception Cannot_expand -> not_expanded ()
else not_expanded ()
| Tpackage (_, _, tyl) ->
List.iter (lower_rec true) tyl
| Tarrow (_, t1, t2, _) ->
lower_rec true t1;
lower_rec contra t2
| _ ->
iter_type_expr (lower_rec contra) ty
end
let lower_contravariant env ty =
simple_abbrevs := Mnil;
lower_contravariant env !nongen_level (Hashtbl.create 7) false ty
(* Correct the levels of type [ty]. *)
let correct_levels ty =
duplicate_type ty
(* Only generalize the type ty0 in ty *)
let limited_generalize ty0 ty =
let ty0 = repr ty0 in
let graph = Hashtbl.create 17 in
let idx = ref lowest_level in
let roots = ref [] in
let rec inverse pty ty =
let ty = repr ty in
if (ty.level > !current_level) || (ty.level = generic_level) then begin
decr idx;
Hashtbl.add graph !idx (ty, ref pty);
if (ty.level = generic_level) || (ty == ty0) then
roots := ty :: !roots;
set_level ty !idx;
iter_type_expr (inverse [ty]) ty
end else if ty.level < lowest_level then begin
let (_, parents) = Hashtbl.find graph ty.level in
parents := pty @ !parents
end
and generalize_parents ty =
let idx = ty.level in
if idx <> generic_level then begin
set_level ty generic_level;
List.iter generalize_parents !(snd (Hashtbl.find graph idx));
(* Special case for rows: must generalize the row variable *)
match ty.desc with
Tvariant row ->
let more = row_more row in
let lv = more.level in
if (lv < lowest_level || lv > !current_level)
&& lv <> generic_level then set_level more generic_level
| _ -> ()
end
in
inverse [] ty;
if ty0.level < lowest_level then
iter_type_expr (inverse []) ty0;
List.iter generalize_parents !roots;
Hashtbl.iter
(fun _ (ty, _) ->
if ty.level <> generic_level then set_level ty !current_level)
graph
(* Compute statically the free univars of all nodes in a type *)
(* This avoids doing it repeatedly during instantiation *)
type inv_type_expr =
{ inv_type : type_expr;
mutable inv_parents : inv_type_expr list }
let rec inv_type hash pty ty =
let ty = repr ty in
try
let inv = TypeHash.find hash ty in
inv.inv_parents <- pty @ inv.inv_parents
with Not_found ->
let inv = { inv_type = ty; inv_parents = pty } in
TypeHash.add hash ty inv;
iter_type_expr (inv_type hash [inv]) ty
let compute_univars ty =
let inverted = TypeHash.create 17 in
inv_type inverted [] ty;
let node_univars = TypeHash.create 17 in
let rec add_univar univ inv =
match inv.inv_type.desc with
Tpoly (_ty, tl) when List.memq univ (List.map repr tl) -> ()
| _ ->
try
let univs = TypeHash.find node_univars inv.inv_type in
if not (TypeSet.mem univ !univs) then begin
univs := TypeSet.add univ !univs;
List.iter (add_univar univ) inv.inv_parents
end
with Not_found ->
TypeHash.add node_univars inv.inv_type (ref(TypeSet.singleton univ));
List.iter (add_univar univ) inv.inv_parents
in
TypeHash.iter (fun ty inv -> if is_Tunivar ty then add_univar ty inv)
inverted;
fun ty ->
try !(TypeHash.find node_univars ty) with Not_found -> TypeSet.empty
let fully_generic ty =
let rec aux acc ty =
acc &&
let ty = repr ty in
ty.level < lowest_level || (
ty.level = generic_level && (
mark_type_node ty;
fold_type_expr aux true ty
)
)
in
let res = aux true ty in
unmark_type ty;
res
(*******************)
(* Instantiation *)
(*******************)
let rec find_repr p1 =
function
Mnil ->
None
| Mcons (Public, p2, ty, _, _) when Path.same p1 p2 ->
Some ty
| Mcons (_, _, _, _, rem) ->
find_repr p1 rem
| Mlink {contents = rem} ->
find_repr p1 rem
(*
Generic nodes are duplicated, while non-generic nodes are left
as-is.
During instantiation, the description of a generic node is first
replaced by a link to a stub ([Tsubst (newvar ())]). Once the
copy is made, it replaces the stub.
After instantiation, the description of generic node, which was
stored by [save_desc], must be put back, using [cleanup_types].
*)
let abbreviations = ref (ref Mnil)
(* Abbreviation memorized. *)
(* partial: we may not wish to copy the non generic types
before we call type_pat *)
let rec copy ?partial ?keep_names scope ty =
let copy = copy ?partial ?keep_names scope in
let ty = repr ty in
match ty.desc with
Tsubst ty -> ty
| _ ->
if ty.level <> generic_level && partial = None then ty else
(* We only forget types that are non generic and do not contain
free univars *)
let forget =
if ty.level = generic_level then generic_level else
match partial with
None -> assert false
| Some (free_univars, keep) ->
if TypeSet.is_empty (free_univars ty) then
if keep then ty.level else !current_level
else generic_level
in
if forget <> generic_level then newty2 forget (Tvar None) else
let desc = ty.desc in
For_copy.save_desc scope ty desc;
let t = newvar() in (* Stub *)
set_scope t ty.scope;
ty.desc <- Tsubst t;
t.desc <-
begin match desc with
| Tconstr (p, tl, _) ->
let abbrevs = proper_abbrevs p tl !abbreviations in
begin match find_repr p !abbrevs with
Some ty when repr ty != t ->
Tlink ty
| _ ->
(*
One must allocate a new reference, so that abbrevia-
tions belonging to different branches of a type are
independent.
Moreover, a reference containing a [Mcons] must be
shared, so that the memorized expansion of an abbrevi-
ation can be released by changing the content of just
one reference.
*)
Tconstr (p, List.map copy tl,
ref (match !(!abbreviations) with
Mcons _ -> Mlink !abbreviations
| abbrev -> abbrev))
end
| Tvariant row0 ->
let row = row_repr row0 in
let more = repr row.row_more in
(* We must substitute in a subtle way *)
(* Tsubst takes a tuple containing the row var and the variant *)
begin match more.desc with
Tsubst {desc = Ttuple [_;ty2]} ->
(* This variant type has been already copied *)
ty.desc <- Tsubst ty2; (* avoid Tlink in the new type *)
Tlink ty2
| _ ->
(* If the row variable is not generic, we must keep it *)
let keep = more.level <> generic_level && partial = None in
let more' =
match more.desc with
Tsubst ty -> ty
| Tconstr _ | Tnil ->
For_copy.save_desc scope more more.desc;
copy more
| Tvar _ | Tunivar _ ->
For_copy.save_desc scope more more.desc;
if keep then more else newty more.desc
| _ -> assert false
in
let row =
match repr more' with (* PR#6163 *)
{desc=Tconstr (x,_,_)} when not (is_fixed row) ->
{row with row_fixed = Some (Reified x)}
| _ -> row
in
(* Open row if partial for pattern and contains Reither *)
let more', row =
match partial with
Some (free_univars, false) ->
let more' =
if more.id != more'.id then more' else
let lv = if keep then more.level else !current_level in
newty2 lv (Tvar None)
in
let not_reither (_, f) =
match row_field_repr f with
Reither _ -> false
| _ -> true
in
if row.row_closed && not (is_fixed row)
&& TypeSet.is_empty (free_univars ty)
&& not (List.for_all not_reither row.row_fields) then
(more',
{row_fields = List.filter not_reither row.row_fields;
row_more = more'; row_bound = ();
row_closed = false; row_fixed = None; row_name = None})
else (more', row)
| _ -> (more', row)
in
(* Register new type first for recursion *)
more.desc <- Tsubst(newgenty(Ttuple[more';t]));
(* Return a new copy *)
Tvariant (copy_row copy true row keep more')
end
| Tfield (_p, k, _ty1, ty2) ->
begin match field_kind_repr k with
Fabsent -> Tlink (copy ty2)
| Fpresent -> copy_type_desc copy desc
| Fvar r ->
For_copy.dup_kind scope r;
copy_type_desc copy desc
end
| Tobject (ty1, _) when partial <> None ->
Tobject (copy ty1, ref None)
| _ -> copy_type_desc ?keep_names copy desc
end;
t
(**** Variants of instantiations ****)
let instance ?partial sch =
let partial =
match partial with
None -> None
| Some keep -> Some (compute_univars sch, keep)
in
For_copy.with_scope (fun scope -> copy ?partial scope sch)
let generic_instance sch =
let old = !current_level in
current_level := generic_level;
let ty = instance sch in
current_level := old;
ty
let instance_list schl =
For_copy.with_scope (fun scope -> List.map (fun t -> copy scope t) schl)
let reified_var_counter = ref Vars.empty
let reset_reified_var_counter () =
reified_var_counter := Vars.empty
(* names given to new type constructors.
Used for existential types and
local constraints *)
let get_new_abstract_name s =
let index =
try Vars.find s !reified_var_counter + 1
with Not_found -> 0 in
reified_var_counter := Vars.add s index !reified_var_counter;
if index = 0 && s <> "" && s.[String.length s - 1] <> '$' then s else
Printf.sprintf "%s%d" s index
let new_declaration expansion_scope manifest =
{
type_params = [];
type_arity = 0;
type_kind = Type_abstract;
type_private = Public;
type_manifest = manifest;
type_variance = [];
type_separability = [];
type_is_newtype = true;
type_expansion_scope = expansion_scope;
type_loc = Location.none;
type_attributes = [];
type_immediate = Unknown;
type_unboxed = unboxed_false_default_false;
type_uid = Uid.mk ~current_unit:(Env.get_unit_name ());
}
let existential_name cstr ty = match repr ty with
| {desc = Tvar (Some name)} -> "$" ^ cstr.cstr_name ^ "_'" ^ name
| _ -> "$" ^ cstr.cstr_name
let instance_constructor ?in_pattern cstr =
For_copy.with_scope (fun scope ->
begin match in_pattern with
| None -> ()
| Some (env, expansion_scope) ->
let process existential =
let decl = new_declaration expansion_scope None in
let name = existential_name cstr existential in
let path =
Path.Pident
(Ident.create_scoped ~scope:expansion_scope
(get_new_abstract_name name))
in
let new_env = Env.add_local_type path decl !env in
env := new_env;
let to_unify = newty (Tconstr (path,[],ref Mnil)) in
let tv = copy scope existential in
assert (is_Tvar tv);
link_type tv to_unify
in
List.iter process cstr.cstr_existentials
end;
let ty_res = copy scope cstr.cstr_res in
let ty_args = List.map (copy scope) cstr.cstr_args in
(ty_args, ty_res)
)
let instance_parameterized_type ?keep_names sch_args sch =
For_copy.with_scope (fun scope ->
let ty_args = List.map (fun t -> copy ?keep_names scope t) sch_args in
let ty = copy scope sch in
(ty_args, ty)
)
let instance_parameterized_type_2 sch_args sch_lst sch =
For_copy.with_scope (fun scope ->
let ty_args = List.map (copy scope) sch_args in
let ty_lst = List.map (copy scope) sch_lst in
let ty = copy scope sch in
(ty_args, ty_lst, ty)
)
let map_kind f = function
| Type_abstract -> Type_abstract
| Type_open -> Type_open
| Type_variant cl ->
Type_variant (
List.map
(fun c ->
{c with
cd_args = map_type_expr_cstr_args f c.cd_args;
cd_res = Option.map f c.cd_res
})
cl)
| Type_record (fl, rr) ->
Type_record (
List.map
(fun l ->
{l with ld_type = f l.ld_type}
) fl, rr)
let instance_declaration decl =
For_copy.with_scope (fun scope ->
{decl with type_params = List.map (copy scope) decl.type_params;
type_manifest = Option.map (copy scope) decl.type_manifest;
type_kind = map_kind (copy scope) decl.type_kind;
}
)
let generic_instance_declaration decl =
let old = !current_level in
current_level := generic_level;
let decl = instance_declaration decl in
current_level := old;
decl
let instance_class params cty =
let rec copy_class_type scope = function
| Cty_constr (path, tyl, cty) ->
let tyl' = List.map (copy scope) tyl in
let cty' = copy_class_type scope cty in
Cty_constr (path, tyl', cty')
| Cty_signature sign ->
Cty_signature
{csig_self = copy scope sign.csig_self;
csig_vars =
Vars.map (function (m, v, ty) -> (m, v, copy scope ty))
sign.csig_vars;
csig_concr = sign.csig_concr;
csig_inher =
List.map (fun (p,tl) -> (p, List.map (copy scope) tl))
sign.csig_inher}
| Cty_arrow (l, ty, cty) ->
Cty_arrow (l, copy scope ty, copy_class_type scope cty)
in
For_copy.with_scope (fun scope ->
let params' = List.map (copy scope) params in
let cty' = copy_class_type scope cty in
(params', cty')
)
(**** Instantiation for types with free universal variables ****)
let rec diff_list l1 l2 =
if l1 == l2 then [] else
match l1 with [] -> invalid_arg "Ctype.diff_list"
| a :: l1 -> a :: diff_list l1 l2
let conflicts free bound =
let bound = List.map repr bound in
TypeSet.exists (fun t -> List.memq (repr t) bound) free
let delayed_copy = ref []
(* copying to do later *)
(* Copy without sharing until there are no free univars left *)
(* all free univars must be included in [visited] *)
let rec copy_sep cleanup_scope fixed free bound visited ty =
let ty = repr ty in
let univars = free ty in
if TypeSet.is_empty univars then
if ty.level <> generic_level then ty else
let t = newvar () in
delayed_copy :=
lazy (t.desc <- Tlink (copy cleanup_scope ty))
:: !delayed_copy;
t
else try
let t, bound_t = List.assq ty visited in
let dl = if is_Tunivar ty then [] else diff_list bound bound_t in
if dl <> [] && conflicts univars dl then raise Not_found;
t
with Not_found -> begin
let t = newvar() in (* Stub *)
let visited =
match ty.desc with
Tarrow _ | Ttuple _ | Tvariant _ | Tconstr _ | Tobject _ | Tpackage _ ->
(ty,(t,bound)) :: visited
| Tvar _ | Tfield _ | Tnil | Tpoly _ | Tunivar _ | Tlink _ | Tsubst _ ->
visited
in
let copy_rec = copy_sep cleanup_scope fixed free bound visited in
t.desc <-
begin match ty.desc with
| Tvariant row0 ->
let row = row_repr row0 in
let more = repr row.row_more in
(* We shall really check the level on the row variable *)
let keep = is_Tvar more && more.level <> generic_level in
let more' = copy_rec more in
let fixed' = fixed && (is_Tvar more || is_Tunivar more) in
let row = copy_row copy_rec fixed' row keep more' in
Tvariant row
| Tpoly (t1, tl) ->
let tl = List.map repr tl in
let tl' = List.map (fun t -> newty t.desc) tl in
let bound = tl @ bound in
let visited =
List.map2 (fun ty t -> ty,(t,bound)) tl tl' @ visited in
Tpoly (copy_sep cleanup_scope fixed free bound visited t1, tl')
| _ -> copy_type_desc copy_rec ty.desc
end;
t
end
let instance_poly' cleanup_scope ~keep_names fixed univars sch =
let univars = List.map repr univars in
let copy_var ty =
match ty.desc with
Tunivar name -> if keep_names then newty (Tvar name) else newvar ()
| _ -> assert false
in
let vars = List.map copy_var univars in
let pairs = List.map2 (fun u v -> u, (v, [])) univars vars in
delayed_copy := [];
let ty = copy_sep cleanup_scope fixed (compute_univars sch) [] pairs sch in
List.iter Lazy.force !delayed_copy;
delayed_copy := [];
vars, ty
let instance_poly ?(keep_names=false) fixed univars sch =
For_copy.with_scope (fun cleanup_scope ->
instance_poly' cleanup_scope ~keep_names fixed univars sch
)
let instance_label fixed lbl =
For_copy.with_scope (fun scope ->
let ty_res = copy scope lbl.lbl_res in
let vars, ty_arg =
match repr lbl.lbl_arg with
{desc = Tpoly (ty, tl)} ->
instance_poly' scope ~keep_names:false fixed tl ty
| _ ->
[], copy scope lbl.lbl_arg
in
(vars, ty_arg, ty_res)
)
(**** Instantiation with parameter substitution ****)
let unify' = (* Forward declaration *)
ref (fun _env _ty1 _ty2 -> raise (Unify []))
let subst env level priv abbrev ty params args body =
if List.length params <> List.length args then raise (Unify []);
let old_level = !current_level in
current_level := level;
try
let body0 = newvar () in (* Stub *)
begin match ty with
None -> ()
| Some ({desc = Tconstr (path, tl, _)} as ty) ->
let abbrev = proper_abbrevs path tl abbrev in
memorize_abbrev abbrev priv path ty body0
| _ ->
assert false
end;
abbreviations := abbrev;
let (params', body') = instance_parameterized_type params body in
abbreviations := ref Mnil;
!unify' env body0 body';
List.iter2 (!unify' env) params' args;
current_level := old_level;
body'
with Unify _ as exn ->
current_level := old_level;
raise exn
(*
Only the shape of the type matters, not whether it is generic or
not. [generic_level] might be somewhat slower, but it ensures
invariants on types are enforced (decreasing levels), and we don't
care about efficiency here.
*)
let apply env params body args =
try
subst env generic_level Public (ref Mnil) None params args body
with
Unify _ -> raise Cannot_apply
let () = Subst.ctype_apply_env_empty := apply Env.empty
(****************************)
(* Abbreviation expansion *)
(****************************)
(*
If the environment has changed, memorized expansions might not
be correct anymore, and so we flush the cache. This is safe but
quite pessimistic: it would be enough to flush the cache when a
type or module definition is overridden in the environment.
*)
let previous_env = ref Env.empty
(*let string_of_kind = function Public -> "public" | Private -> "private"*)
let check_abbrev_env env =
if env != !previous_env then begin
(* prerr_endline "cleanup expansion cache"; *)
cleanup_abbrev ();
previous_env := env
end
(* Expand an abbreviation. The expansion is memorized. *)
(*
Assume the level is greater than the path binding time of the
expanded abbreviation.
*)
(*
An abbreviation expansion will fail in either of these cases:
1. The type constructor does not correspond to a manifest type.
2. The type constructor is defined in an external file, and this
file is not in the path (missing -I options).
3. The type constructor is not in the "local" environment. This can
happens when a non-generic type variable has been instantiated
afterwards to the not yet defined type constructor. (Actually,
this cannot happen at the moment due to the strong constraints
between type levels and constructor binding time.)
4. The expansion requires the expansion of another abbreviation,
and this other expansion fails.
*)
let expand_abbrev_gen kind find_type_expansion env ty =
check_abbrev_env env;
match ty with
{desc = Tconstr (path, args, abbrev); level = level; scope} ->
let lookup_abbrev = proper_abbrevs path args abbrev in
begin match find_expans kind path !lookup_abbrev with
Some ty' ->
(* prerr_endline
("found a "^string_of_kind kind^" expansion for "^Path.name path);*)
if level <> generic_level then
begin try
update_level env level ty'
with Unify _ ->
(* XXX This should not happen.
However, levels are not correctly restored after a
typing error *)
()
end;
begin try
update_scope scope ty';
with Unify _ ->
(* XXX This should not happen.
However, levels are not correctly restored after a
typing error *)
()
end;
let ty' = repr ty' in
(* assert (ty != ty'); *) (* PR#7324 *)
ty'
| None ->
match find_type_expansion path env with
| exception Not_found ->
(* another way to expand is to normalize the path itself *)
let path' = Env.normalize_type_path None env path in
if Path.same path path' then raise Cannot_expand
else newty2 level (Tconstr (path', args, abbrev))
| (params, body, lv) ->
(* prerr_endline
("add a "^string_of_kind kind^" expansion for "^Path.name path);*)
let ty' = subst env level kind abbrev (Some ty) params args body in
(* For gadts, remember type as non exportable *)
(* The ambiguous level registered for ty' should be the highest *)
if !trace_gadt_instances then begin
let scope = max lv ty.scope in
if level < scope then raise (Trace.scope_escape ty);
set_scope ty scope;
set_scope ty' scope
end;
ty'
end
| _ ->
assert false
(* Expand respecting privacy *)
let expand_abbrev env ty =
expand_abbrev_gen Public Env.find_type_expansion env ty
(* Expand once the head of a type *)
let expand_head_once env ty =
try expand_abbrev env (repr ty) with Cannot_expand -> assert false
(* Check whether a type can be expanded *)
let safe_abbrev env ty =
let snap = Btype.snapshot () in
try ignore (expand_abbrev env ty); true
with Cannot_expand | Unify _ ->
Btype.backtrack snap;
false
(* Expand the head of a type once.
Raise Cannot_expand if the type cannot be expanded.
May raise Unify, if a recursion was hidden in the type. *)
let try_expand_once env ty =
let ty = repr ty in
match ty.desc with
Tconstr _ -> repr (expand_abbrev env ty)
| _ -> raise Cannot_expand
(* This one only raises Cannot_expand *)
let try_expand_safe env ty =
let snap = Btype.snapshot () in
try try_expand_once env ty
with Unify _ ->
Btype.backtrack snap; raise Cannot_expand
(* Fully expand the head of a type. *)
let rec try_expand_head try_once env ty =
let ty' = try_once env ty in
try try_expand_head try_once env ty'
with Cannot_expand -> ty'
(* Unsafe full expansion, may raise Unify. *)
let expand_head_unif env ty =
try try_expand_head try_expand_once env ty with Cannot_expand -> repr ty
(* Safe version of expand_head, never fails *)
let expand_head env ty =
try try_expand_head try_expand_safe env ty with Cannot_expand -> repr ty
let _ = forward_try_expand_once := try_expand_safe
(* Expand until we find a non-abstract type declaration,
use try_expand_safe to avoid raising "Unify _" when
called on recursive types
*)
let rec extract_concrete_typedecl env ty =
let ty = repr ty in
match ty.desc with
Tconstr (p, _, _) ->
let decl = Env.find_type p env in
if decl.type_kind <> Type_abstract then (p, p, decl) else
let ty =
try try_expand_safe env ty with Cannot_expand -> raise Not_found
in
let (_, p', decl) = extract_concrete_typedecl env ty in
(p, p', decl)
| _ -> raise Not_found
(* Implementing function [expand_head_opt], the compiler's own version of
[expand_head] used for type-based optimisations.
[expand_head_opt] uses [Env.find_type_expansion_opt] to access the
manifest type information of private abstract data types which is
normally hidden to the type-checker out of the implementation module of
the private abbreviation. *)
let expand_abbrev_opt =
expand_abbrev_gen Private Env.find_type_expansion_opt
let try_expand_once_opt env ty =
let ty = repr ty in
match ty.desc with
Tconstr _ -> repr (expand_abbrev_opt env ty)
| _ -> raise Cannot_expand
let rec try_expand_head_opt env ty =
let ty' = try_expand_once_opt env ty in
begin try
try_expand_head_opt env ty'
with Cannot_expand ->
ty'
end
let expand_head_opt env ty =
let snap = Btype.snapshot () in
try try_expand_head_opt env ty
with Cannot_expand | Unify _ -> (* expand_head shall never fail *)
Btype.backtrack snap;
repr ty
(* Make sure that the type parameters of the type constructor [ty]
respect the type constraints *)
let enforce_constraints env ty =
match ty with
{desc = Tconstr (path, args, _abbrev); level = level} ->
begin try
let decl = Env.find_type path env in
ignore
(subst env level Public (ref Mnil) None decl.type_params args
(newvar2 level))
with Not_found -> ()
end
| _ ->
assert false
(* Recursively expand the head of a type.
Also expand #-types. *)
let full_expand env ty =
let ty = repr (expand_head env ty) in
match ty.desc with
Tobject (fi, {contents = Some (_, v::_)}) when is_Tvar (repr v) ->
newty2 ty.level (Tobject (fi, ref None))
| _ ->
ty
(*
Check whether the abbreviation expands to a well-defined type.
During the typing of a class, abbreviations for correspondings
types expand to non-generic types.
*)
let generic_abbrev env path =
try
let (_, body, _) = Env.find_type_expansion path env in
(repr body).level = generic_level
with
Not_found ->
false
let generic_private_abbrev env path =
try
match Env.find_type path env with
{type_kind = Type_abstract;
type_private = Private;
type_manifest = Some body} ->
(repr body).level = generic_level
| _ -> false
with Not_found -> false
let is_contractive env p =
try
let decl = Env.find_type p env in
in_pervasives p && decl.type_manifest = None || is_datatype decl
with Not_found -> false
(*****************)
(* Occur check *)
(*****************)
exception Occur
let rec occur_rec env allow_recursive visited ty0 = function
| {desc=Tlink ty} ->
occur_rec env allow_recursive visited ty0 ty
| ty ->
if ty == ty0 then raise Occur;
match ty.desc with
Tconstr(p, _tl, _abbrev) ->
if allow_recursive && is_contractive env p then () else
begin try
if TypeSet.mem ty visited then raise Occur;
let visited = TypeSet.add ty visited in
iter_type_expr (occur_rec env allow_recursive visited ty0) ty
with Occur -> try
let ty' = try_expand_head try_expand_once env ty in
(* This call used to be inlined, but there seems no reason for it.
Message was referring to change in rev. 1.58 of the CVS repo. *)
occur_rec env allow_recursive visited ty0 ty'
with Cannot_expand ->
raise Occur
end
| Tobject _ | Tvariant _ ->
()
| _ ->
if allow_recursive || TypeSet.mem ty visited then () else begin
let visited = TypeSet.add ty visited in
iter_type_expr (occur_rec env allow_recursive visited ty0) ty
end
let type_changed = ref false (* trace possible changes to the studied type *)
let merge r b = if b then r := true
let occur env ty0 ty =
let allow_recursive =
!Clflags.recursive_types || !umode = Pattern && !allow_recursive_equation in
let old = !type_changed in
try
while
type_changed := false;
occur_rec env allow_recursive TypeSet.empty ty0 ty;
!type_changed
do () (* prerr_endline "changed" *) done;
merge type_changed old
with exn ->
merge type_changed old;
match exn with
| Occur -> raise (Trace.rec_occur ty0 ty)
| _ -> raise exn
let occur_in env ty0 t =
try occur env ty0 t; false with Unify _ -> true
(* Check that a local constraint is well-founded *)
(* PR#6405: not needed since we allow recursion and work on normalized types *)
(* PR#6992: we actually need it for contractiveness *)
(* This is a simplified version of occur, only for the rectypes case *)
let rec local_non_recursive_abbrev ~allow_rec strict visited env p ty =
(*Format.eprintf "@[Check %s =@ %a@]@." (Path.name p) !Btype.print_raw ty;*)
let ty = repr ty in
if not (List.memq ty visited) then begin
match ty.desc with
Tconstr(p', args, _abbrev) ->
if Path.same p p' then raise Occur;
if allow_rec && not strict && is_contractive env p' then () else
let visited = ty :: visited in
begin try
(* try expanding, since [p] could be hidden *)
local_non_recursive_abbrev ~allow_rec strict visited env p
(try_expand_head try_expand_once_opt env ty)
with Cannot_expand ->
let params =
try (Env.find_type p' env).type_params
with Not_found -> args
in
List.iter2
(fun tv ty ->
let strict = strict || not (is_Tvar (repr tv)) in
local_non_recursive_abbrev ~allow_rec strict visited env p ty)
params args
end
| Tobject _ | Tvariant _ when not strict ->
()
| _ ->
if strict || not allow_rec then (* PR#7374 *)
let visited = ty :: visited in
iter_type_expr
(local_non_recursive_abbrev ~allow_rec true visited env p) ty
end
let local_non_recursive_abbrev env p ty =
let allow_rec =
!Clflags.recursive_types || !umode = Pattern && !allow_recursive_equation in
try (* PR#7397: need to check trace_gadt_instances *)
wrap_trace_gadt_instances env
(local_non_recursive_abbrev ~allow_rec false [] env p) ty;
true
with Occur -> false
(*****************************)
(* Polymorphic Unification *)
(*****************************)
(* Since we cannot duplicate universal variables, unification must
be done at meta-level, using bindings in univar_pairs *)
let rec unify_univar t1 t2 = function
(cl1, cl2) :: rem ->
let find_univ t cl =
try
let (_, r) = List.find (fun (t',_) -> t == repr t') cl in
Some r
with Not_found -> None
in
begin match find_univ t1 cl1, find_univ t2 cl2 with
Some {contents=Some t'2}, Some _ when t2 == repr t'2 ->
()
| Some({contents=None} as r1), Some({contents=None} as r2) ->
set_univar r1 t2; set_univar r2 t1
| None, None ->
unify_univar t1 t2 rem
| _ ->
raise (Unify [])
end
| [] -> raise (Unify [])
(* Test the occurrence of free univars in a type *)
(* that's way too expensive. Must do some kind of caching *)
let occur_univar env ty =
let visited = ref TypeMap.empty in
let rec occur_rec bound ty =
let ty = repr ty in
if ty.level >= lowest_level &&
if TypeSet.is_empty bound then
(ty.level <- pivot_level - ty.level; true)
else try
let bound' = TypeMap.find ty !visited in
if TypeSet.exists (fun x -> not (TypeSet.mem x bound)) bound' then
(visited := TypeMap.add ty (TypeSet.inter bound bound') !visited;
true)
else false
with Not_found ->
visited := TypeMap.add ty bound !visited;
true
then
match ty.desc with
Tunivar _ ->
if not (TypeSet.mem ty bound) then
raise Trace.(Unify [escape (Univ ty)])
| Tpoly (ty, tyl) ->
let bound = List.fold_right TypeSet.add (List.map repr tyl) bound in
occur_rec bound ty
| Tconstr (_, [], _) -> ()
| Tconstr (p, tl, _) ->
begin try
let td = Env.find_type p env in
List.iter2
(fun t v ->
(* The null variance only occurs in type abbreviations and
corresponds to type variables that do not occur in the
definition (expansion would erase them completely).
The type-checker consistently ignores type expressions
in this position. Physical expansion, as done in `occur`,
would be costly here, since we need to check inside
object and variant types too. *)
if not Variance.(eq v null) then occur_rec bound t)
tl td.type_variance
with Not_found ->
List.iter (occur_rec bound) tl
end
| _ -> iter_type_expr (occur_rec bound) ty
in
Misc.try_finally (fun () ->
occur_rec TypeSet.empty ty
)
~always:(fun () -> unmark_type ty)
(* Grouping univars by families according to their binders *)
let add_univars =
List.fold_left (fun s (t,_) -> TypeSet.add (repr t) s)
let get_univar_family univar_pairs univars =
if univars = [] then TypeSet.empty else
let insert s = function
cl1, (_::_ as cl2) ->
if List.exists (fun (t1,_) -> TypeSet.mem (repr t1) s) cl1 then
add_univars s cl2
else s
| _ -> s
in
let s = List.fold_right TypeSet.add univars TypeSet.empty in
List.fold_left insert s univar_pairs
(* Whether a family of univars escapes from a type *)
let univars_escape env univar_pairs vl ty =
let family = get_univar_family univar_pairs vl in
let visited = ref TypeSet.empty in
let rec occur t =
let t = repr t in
if TypeSet.mem t !visited then () else begin
visited := TypeSet.add t !visited;
match t.desc with
Tpoly (t, tl) ->
if List.exists (fun t -> TypeSet.mem (repr t) family) tl then ()
else occur t
| Tunivar _ ->
if TypeSet.mem t family then raise Trace.(Unify [escape(Univ t)])
| Tconstr (_, [], _) -> ()
| Tconstr (p, tl, _) ->
begin try
let td = Env.find_type p env in
List.iter2
(* see occur_univar *)
(fun t v -> if not Variance.(eq v null) then occur t)
tl td.type_variance
with Not_found ->
List.iter occur tl
end
| _ ->
iter_type_expr occur t
end
in
occur ty
(* Wrapper checking that no variable escapes and updating univar_pairs *)
let enter_poly env univar_pairs t1 tl1 t2 tl2 f =
let old_univars = !univar_pairs in
let known_univars =
List.fold_left (fun s (cl,_) -> add_univars s cl)
TypeSet.empty old_univars
in
let tl1 = List.map repr tl1 and tl2 = List.map repr tl2 in
if List.exists (fun t -> TypeSet.mem t known_univars) tl1 then
univars_escape env old_univars tl1 (newty(Tpoly(t2,tl2)));
if List.exists (fun t -> TypeSet.mem t known_univars) tl2 then
univars_escape env old_univars tl2 (newty(Tpoly(t1,tl1)));
let cl1 = List.map (fun t -> t, ref None) tl1
and cl2 = List.map (fun t -> t, ref None) tl2 in
univar_pairs := (cl1,cl2) :: (cl2,cl1) :: old_univars;
Misc.try_finally (fun () -> f t1 t2)
~always:(fun () -> univar_pairs := old_univars)
let univar_pairs = ref []
(**** Instantiate a generic type into a poly type ***)
let polyfy env ty vars =
let subst_univar scope ty =
let ty = repr ty in
match ty.desc with
| Tvar name when ty.level = generic_level ->
For_copy.save_desc scope ty ty.desc;
let t = newty (Tunivar name) in
ty.desc <- Tsubst t;
Some t
| _ -> None
in
(* need to expand twice? cf. Ctype.unify2 *)
let vars = List.map (expand_head env) vars in
let vars = List.map (expand_head env) vars in
For_copy.with_scope (fun scope ->
let vars' = List.filter_map (subst_univar scope) vars in
let ty = copy scope ty in
let ty = newty2 ty.level (Tpoly(repr ty, vars')) in
let complete = List.length vars = List.length vars' in
ty, complete
)
(* assumption: [ty] is fully generalized. *)
let reify_univars env ty =
let vars = free_variables ty in
let ty, _ = polyfy env ty vars in
ty
(*****************)
(* Unification *)
(*****************)
let rec has_cached_expansion p abbrev =
match abbrev with
Mnil -> false
| Mcons(_, p', _, _, rem) -> Path.same p p' || has_cached_expansion p rem
| Mlink rem -> has_cached_expansion p !rem
(**** Transform error trace ****)
(* +++ Move it to some other place ? *)
let expand_trace env trace =
let expand_desc x = match x.Trace.expanded with
| None -> Trace.{ t = repr x.t; expanded= Some(full_expand env x.t) }
| Some _ -> x in
Unification_trace.map expand_desc trace
(**** Unification ****)
(* Return whether [t0] occurs in [ty]. Objects are also traversed. *)
let deep_occur t0 ty =
let rec occur_rec ty =
let ty = repr ty in
if ty.level >= lowest_level then begin
if ty == t0 then raise Occur;
ty.level <- pivot_level - ty.level;
iter_type_expr occur_rec ty
end
in
try
occur_rec ty; unmark_type ty; false
with Occur ->
unmark_type ty; true
(*
1. When unifying two non-abbreviated types, one type is made a link
to the other. When unifying an abbreviated type with a
non-abbreviated type, the non-abbreviated type is made a link to
the other one. When unifying to abbreviated types, these two
types are kept distincts, but they are made to (temporally)
expand to the same type.
2. Abbreviations with at least one parameter are systematically
expanded. The overhead does not seem too high, and that way
abbreviations where some parameters does not appear in the
expansion, such as ['a t = int], are correctly handled. In
particular, for this example, unifying ['a t] with ['b t] keeps
['a] and ['b] distincts. (Is it really important ?)
3. Unifying an abbreviation ['a t = 'a] with ['a] should not yield
['a t as 'a]. Indeed, the type variable would otherwise be lost.
This problem occurs for abbreviations expanding to a type
variable, but also to many other constrained abbreviations (for
instance, [(< x : 'a > -> unit) t = <x : 'a>]). The solution is
that, if an abbreviation is unified with some subpart of its
parameters, then the parameter actually does not get
abbreviated. It would be possible to check whether some
information is indeed lost, but it probably does not worth it.
*)
let gadt_equations_level = ref None
let get_gadt_equations_level () =
match !gadt_equations_level with
| None -> assert false
| Some x -> x
(* a local constraint can be added only if the rhs
of the constraint does not contain any Tvars.
They need to be removed using this function *)
let reify env t =
let fresh_constr_scope = get_gadt_equations_level () in
let create_fresh_constr lev name =
let name = match name with Some s -> "$'"^s | _ -> "$" in
let path =
Path.Pident
(Ident.create_scoped ~scope:fresh_constr_scope
(get_new_abstract_name name))
in
let decl = new_declaration fresh_constr_scope None in
let new_env = Env.add_local_type path decl !env in
let t = newty2 lev (Tconstr (path,[],ref Mnil)) in
env := new_env;
path, t
in
let visited = ref TypeSet.empty in
let rec iterator ty =
let ty = repr ty in
if TypeSet.mem ty !visited then () else begin
visited := TypeSet.add ty !visited;
match ty.desc with
Tvar o ->
let path, t = create_fresh_constr ty.level o in
link_type ty t;
if ty.level < fresh_constr_scope then
raise Trace.(Unify [escape (Constructor path)])
| Tvariant r ->
let r = row_repr r in
if not (static_row r) then begin
if is_fixed r then iterator (row_more r) else
let m = r.row_more in
match m.desc with
Tvar o ->
let path, t = create_fresh_constr m.level o in
let row =
let row_fixed = Some (Reified path) in
{r with row_fields=[]; row_fixed; row_more = t} in
link_type m (newty2 m.level (Tvariant row));
if m.level < fresh_constr_scope then
raise Trace.(Unify [escape (Constructor path)])
| _ -> assert false
end;
iter_row iterator r
| Tconstr (p, _, _) when is_object_type p ->
iter_type_expr iterator (full_expand !env ty)
| _ ->
iter_type_expr iterator ty
end
in
iterator t
let is_newtype env p =
try
let decl = Env.find_type p env in
decl.type_expansion_scope <> Btype.lowest_level &&
decl.type_kind = Type_abstract &&
decl.type_private = Public
with Not_found -> false
let non_aliasable p decl =
(* in_pervasives p || (subsumed by in_current_module) *)
in_current_module p && not decl.type_is_newtype
let is_instantiable env p =
try
let decl = Env.find_type p env in
decl.type_kind = Type_abstract &&
decl.type_private = Public &&
decl.type_arity = 0 &&
decl.type_manifest = None &&
not (non_aliasable p decl)
with Not_found -> false
(* PR#7113: -safe-string should be a global property *)
let compatible_paths p1 p2 =
let open Predef in
Path.same p1 p2 ||
Path.same p1 path_bytes && Path.same p2 path_string ||
Path.same p1 path_string && Path.same p2 path_bytes
(* Check for datatypes carefully; see PR#6348 *)
let rec expands_to_datatype env ty =
let ty = repr ty in
match ty.desc with
Tconstr (p, _, _) ->
begin try
is_datatype (Env.find_type p env) ||
expands_to_datatype env (try_expand_once env ty)
with Not_found | Cannot_expand -> false
end
| _ -> false
(* mcomp type_pairs subst env t1 t2 does not raise an
exception if it is possible that t1 and t2 are actually
equal, assuming the types in type_pairs are equal and
that the mapping subst holds.
Assumes that both t1 and t2 do not contain any tvars
and that both their objects and variants are closed
*)
let rec mcomp type_pairs env t1 t2 =
if t1 == t2 then () else
let t1 = repr t1 in
let t2 = repr t2 in
if t1 == t2 then () else
match (t1.desc, t2.desc) with
| (Tvar _, _)
| (_, Tvar _) ->
()
| (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 ->
()
| _ ->
let t1' = expand_head_opt env t1 in
let t2' = expand_head_opt env t2 in
(* Expansion may have changed the representative of the types... *)
let t1' = repr t1' and t2' = repr t2' in
if t1' == t2' then () else
begin try TypePairs.find type_pairs (t1', t2')
with Not_found ->
TypePairs.add type_pairs (t1', t2') ();
match (t1'.desc, t2'.desc) with
| (Tvar _, _)
| (_, Tvar _) ->
()
| (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _))
when l1 = l2 || not (is_optional l1 || is_optional l2) ->
mcomp type_pairs env t1 t2;
mcomp type_pairs env u1 u2;
| (Ttuple tl1, Ttuple tl2) ->
mcomp_list type_pairs env tl1 tl2
| (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) ->
mcomp_type_decl type_pairs env p1 p2 tl1 tl2
| (Tconstr (p, _, _), _) | (_, Tconstr (p, _, _)) ->
begin try
let decl = Env.find_type p env in
if non_aliasable p decl || is_datatype decl then raise (Unify [])
with Not_found -> ()
end
(*
| (Tpackage (p1, n1, tl1), Tpackage (p2, n2, tl2)) when n1 = n2 ->
mcomp_list type_pairs env tl1 tl2
*)
| (Tpackage _, Tpackage _) -> ()
| (Tvariant row1, Tvariant row2) ->
mcomp_row type_pairs env row1 row2
| (Tobject (fi1, _), Tobject (fi2, _)) ->
mcomp_fields type_pairs env fi1 fi2
| (Tfield _, Tfield _) -> (* Actually unused *)
mcomp_fields type_pairs env t1' t2'
| (Tnil, Tnil) ->
()
| (Tpoly (t1, []), Tpoly (t2, [])) ->
mcomp type_pairs env t1 t2
| (Tpoly (t1, tl1), Tpoly (t2, tl2)) ->
enter_poly env univar_pairs t1 tl1 t2 tl2
(mcomp type_pairs env)
| (Tunivar _, Tunivar _) ->
unify_univar t1' t2' !univar_pairs
| (_, _) ->
raise (Unify [])
end
and mcomp_list type_pairs env tl1 tl2 =
if List.length tl1 <> List.length tl2 then
raise (Unify []);
List.iter2 (mcomp type_pairs env) tl1 tl2
and mcomp_fields type_pairs env ty1 ty2 =
if not (concrete_object ty1 && concrete_object ty2) then assert false;
let (fields2, rest2) = flatten_fields ty2 in
let (fields1, rest1) = flatten_fields ty1 in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
let has_present =
List.exists (fun (_, k, _) -> field_kind_repr k = Fpresent) in
mcomp type_pairs env rest1 rest2;
if has_present miss1 && (object_row ty2).desc = Tnil
|| has_present miss2 && (object_row ty1).desc = Tnil then raise (Unify []);
List.iter
(function (_n, k1, t1, k2, t2) ->
mcomp_kind k1 k2;
mcomp type_pairs env t1 t2)
pairs
and mcomp_kind k1 k2 =
let k1 = field_kind_repr k1 in
let k2 = field_kind_repr k2 in
match k1, k2 with
(Fpresent, Fabsent)
| (Fabsent, Fpresent) -> raise (Unify [])
| _ -> ()
and mcomp_row type_pairs env row1 row2 =
let row1 = row_repr row1 and row2 = row_repr row2 in
let r1, r2, pairs = merge_row_fields row1.row_fields row2.row_fields in
let cannot_erase (_,f) =
match row_field_repr f with
Rpresent _ -> true
| Rabsent | Reither _ -> false
in
if row1.row_closed && List.exists cannot_erase r2
|| row2.row_closed && List.exists cannot_erase r1 then raise (Unify []);
List.iter
(fun (_,f1,f2) ->
match row_field_repr f1, row_field_repr f2 with
| Rpresent None, (Rpresent (Some _) | Reither (_, _::_, _, _) | Rabsent)
| Rpresent (Some _), (Rpresent None | Reither (true, _, _, _) | Rabsent)
| (Reither (_, _::_, _, _) | Rabsent), Rpresent None
| (Reither (true, _, _, _) | Rabsent), Rpresent (Some _) ->
raise (Unify [])
| Rpresent(Some t1), Rpresent(Some t2) ->
mcomp type_pairs env t1 t2
| Rpresent(Some t1), Reither(false, tl2, _, _) ->
List.iter (mcomp type_pairs env t1) tl2
| Reither(false, tl1, _, _), Rpresent(Some t2) ->
List.iter (mcomp type_pairs env t2) tl1
| _ -> ())
pairs
and mcomp_type_decl type_pairs env p1 p2 tl1 tl2 =
try
let decl = Env.find_type p1 env in
let decl' = Env.find_type p2 env in
if compatible_paths p1 p2 then begin
let inj =
try List.map Variance.(mem Inj) (Env.find_type p1 env).type_variance
with Not_found -> List.map (fun _ -> false) tl1
in
List.iter2
(fun i (t1,t2) -> if i then mcomp type_pairs env t1 t2)
inj (List.combine tl1 tl2)
end else if non_aliasable p1 decl && non_aliasable p2 decl' then
raise (Unify [])
else
match decl.type_kind, decl'.type_kind with
| Type_record (lst,r), Type_record (lst',r') when r = r' ->
mcomp_list type_pairs env tl1 tl2;
mcomp_record_description type_pairs env lst lst'
| Type_variant v1, Type_variant v2 ->
mcomp_list type_pairs env tl1 tl2;
mcomp_variant_description type_pairs env v1 v2
| Type_open, Type_open ->
mcomp_list type_pairs env tl1 tl2
| Type_abstract, Type_abstract -> ()
| Type_abstract, _ when not (non_aliasable p1 decl)-> ()
| _, Type_abstract when not (non_aliasable p2 decl') -> ()
| _ -> raise (Unify [])
with Not_found -> ()
and mcomp_type_option type_pairs env t t' =
match t, t' with
None, None -> ()
| Some t, Some t' -> mcomp type_pairs env t t'
| _ -> raise (Unify [])
and mcomp_variant_description type_pairs env xs ys =
let rec iter = fun x y ->
match x, y with
| c1 :: xs, c2 :: ys ->
mcomp_type_option type_pairs env c1.cd_res c2.cd_res;
begin match c1.cd_args, c2.cd_args with
| Cstr_tuple l1, Cstr_tuple l2 -> mcomp_list type_pairs env l1 l2
| Cstr_record l1, Cstr_record l2 ->
mcomp_record_description type_pairs env l1 l2
| _ -> raise (Unify [])
end;
if Ident.name c1.cd_id = Ident.name c2.cd_id
then iter xs ys
else raise (Unify [])
| [],[] -> ()
| _ -> raise (Unify [])
in
iter xs ys
and mcomp_record_description type_pairs env =
let rec iter x y =
match x, y with
| l1 :: xs, l2 :: ys ->
mcomp type_pairs env l1.ld_type l2.ld_type;
if Ident.name l1.ld_id = Ident.name l2.ld_id &&
l1.ld_mutable = l2.ld_mutable
then iter xs ys
else raise (Unify [])
| [], [] -> ()
| _ -> raise (Unify [])
in
iter
let mcomp env t1 t2 =
mcomp (TypePairs.create 4) env t1 t2
(* Real unification *)
let find_lowest_level ty =
let lowest = ref generic_level in
let rec find ty =
let ty = repr ty in
if ty.level >= lowest_level then begin
if ty.level < !lowest then lowest := ty.level;
ty.level <- pivot_level - ty.level;
iter_type_expr find ty
end
in find ty; unmark_type ty; !lowest
let find_expansion_scope env path =
(Env.find_type path env).type_expansion_scope
let add_gadt_equation env source destination =
(* Format.eprintf "@[add_gadt_equation %s %a@]@."
(Path.name source) !Btype.print_raw destination; *)
if local_non_recursive_abbrev !env source destination then begin
let destination = duplicate_type destination in
let expansion_scope =
max (Path.scope source) (get_gadt_equations_level ())
in
let decl = new_declaration expansion_scope (Some destination) in
env := Env.add_local_type source decl !env;
cleanup_abbrev ()
end
let unify_eq_set = TypePairs.create 11
let order_type_pair t1 t2 =
if t1.id <= t2.id then (t1, t2) else (t2, t1)
let add_type_equality t1 t2 =
TypePairs.add unify_eq_set (order_type_pair t1 t2) ()
let eq_package_path env p1 p2 =
Path.same p1 p2 ||
Path.same (normalize_package_path env p1) (normalize_package_path env p2)
let nondep_type' = ref (fun _ _ _ -> assert false)
let package_subtype = ref (fun _ _ _ _ _ _ _ -> assert false)
exception Nondep_cannot_erase of Ident.t
let rec concat_longident lid1 =
let open Longident in
function
Lident s -> Ldot (lid1, s)
| Ldot (lid2, s) -> Ldot (concat_longident lid1 lid2, s)
| Lapply (lid2, lid) -> Lapply (concat_longident lid1 lid2, lid)
let nondep_instance env level id ty =
let ty = !nondep_type' env [id] ty in
if level = generic_level then duplicate_type ty else
let old = !current_level in
current_level := level;
let ty = instance ty in
current_level := old;
ty
(* Find the type paths nl1 in the module type mty2, and add them to the
list (nl2, tl2). raise Not_found if impossible *)
let complete_type_list ?(allow_absent=false) env nl1 lv2 mty2 nl2 tl2 =
(* This is morally WRONG: we're adding a (dummy) module without a scope in the
environment. However no operation which cares about levels/scopes is going
to happen while this module exists.
The only operations that happen are:
- Env.find_type_by_name
- nondep_instance
None of which check the scope.
It'd be nice if we avoided creating such temporary dummy modules and broken
environments though. *)
let id2 = Ident.create_local "Pkg" in
let env' = Env.add_module id2 Mp_present mty2 env in
let rec complete nl1 ntl2 =
match nl1, ntl2 with
[], _ -> ntl2
| n :: nl, (n2, _ as nt2) :: ntl' when n >= n2 ->
nt2 :: complete (if n = n2 then nl else nl1) ntl'
| n :: nl, _ ->
let lid = concat_longident (Longident.Lident "Pkg") n in
match Env.find_type_by_name lid env' with
| (_, {type_arity = 0; type_kind = Type_abstract;
type_private = Public; type_manifest = Some t2}) ->
begin match nondep_instance env' lv2 id2 t2 with
| t -> (n, t) :: complete nl ntl2
| exception Nondep_cannot_erase _ ->
if allow_absent then
complete nl ntl2
else
raise Exit
end
| (_, {type_arity = 0; type_kind = Type_abstract;
type_private = Public; type_manifest = None})
when allow_absent ->
complete nl ntl2
| _ -> raise Exit
| exception Not_found when allow_absent->
complete nl ntl2
in
match complete nl1 (List.combine nl2 tl2) with
| res -> res
| exception Exit -> raise Not_found
(* raise Not_found rather than Unify if the module types are incompatible *)
let unify_package env unify_list lv1 p1 n1 tl1 lv2 p2 n2 tl2 =
let ntl2 = complete_type_list env n1 lv2 (Mty_ident p2) n2 tl2
and ntl1 = complete_type_list env n2 lv1 (Mty_ident p1) n1 tl1 in
unify_list (List.map snd ntl1) (List.map snd ntl2);
if eq_package_path env p1 p2
|| !package_subtype env p1 n1 tl1 p2 n2 tl2
&& !package_subtype env p2 n2 tl2 p1 n1 tl1 then () else raise Not_found
(* force unification in Reither when one side has a non-conjunctive type *)
let rigid_variants = ref false
let unify_eq t1 t2 =
t1 == t2 ||
match !umode with
| Expression -> false
| Pattern ->
try TypePairs.find unify_eq_set (order_type_pair t1 t2); true
with Not_found -> false
let unify1_var env t1 t2 =
assert (is_Tvar t1);
occur env t1 t2;
occur_univar env t2;
let d1 = t1.desc in
link_type t1 t2;
try
update_level env t1.level t2;
update_scope t1.scope t2
with Unify _ as e ->
t1.desc <- d1;
raise e
(* Can only be called when generate_equations is true *)
let record_equation t1 t2 =
match !equations_generation with
| Forbidden -> assert false
| Allowed { equated_types } -> TypePairs.add equated_types (t1, t2) ()
let rec unify (env:Env.t ref) t1 t2 =
(* First step: special cases (optimizations) *)
if t1 == t2 then () else
let t1 = repr t1 in
let t2 = repr t2 in
if unify_eq t1 t2 then () else
let reset_tracing = check_trace_gadt_instances !env in
try
type_changed := true;
begin match (t1.desc, t2.desc) with
(Tvar _, Tconstr _) when deep_occur t1 t2 ->
unify2 env t1 t2
| (Tconstr _, Tvar _) when deep_occur t2 t1 ->
unify2 env t1 t2
| (Tvar _, _) ->
unify1_var !env t1 t2
| (_, Tvar _) ->
unify1_var !env t2 t1
| (Tunivar _, Tunivar _) ->
unify_univar t1 t2 !univar_pairs;
update_level !env t1.level t2;
update_scope t1.scope t2;
link_type t1 t2
| (Tconstr (p1, [], a1), Tconstr (p2, [], a2))
when Path.same p1 p2 (* && actual_mode !env = Old *)
(* This optimization assumes that t1 does not expand to t2
(and conversely), so we fall back to the general case
when any of the types has a cached expansion. *)
&& not (has_cached_expansion p1 !a1
|| has_cached_expansion p2 !a2) ->
update_level !env t1.level t2;
update_scope t1.scope t2;
link_type t1 t2
| (Tconstr (p1, [], _), Tconstr (p2, [], _))
when Env.has_local_constraints !env
&& is_newtype !env p1 && is_newtype !env p2 ->
(* Do not use local constraints more than necessary *)
begin try
if find_expansion_scope !env p1 > find_expansion_scope !env p2 then
unify env t1 (try_expand_once !env t2)
else
unify env (try_expand_once !env t1) t2
with Cannot_expand ->
unify2 env t1 t2
end
| _ ->
unify2 env t1 t2
end;
reset_trace_gadt_instances reset_tracing;
with Unify trace ->
reset_trace_gadt_instances reset_tracing;
raise( Unify (Trace.diff t1 t2 :: trace) )
and unify2 env t1 t2 =
(* Second step: expansion of abbreviations *)
(* Expansion may change the representative of the types. *)
ignore (expand_head_unif !env t1);
ignore (expand_head_unif !env t2);
let t1' = expand_head_unif !env t1 in
let t2' = expand_head_unif !env t2 in
let lv = min t1'.level t2'.level in
let scope = max t1'.scope t2'.scope in
update_level !env lv t2;
update_level !env lv t1;
update_scope scope t2;
update_scope scope t1;
if unify_eq t1' t2' then () else
let t1 = repr t1 and t2 = repr t2 in
let t1, t2 =
if !Clflags.principal
&& (find_lowest_level t1' < lv || find_lowest_level t2' < lv) then
(* Expand abbreviations hiding a lower level *)
(* Should also do it for parameterized types, after unification... *)
(match t1.desc with Tconstr (_, [], _) -> t1' | _ -> t1),
(match t2.desc with Tconstr (_, [], _) -> t2' | _ -> t2)
else (t1, t2)
in
if unify_eq t1 t1' || not (unify_eq t2 t2') then
unify3 env t1 t1' t2 t2'
else
try unify3 env t2 t2' t1 t1' with Unify trace ->
raise (Unify (Trace.swap trace))
and unify3 env t1 t1' t2 t2' =
(* Third step: truly unification *)
(* Assumes either [t1 == t1'] or [t2 != t2'] *)
let d1 = t1'.desc and d2 = t2'.desc in
let create_recursion = (t2 != t2') && (deep_occur t1' t2) in
begin match (d1, d2) with (* handle vars and univars specially *)
(Tunivar _, Tunivar _) ->
unify_univar t1' t2' !univar_pairs;
link_type t1' t2'
| (Tvar _, _) ->
occur !env t1' t2;
occur_univar !env t2;
link_type t1' t2;
| (_, Tvar _) ->
occur !env t2' t1;
occur_univar !env t1;
link_type t2' t1;
| (Tfield _, Tfield _) -> (* special case for GADTs *)
unify_fields env t1' t2'
| _ ->
begin match !umode with
| Expression ->
occur !env t1' t2';
if is_self_type d1 (* PR#7711: do not abbreviate self type *)
then link_type t1' t2'
else link_type t1' t2
| Pattern ->
add_type_equality t1' t2'
end;
try
begin match (d1, d2) with
(Tarrow (l1, t1, u1, c1), Tarrow (l2, t2, u2, c2)) when l1 = l2 ||
(!Clflags.classic || !umode = Pattern) &&
not (is_optional l1 || is_optional l2) ->
unify env t1 t2; unify env u1 u2;
begin match commu_repr c1, commu_repr c2 with
Clink r, c2 -> set_commu r c2
| c1, Clink r -> set_commu r c1
| _ -> ()
end
| (Ttuple tl1, Ttuple tl2) ->
unify_list env tl1 tl2
| (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _)) when Path.same p1 p2 ->
if !umode = Expression || !equations_generation = Forbidden then
unify_list env tl1 tl2
else if !assume_injective then
set_mode_pattern ~generate:!equations_generation ~injective:false
~allow_recursive:!allow_recursive_equation
(fun () -> unify_list env tl1 tl2)
else if in_current_module p1 (* || in_pervasives p1 *)
|| List.exists (expands_to_datatype !env) [t1'; t1; t2] then
unify_list env tl1 tl2
else
let inj =
try List.map Variance.(mem Inj)
(Env.find_type p1 !env).type_variance
with Not_found -> List.map (fun _ -> false) tl1
in
List.iter2
(fun i (t1, t2) ->
if i then unify env t1 t2 else
set_mode_pattern ~generate:Forbidden ~injective:false
~allow_recursive:!allow_recursive_equation
begin fun () ->
let snap = snapshot () in
try unify env t1 t2 with Unify _ ->
backtrack snap;
reify env t1; reify env t2
end)
inj (List.combine tl1 tl2)
| (Tconstr (path,[],_),
Tconstr (path',[],_))
when is_instantiable !env path && is_instantiable !env path'
&& can_generate_equations () ->
let source, destination =
if Path.scope path > Path.scope path'
then path , t2'
else path', t1'
in
record_equation t1' t2';
add_gadt_equation env source destination
| (Tconstr (path,[],_), _)
when is_instantiable !env path && can_generate_equations () ->
reify env t2';
record_equation t1' t2';
add_gadt_equation env path t2'
| (_, Tconstr (path,[],_))
when is_instantiable !env path && can_generate_equations () ->
reify env t1';
record_equation t1' t2';
add_gadt_equation env path t1'
| (Tconstr (_,_,_), _) | (_, Tconstr (_,_,_)) when !umode = Pattern ->
reify env t1';
reify env t2';
if can_generate_equations () then (
mcomp !env t1' t2';
record_equation t1' t2'
)
| (Tobject (fi1, nm1), Tobject (fi2, _)) ->
unify_fields env fi1 fi2;
(* Type [t2'] may have been instantiated by [unify_fields] *)
(* XXX One should do some kind of unification... *)
begin match (repr t2').desc with
Tobject (_, {contents = Some (_, va::_)}) when
(match (repr va).desc with
Tvar _|Tunivar _|Tnil -> true | _ -> false) -> ()
| Tobject (_, nm2) -> set_name nm2 !nm1
| _ -> ()
end
| (Tvariant row1, Tvariant row2) ->
if !umode = Expression then
unify_row env row1 row2
else begin
let snap = snapshot () in
try unify_row env row1 row2
with Unify _ ->
backtrack snap;
reify env t1';
reify env t2';
if can_generate_equations () then (
mcomp !env t1' t2';
record_equation t1' t2'
)
end
| (Tfield(f,kind,_,rem), Tnil) | (Tnil, Tfield(f,kind,_,rem)) ->
begin match field_kind_repr kind with
Fvar r when f <> dummy_method ->
set_kind r Fabsent;
if d2 = Tnil then unify env rem t2'
else unify env (newty2 rem.level Tnil) rem
| _ ->
if f = dummy_method then
raise (Unify Trace.[Obj Self_cannot_be_closed])
else if d1 = Tnil then
raise (Unify Trace.[Obj(Missing_field (First, f))])
else
raise (Unify Trace.[Obj(Missing_field (Second, f))])
end
| (Tnil, Tnil) ->
()
| (Tpoly (t1, []), Tpoly (t2, [])) ->
unify env t1 t2
| (Tpoly (t1, tl1), Tpoly (t2, tl2)) ->
enter_poly !env univar_pairs t1 tl1 t2 tl2 (unify env)
| (Tpackage (p1, n1, tl1), Tpackage (p2, n2, tl2)) ->
begin try
unify_package !env (unify_list env)
t1.level p1 n1 tl1 t2.level p2 n2 tl2
with Not_found ->
if !umode = Expression then raise (Unify []);
List.iter (reify env) (tl1 @ tl2);
(* if !generate_equations then List.iter2 (mcomp !env) tl1 tl2 *)
end
| (Tnil, Tconstr _ ) -> raise (Unify Trace.[Obj(Abstract_row Second)])
| (Tconstr _, Tnil ) -> raise (Unify Trace.[Obj(Abstract_row First)])
| (_, _) -> raise (Unify [])
end;
(* XXX Commentaires + changer "create_recursion"
||| Comments + change "create_recursion" *)
if create_recursion then
match t2.desc with
Tconstr (p, tl, abbrev) ->
forget_abbrev abbrev p;
let t2'' = expand_head_unif !env t2 in
if not (closed_parameterized_type tl t2'') then
link_type (repr t2) (repr t2')
| _ ->
() (* t2 has already been expanded by update_level *)
with Unify trace ->
t1'.desc <- d1;
raise (Unify trace)
end
and unify_list env tl1 tl2 =
if List.length tl1 <> List.length tl2 then
raise (Unify []);
List.iter2 (unify env) tl1 tl2
(* Build a fresh row variable for unification *)
and make_rowvar level use1 rest1 use2 rest2 =
let set_name ty name =
match ty.desc with
Tvar None -> set_type_desc ty (Tvar name)
| _ -> ()
in
let name =
match rest1.desc, rest2.desc with
Tvar (Some _ as name1), Tvar (Some _ as name2) ->
if rest1.level <= rest2.level then name1 else name2
| Tvar (Some _ as name), _ ->
if use2 then set_name rest2 name; name
| _, Tvar (Some _ as name) ->
if use1 then set_name rest2 name; name
| _ -> None
in
if use1 then rest1 else
if use2 then rest2 else newvar2 ?name level
and unify_fields env ty1 ty2 = (* Optimization *)
let (fields1, rest1) = flatten_fields ty1
and (fields2, rest2) = flatten_fields ty2 in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
let l1 = (repr ty1).level and l2 = (repr ty2).level in
let va = make_rowvar (min l1 l2) (miss2=[]) rest1 (miss1=[]) rest2 in
let d1 = rest1.desc and d2 = rest2.desc in
try
unify env (build_fields l1 miss1 va) rest2;
unify env rest1 (build_fields l2 miss2 va);
List.iter
(fun (n, k1, t1, k2, t2) ->
unify_kind k1 k2;
try
if !trace_gadt_instances then begin
update_level !env va.level t1;
update_scope va.scope t1
end;
unify env t1 t2
with Unify trace ->
raise( Unify (Trace.incompatible_fields n t1 t2 :: trace) )
)
pairs
with exn ->
set_type_desc rest1 d1;
set_type_desc rest2 d2;
raise exn
and unify_kind k1 k2 =
let k1 = field_kind_repr k1 in
let k2 = field_kind_repr k2 in
if k1 == k2 then () else
match k1, k2 with
(Fvar r, (Fvar _ | Fpresent)) -> set_kind r k2
| (Fpresent, Fvar r) -> set_kind r k1
| (Fpresent, Fpresent) -> ()
| _ -> assert false
and unify_row env row1 row2 =
let row1 = row_repr row1 and row2 = row_repr row2 in
let rm1 = row_more row1 and rm2 = row_more row2 in
if unify_eq rm1 rm2 then () else
let r1, r2, pairs = merge_row_fields row1.row_fields row2.row_fields in
if r1 <> [] && r2 <> [] then begin
let ht = Hashtbl.create (List.length r1) in
List.iter (fun (l,_) -> Hashtbl.add ht (hash_variant l) l) r1;
List.iter
(fun (l,_) ->
try raise (Tags(l, Hashtbl.find ht (hash_variant l)))
with Not_found -> ())
r2
end;
let fixed1 = fixed_explanation row1 and fixed2 = fixed_explanation row2 in
let more = match fixed1, fixed2 with
| Some _, Some _ -> if rm2.level < rm1.level then rm2 else rm1
| Some _, None -> rm1
| None, Some _ -> rm2
| None, None -> newty2 (min rm1.level rm2.level) (Tvar None)
in
let fixed = merge_fixed_explanation fixed1 fixed2
and closed = row1.row_closed || row2.row_closed in
let keep switch =
List.for_all
(fun (_,f1,f2) ->
let f1, f2 = switch f1 f2 in
row_field_repr f1 = Rabsent || row_field_repr f2 <> Rabsent)
pairs
in
let empty fields =
List.for_all (fun (_,f) -> row_field_repr f = Rabsent) fields in
(* Check whether we are going to build an empty type *)
if closed && (empty r1 || row2.row_closed) && (empty r2 || row1.row_closed)
&& List.for_all
(fun (_,f1,f2) ->
row_field_repr f1 = Rabsent || row_field_repr f2 = Rabsent)
pairs
then raise Trace.( Unify [Variant No_intersection] );
let name =
if row1.row_name <> None && (row1.row_closed || empty r2) &&
(not row2.row_closed || keep (fun f1 f2 -> f1, f2) && empty r1)
then row1.row_name
else if row2.row_name <> None && (row2.row_closed || empty r1) &&
(not row1.row_closed || keep (fun f1 f2 -> f2, f1) && empty r2)
then row2.row_name
else None
in
let row0 = {row_fields = []; row_more = more; row_bound = ();
row_closed = closed; row_fixed = fixed; row_name = name} in
let set_more row rest =
let rest =
if closed then
filter_row_fields row.row_closed rest
else rest in
begin match fixed_explanation row with
| None ->
if rest <> [] && row.row_closed then
let pos = if row == row1 then Trace.First else Trace.Second in
raise Trace.(Unify [Variant (No_tags(pos,rest))])
| Some fixed ->
let pos = if row == row1 then Trace.First else Trace.Second in
if closed && not row.row_closed then
raise Trace.(Unify [Variant(Fixed_row(pos,Cannot_be_closed,fixed))])
else if rest <> [] then
let case = Trace.Cannot_add_tags (List.map fst rest) in
raise Trace.(Unify [Variant(Fixed_row(pos,case,fixed))])
end;
(* The following test is not principal... should rather use Tnil *)
let rm = row_more row in
(*if !trace_gadt_instances && rm.desc = Tnil then () else*)
if !trace_gadt_instances then
update_level !env rm.level (newgenty (Tvariant row));
if row_fixed row then
if more == rm then () else
if is_Tvar rm then link_type rm more else unify env rm more
else
let ty = newgenty (Tvariant {row0 with row_fields = rest}) in
update_level !env rm.level ty;
update_scope rm.scope ty;
link_type rm ty
in
let md1 = rm1.desc and md2 = rm2.desc in
begin try
set_more row2 r1;
set_more row1 r2;
List.iter
(fun (l,f1,f2) ->
try unify_row_field env fixed1 fixed2 rm1 rm2 l f1 f2
with Unify trace ->
raise Trace.( Unify( Variant (Incompatible_types_for l) :: trace ))
)
pairs;
if static_row row1 then begin
let rm = row_more row1 in
if is_Tvar rm then link_type rm (newty2 rm.level Tnil)
end
with exn ->
set_type_desc rm1 md1; set_type_desc rm2 md2; raise exn
end
and unify_row_field env fixed1 fixed2 rm1 rm2 l f1 f2 =
let f1 = row_field_repr f1 and f2 = row_field_repr f2 in
let if_not_fixed (pos,fixed) f =
match fixed with
| None -> f ()
| Some fix ->
let tr = Trace.[ Variant (Fixed_row (pos,Cannot_add_tags [l],fix)) ] in
raise (Unify tr) in
let first = Trace.First, fixed1 and second = Trace.Second, fixed2 in
let either_fixed = match fixed1, fixed2 with
| None, None -> false
| _ -> true in
if f1 == f2 then () else
match f1, f2 with
Rpresent(Some t1), Rpresent(Some t2) -> unify env t1 t2
| Rpresent None, Rpresent None -> ()
| Reither(c1, tl1, m1, e1), Reither(c2, tl2, m2, e2) ->
if e1 == e2 then () else
if either_fixed && not (c1 || c2)
&& List.length tl1 = List.length tl2 then begin
(* PR#7496 *)
let f = Reither (c1 || c2, [], m1 || m2, ref None) in
set_row_field e1 f; set_row_field e2 f;
List.iter2 (unify env) tl1 tl2
end
else let redo =
(m1 || m2 || either_fixed ||
!rigid_variants && (List.length tl1 = 1 || List.length tl2 = 1)) &&
begin match tl1 @ tl2 with [] -> false
| t1 :: tl ->
if c1 || c2 then raise (Unify []);
List.iter (unify env t1) tl;
!e1 <> None || !e2 <> None
end in
if redo then unify_row_field env fixed1 fixed2 rm1 rm2 l f1 f2 else
let tl1 = List.map repr tl1 and tl2 = List.map repr tl2 in
let rec remq tl = function [] -> []
| ty :: tl' ->
if List.memq ty tl then remq tl tl' else ty :: remq tl tl'
in
let tl1' = remq tl2 tl1 and tl2' = remq tl1 tl2 in
(* PR#6744 *)
let split_univars =
List.partition
(fun ty -> try occur_univar !env ty; true with Unify _ -> false) in
let (tl1',tlu1) = split_univars tl1'
and (tl2',tlu2) = split_univars tl2' in
begin match tlu1, tlu2 with
[], [] -> ()
| (tu1::tlu1), _ :: _ ->
(* Attempt to merge all the types containing univars *)
List.iter (unify env tu1) (tlu1@tlu2)
| (tu::_, []) | ([], tu::_) -> occur_univar !env tu
end;
(* Is this handling of levels really principal? *)
List.iter (fun ty ->
let rm = repr rm2 in
update_level !env rm.level ty;
update_scope rm.scope ty;
) tl1';
List.iter (fun ty ->
let rm = repr rm1 in
update_level !env rm.level ty;
update_scope rm.scope ty;
) tl2';
let e = ref None in
let f1' = Reither(c1 || c2, tl2', m1 || m2, e)
and f2' = Reither(c1 || c2, tl1', m1 || m2, e) in
set_row_field e1 f1'; set_row_field e2 f2';
| Reither(_, _, false, e1), Rabsent ->
if_not_fixed first (fun () -> set_row_field e1 f2)
| Rabsent, Reither(_, _, false, e2) ->
if_not_fixed second (fun () -> set_row_field e2 f1)
| Rabsent, Rabsent -> ()
| Reither(false, tl, _, e1), Rpresent(Some t2) ->
if_not_fixed first (fun () ->
set_row_field e1 f2;
let rm = repr rm1 in
update_level !env rm.level t2;
update_scope rm.scope t2;
(try List.iter (fun t1 -> unify env t1 t2) tl
with exn -> e1 := None; raise exn)
)
| Rpresent(Some t1), Reither(false, tl, _, e2) ->
if_not_fixed second (fun () ->
set_row_field e2 f1;
let rm = repr rm2 in
update_level !env rm.level t1;
update_scope rm.scope t1;
(try List.iter (unify env t1) tl
with exn -> e2 := None; raise exn)
)
| Reither(true, [], _, e1), Rpresent None ->
if_not_fixed first (fun () -> set_row_field e1 f2)
| Rpresent None, Reither(true, [], _, e2) ->
if_not_fixed second (fun () -> set_row_field e2 f1)
| _ -> raise (Unify [])
let unify env ty1 ty2 =
let snap = Btype.snapshot () in
try
unify env ty1 ty2
with
Unify trace ->
undo_compress snap;
raise (Unify (expand_trace !env trace))
let unify_gadt ~equations_level:lev ~allow_recursive (env:Env.t ref) ty1 ty2 =
try
univar_pairs := [];
gadt_equations_level := Some lev;
let equated_types = TypePairs.create 0 in
set_mode_pattern
~generate:(Allowed { equated_types })
~injective:true
~allow_recursive
(fun () -> unify env ty1 ty2);
gadt_equations_level := None;
TypePairs.clear unify_eq_set;
equated_types
with e ->
gadt_equations_level := None;
TypePairs.clear unify_eq_set;
raise e
let unify_var env t1 t2 =
let t1 = repr t1 and t2 = repr t2 in
if t1 == t2 then () else
match t1.desc, t2.desc with
Tvar _, Tconstr _ when deep_occur t1 t2 ->
unify (ref env) t1 t2
| Tvar _, _ ->
let reset_tracing = check_trace_gadt_instances env in
begin try
occur env t1 t2;
update_level env t1.level t2;
update_scope t1.scope t2;
link_type t1 t2;
reset_trace_gadt_instances reset_tracing;
with Unify trace ->
reset_trace_gadt_instances reset_tracing;
let expanded_trace = expand_trace env @@ Trace.diff t1 t2 :: trace in
raise (Unify expanded_trace)
end
| _ ->
unify (ref env) t1 t2
let _ = unify' := unify_var
let unify_pairs env ty1 ty2 pairs =
univar_pairs := pairs;
unify env ty1 ty2
let unify env ty1 ty2 =
unify_pairs (ref env) ty1 ty2 []
(**** Special cases of unification ****)
let expand_head_trace env t =
let reset_tracing = check_trace_gadt_instances env in
let t = expand_head_unif env t in
reset_trace_gadt_instances reset_tracing;
t
(*
Unify [t] and [l:'a -> 'b]. Return ['a] and ['b].
In label mode, label mismatch is accepted when
(1) the requested label is ""
(2) the original label is not optional
*)
let filter_arrow env t l =
let t = expand_head_trace env t in
match t.desc with
Tvar _ ->
let lv = t.level in
let t1 = newvar2 lv and t2 = newvar2 lv in
let t' = newty2 lv (Tarrow (l, t1, t2, Cok)) in
link_type t t';
(t1, t2)
| Tarrow(l', t1, t2, _)
when l = l' || !Clflags.classic && l = Nolabel && not (is_optional l') ->
(t1, t2)
| _ ->
raise (Unify [])
(* Used by [filter_method]. *)
let rec filter_method_field env name priv ty =
let ty = expand_head_trace env ty in
match ty.desc with
Tvar _ ->
let level = ty.level in
let ty1 = newvar2 level and ty2 = newvar2 level in
let ty' = newty2 level (Tfield (name,
begin match priv with
Private -> Fvar (ref None)
| Public -> Fpresent
end,
ty1, ty2))
in
link_type ty ty';
ty1
| Tfield(n, kind, ty1, ty2) ->
let kind = field_kind_repr kind in
if (n = name) && (kind <> Fabsent) then begin
if priv = Public then
unify_kind kind Fpresent;
ty1
end else
filter_method_field env name priv ty2
| _ ->
raise (Unify [])
(* Unify [ty] and [< name : 'a; .. >]. Return ['a]. *)
let filter_method env name priv ty =
let ty = expand_head_trace env ty in
match ty.desc with
Tvar _ ->
let ty1 = newvar () in
let ty' = newobj ty1 in
update_level env ty.level ty';
update_scope ty.scope ty';
link_type ty ty';
filter_method_field env name priv ty1
| Tobject(f, _) ->
filter_method_field env name priv f
| _ ->
raise (Unify [])
let check_filter_method env name priv ty =
ignore(filter_method env name priv ty)
let filter_self_method env lab priv meths ty =
let ty' = filter_method env lab priv ty in
try
Meths.find lab !meths
with Not_found ->
let pair = (Ident.create_local lab, ty') in
meths := Meths.add lab pair !meths;
pair
(***********************************)
(* Matching between type schemes *)
(***********************************)
(*
Update the level of [ty]. First check that the levels of generic
variables from the subject are not lowered.
*)
let moregen_occur env level ty =
let rec occur ty =
let ty = repr ty in
if ty.level > level then begin
if is_Tvar ty && ty.level >= generic_level - 1 then raise Occur;
ty.level <- pivot_level - ty.level;
iter_type_expr occur ty
end
in
begin try
occur ty; unmark_type ty
with Occur ->
unmark_type ty; raise (Unify [])
end;
(* also check for free univars *)
occur_univar env ty;
update_level env level ty
let may_instantiate inst_nongen t1 =
if inst_nongen then t1.level <> generic_level - 1
else t1.level = generic_level
let rec moregen inst_nongen type_pairs env t1 t2 =
if t1 == t2 then () else
let t1 = repr t1 in
let t2 = repr t2 in
if t1 == t2 then () else
try
match (t1.desc, t2.desc) with
(Tvar _, _) when may_instantiate inst_nongen t1 ->
moregen_occur env t1.level t2;
update_scope t1.scope t2;
occur env t1 t2;
link_type t1 t2
| (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 ->
()
| _ ->
let t1' = expand_head env t1 in
let t2' = expand_head env t2 in
(* Expansion may have changed the representative of the types... *)
let t1' = repr t1' and t2' = repr t2' in
if t1' == t2' then () else
begin try
TypePairs.find type_pairs (t1', t2')
with Not_found ->
TypePairs.add type_pairs (t1', t2') ();
match (t1'.desc, t2'.desc) with
(Tvar _, _) when may_instantiate inst_nongen t1' ->
moregen_occur env t1'.level t2;
update_scope t1'.scope t2;
link_type t1' t2
| (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) when l1 = l2
|| !Clflags.classic && not (is_optional l1 || is_optional l2) ->
moregen inst_nongen type_pairs env t1 t2;
moregen inst_nongen type_pairs env u1 u2
| (Ttuple tl1, Ttuple tl2) ->
moregen_list inst_nongen type_pairs env tl1 tl2
| (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _))
when Path.same p1 p2 ->
moregen_list inst_nongen type_pairs env tl1 tl2
| (Tpackage (p1, n1, tl1), Tpackage (p2, n2, tl2)) ->
begin try
unify_package env (moregen_list inst_nongen type_pairs env)
t1'.level p1 n1 tl1 t2'.level p2 n2 tl2
with Not_found -> raise (Unify [])
end
| (Tvariant row1, Tvariant row2) ->
moregen_row inst_nongen type_pairs env row1 row2
| (Tobject (fi1, _nm1), Tobject (fi2, _nm2)) ->
moregen_fields inst_nongen type_pairs env fi1 fi2
| (Tfield _, Tfield _) -> (* Actually unused *)
moregen_fields inst_nongen type_pairs env t1' t2'
| (Tnil, Tnil) ->
()
| (Tpoly (t1, []), Tpoly (t2, [])) ->
moregen inst_nongen type_pairs env t1 t2
| (Tpoly (t1, tl1), Tpoly (t2, tl2)) ->
enter_poly env univar_pairs t1 tl1 t2 tl2
(moregen inst_nongen type_pairs env)
| (Tunivar _, Tunivar _) ->
unify_univar t1' t2' !univar_pairs
| (_, _) ->
raise (Unify [])
end
with Unify trace -> raise( Unify ( Trace.diff t1 t2 :: trace ) )
and moregen_list inst_nongen type_pairs env tl1 tl2 =
if List.length tl1 <> List.length tl2 then
raise (Unify []);
List.iter2 (moregen inst_nongen type_pairs env) tl1 tl2
and moregen_fields inst_nongen type_pairs env ty1 ty2 =
let (fields1, rest1) = flatten_fields ty1
and (fields2, rest2) = flatten_fields ty2 in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
if miss1 <> [] then raise (Unify []);
moregen inst_nongen type_pairs env rest1
(build_fields (repr ty2).level miss2 rest2);
List.iter
(fun (n, k1, t1, k2, t2) ->
moregen_kind k1 k2;
try moregen inst_nongen type_pairs env t1 t2 with Unify trace ->
let e = Trace.diff
(newty (Tfield(n, k1, t1, rest2)))
(newty (Tfield(n, k2, t2, rest2))) in
raise( Unify ( e :: trace ) )
)
pairs
and moregen_kind k1 k2 =
let k1 = field_kind_repr k1 in
let k2 = field_kind_repr k2 in
if k1 == k2 then () else
match k1, k2 with
(Fvar r, (Fvar _ | Fpresent)) -> set_kind r k2
| (Fpresent, Fpresent) -> ()
| _ -> raise (Unify [])
and moregen_row inst_nongen type_pairs env row1 row2 =
let row1 = row_repr row1 and row2 = row_repr row2 in
let rm1 = repr row1.row_more and rm2 = repr row2.row_more in
if rm1 == rm2 then () else
let may_inst =
is_Tvar rm1 && may_instantiate inst_nongen rm1 || rm1.desc = Tnil in
let r1, r2, pairs = merge_row_fields row1.row_fields row2.row_fields in
let r1, r2 =
if row2.row_closed then
filter_row_fields may_inst r1, filter_row_fields false r2
else r1, r2
in
if r1 <> [] || row1.row_closed && (not row2.row_closed || r2 <> [])
then raise (Unify []);
begin match rm1.desc, rm2.desc with
Tunivar _, Tunivar _ ->
unify_univar rm1 rm2 !univar_pairs
| Tunivar _, _ | _, Tunivar _ ->
raise (Unify [])
| _ when static_row row1 -> ()
| _ when may_inst ->
let ext =
newgenty (Tvariant {row2 with row_fields = r2; row_name = None})
in
moregen_occur env rm1.level ext;
update_scope rm1.scope ext;
link_type rm1 ext
| Tconstr _, Tconstr _ ->
moregen inst_nongen type_pairs env rm1 rm2
| _ -> raise (Unify [])
end;
List.iter
(fun (_l,f1,f2) ->
let f1 = row_field_repr f1 and f2 = row_field_repr f2 in
if f1 == f2 then () else
match f1, f2 with
Rpresent(Some t1), Rpresent(Some t2) ->
moregen inst_nongen type_pairs env t1 t2
| Rpresent None, Rpresent None -> ()
| Reither(false, tl1, _, e1), Rpresent(Some t2) when may_inst ->
set_row_field e1 f2;
List.iter (fun t1 -> moregen inst_nongen type_pairs env t1 t2) tl1
| Reither(c1, tl1, _, e1), Reither(c2, tl2, m2, e2) ->
if e1 != e2 then begin
if c1 && not c2 then raise(Unify []);
set_row_field e1 (Reither (c2, [], m2, e2));
if List.length tl1 = List.length tl2 then
List.iter2 (moregen inst_nongen type_pairs env) tl1 tl2
else match tl2 with
t2 :: _ ->
List.iter (fun t1 -> moregen inst_nongen type_pairs env t1 t2)
tl1
| [] ->
if tl1 <> [] then raise (Unify [])
end
| Reither(true, [], _, e1), Rpresent None when may_inst ->
set_row_field e1 f2
| Reither(_, _, _, e1), Rabsent when may_inst ->
set_row_field e1 f2
| Rabsent, Rabsent -> ()
| _ -> raise (Unify []))
pairs
(* Must empty univar_pairs first *)
let moregen inst_nongen type_pairs env patt subj =
univar_pairs := [];
moregen inst_nongen type_pairs env patt subj
(*
Non-generic variable can be instantiated only if [inst_nongen] is
true. So, [inst_nongen] should be set to false if the subject might
contain non-generic variables (and we do not want them to be
instantiated).
Usually, the subject is given by the user, and the pattern
is unimportant. So, no need to propagate abbreviations.
*)
let moregeneral env inst_nongen pat_sch subj_sch =
let old_level = !current_level in
current_level := generic_level - 1;
(*
Generic variables are first duplicated with [instance]. So,
their levels are lowered to [generic_level - 1]. The subject is
then copied with [duplicate_type]. That way, its levels won't be
changed.
*)
let subj = duplicate_type (instance subj_sch) in
current_level := generic_level;
(* Duplicate generic variables *)
let patt = instance pat_sch in
let res =
try moregen inst_nongen (TypePairs.create 13) env patt subj; true with
Unify _ -> false
in
current_level := old_level;
res
(* Alternative approach: "rigidify" a type scheme,
and check validity after unification *)
(* Simpler, no? *)
let rec rigidify_rec vars ty =
let ty = repr ty in
if ty.level >= lowest_level then begin
ty.level <- pivot_level - ty.level;
match ty.desc with
| Tvar _ ->
if not (List.memq ty !vars) then vars := ty :: !vars
| Tvariant row ->
let row = row_repr row in
let more = repr row.row_more in
if is_Tvar more && not (row_fixed row) then begin
let more' = newty2 more.level more.desc in
let row' =
{row with row_fixed=Some Rigid; row_fields=[]; row_more=more'}
in link_type more (newty2 ty.level (Tvariant row'))
end;
iter_row (rigidify_rec vars) row;
(* only consider the row variable if the variant is not static *)
if not (static_row row) then rigidify_rec vars (row_more row)
| _ ->
iter_type_expr (rigidify_rec vars) ty
end
let rigidify ty =
let vars = ref [] in
rigidify_rec vars ty;
unmark_type ty;
!vars
let all_distinct_vars env vars =
let tyl = ref [] in
List.for_all
(fun ty ->
let ty = expand_head env ty in
if List.memq ty !tyl then false else
(tyl := ty :: !tyl; is_Tvar ty))
vars
let matches env ty ty' =
let snap = snapshot () in
let vars = rigidify ty in
cleanup_abbrev ();
let ok =
try unify env ty ty'; all_distinct_vars env vars
with Unify _ -> false
in
backtrack snap;
ok
(*********************************************)
(* Equivalence between parameterized types *)
(*********************************************)
let expand_head_rigid env ty =
let old = !rigid_variants in
rigid_variants := true;
let ty' = expand_head env ty in
rigid_variants := old; ty'
let normalize_subst subst =
if List.exists
(function {desc=Tlink _}, _ | _, {desc=Tlink _} -> true | _ -> false)
!subst
then subst := List.map (fun (t1,t2) -> repr t1, repr t2) !subst
let rec eqtype rename type_pairs subst env t1 t2 =
if t1 == t2 then () else
let t1 = repr t1 in
let t2 = repr t2 in
if t1 == t2 then () else
try
match (t1.desc, t2.desc) with
(Tvar _, Tvar _) when rename ->
begin try
normalize_subst subst;
if List.assq t1 !subst != t2 then raise (Unify [])
with Not_found ->
if List.exists (fun (_, t) -> t == t2) !subst then raise (Unify []);
subst := (t1, t2) :: !subst
end
| (Tconstr (p1, [], _), Tconstr (p2, [], _)) when Path.same p1 p2 ->
()
| _ ->
let t1' = expand_head_rigid env t1 in
let t2' = expand_head_rigid env t2 in
(* Expansion may have changed the representative of the types... *)
let t1' = repr t1' and t2' = repr t2' in
if t1' == t2' then () else
begin try
TypePairs.find type_pairs (t1', t2')
with Not_found ->
TypePairs.add type_pairs (t1', t2') ();
match (t1'.desc, t2'.desc) with
(Tvar _, Tvar _) when rename ->
begin try
normalize_subst subst;
if List.assq t1' !subst != t2' then raise (Unify [])
with Not_found ->
if List.exists (fun (_, t) -> t == t2') !subst
then raise (Unify []);
subst := (t1', t2') :: !subst
end
| (Tarrow (l1, t1, u1, _), Tarrow (l2, t2, u2, _)) when l1 = l2
|| !Clflags.classic && not (is_optional l1 || is_optional l2) ->
eqtype rename type_pairs subst env t1 t2;
eqtype rename type_pairs subst env u1 u2;
| (Ttuple tl1, Ttuple tl2) ->
eqtype_list rename type_pairs subst env tl1 tl2
| (Tconstr (p1, tl1, _), Tconstr (p2, tl2, _))
when Path.same p1 p2 ->
eqtype_list rename type_pairs subst env tl1 tl2
| (Tpackage (p1, n1, tl1), Tpackage (p2, n2, tl2)) ->
begin try
unify_package env (eqtype_list rename type_pairs subst env)
t1'.level p1 n1 tl1 t2'.level p2 n2 tl2
with Not_found -> raise (Unify [])
end
| (Tvariant row1, Tvariant row2) ->
eqtype_row rename type_pairs subst env row1 row2
| (Tobject (fi1, _nm1), Tobject (fi2, _nm2)) ->
eqtype_fields rename type_pairs subst env fi1 fi2
| (Tfield _, Tfield _) -> (* Actually unused *)
eqtype_fields rename type_pairs subst env t1' t2'
| (Tnil, Tnil) ->
()
| (Tpoly (t1, []), Tpoly (t2, [])) ->
eqtype rename type_pairs subst env t1 t2
| (Tpoly (t1, tl1), Tpoly (t2, tl2)) ->
enter_poly env univar_pairs t1 tl1 t2 tl2
(eqtype rename type_pairs subst env)
| (Tunivar _, Tunivar _) ->
unify_univar t1' t2' !univar_pairs
| (_, _) ->
raise (Unify [])
end
with Unify trace -> raise ( Unify (Trace.diff t1 t2 :: trace) )
and eqtype_list rename type_pairs subst env tl1 tl2 =
if List.length tl1 <> List.length tl2 then
raise (Unify []);
List.iter2 (eqtype rename type_pairs subst env) tl1 tl2
and eqtype_fields rename type_pairs subst env ty1 ty2 =
let (fields1, rest1) = flatten_fields ty1 in
let (fields2, rest2) = flatten_fields ty2 in
(* First check if same row => already equal *)
let same_row =
rest1 == rest2 || TypePairs.mem type_pairs (rest1,rest2) ||
(rename && List.mem (rest1, rest2) !subst)
in
if same_row then () else
(* Try expansion, needed when called from Includecore.type_manifest *)
match expand_head_rigid env rest2 with
{desc=Tobject(ty2,_)} -> eqtype_fields rename type_pairs subst env ty1 ty2
| _ ->
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
eqtype rename type_pairs subst env rest1 rest2;
if (miss1 <> []) || (miss2 <> []) then raise (Unify []);
List.iter
(function (n, k1, t1, k2, t2) ->
eqtype_kind k1 k2;
try eqtype rename type_pairs subst env t1 t2 with Unify trace ->
let e = Trace.diff
(newty (Tfield(n, k1, t1, rest2)))
(newty (Tfield(n, k2, t2, rest2))) in
raise ( Unify ( e :: trace ) )
)
pairs
and eqtype_kind k1 k2 =
let k1 = field_kind_repr k1 in
let k2 = field_kind_repr k2 in
match k1, k2 with
(Fvar _, Fvar _)
| (Fpresent, Fpresent) -> ()
| _ -> raise (Unify [])
and eqtype_row rename type_pairs subst env row1 row2 =
(* Try expansion, needed when called from Includecore.type_manifest *)
match expand_head_rigid env (row_more row2) with
{desc=Tvariant row2} -> eqtype_row rename type_pairs subst env row1 row2
| _ ->
let row1 = row_repr row1 and row2 = row_repr row2 in
let r1, r2, pairs = merge_row_fields row1.row_fields row2.row_fields in
if row1.row_closed <> row2.row_closed
|| not row1.row_closed && (r1 <> [] || r2 <> [])
|| filter_row_fields false (r1 @ r2) <> []
then raise (Unify []);
if not (static_row row1) then
eqtype rename type_pairs subst env row1.row_more row2.row_more;
List.iter
(fun (_,f1,f2) ->
match row_field_repr f1, row_field_repr f2 with
Rpresent(Some t1), Rpresent(Some t2) ->
eqtype rename type_pairs subst env t1 t2
| Reither(c1, [], _, _), Reither(c2, [], _, _) when c1 = c2 ->
()
| Reither(c1, t1::tl1, _, _), Reither(c2, t2::tl2, _, _) when c1 = c2 ->
eqtype rename type_pairs subst env t1 t2;
if List.length tl1 = List.length tl2 then
(* if same length allow different types (meaning?) *)
List.iter2 (eqtype rename type_pairs subst env) tl1 tl2
else begin
(* otherwise everything must be equal *)
List.iter (eqtype rename type_pairs subst env t1) tl2;
List.iter (fun t1 -> eqtype rename type_pairs subst env t1 t2) tl1
end
| Rpresent None, Rpresent None -> ()
| Rabsent, Rabsent -> ()
| _ -> raise (Unify []))
pairs
(* Must empty univar_pairs first *)
let eqtype_list rename type_pairs subst env tl1 tl2 =
univar_pairs := [];
let snap = Btype.snapshot () in
Misc.try_finally
~always:(fun () -> backtrack snap)
(fun () -> eqtype_list rename type_pairs subst env tl1 tl2)
let eqtype rename type_pairs subst env t1 t2 =
eqtype_list rename type_pairs subst env [t1] [t2]
(* Two modes: with or without renaming of variables *)
let equal env rename tyl1 tyl2 =
try
eqtype_list rename (TypePairs.create 11) (ref []) env tyl1 tyl2; true
with
Unify _ -> false
(*************************)
(* Class type matching *)
(*************************)
type class_match_failure =
CM_Virtual_class
| CM_Parameter_arity_mismatch of int * int
| CM_Type_parameter_mismatch of Env.t * Unification_trace.t
| CM_Class_type_mismatch of Env.t * class_type * class_type
| CM_Parameter_mismatch of Env.t * Unification_trace.t
| CM_Val_type_mismatch of string * Env.t * Unification_trace.t
| CM_Meth_type_mismatch of string * Env.t * Unification_trace.t
| CM_Non_mutable_value of string
| CM_Non_concrete_value of string
| CM_Missing_value of string
| CM_Missing_method of string
| CM_Hide_public of string
| CM_Hide_virtual of string * string
| CM_Public_method of string
| CM_Private_method of string
| CM_Virtual_method of string
exception Failure of class_match_failure list
let rec moregen_clty trace type_pairs env cty1 cty2 =
try
match cty1, cty2 with
Cty_constr (_, _, cty1), _ ->
moregen_clty true type_pairs env cty1 cty2
| _, Cty_constr (_, _, cty2) ->
moregen_clty true type_pairs env cty1 cty2
| Cty_arrow (l1, ty1, cty1'), Cty_arrow (l2, ty2, cty2') when l1 = l2 ->
begin try moregen true type_pairs env ty1 ty2 with Unify trace ->
raise (Failure [CM_Parameter_mismatch (env, expand_trace env trace)])
end;
moregen_clty false type_pairs env cty1' cty2'
| Cty_signature sign1, Cty_signature sign2 ->
let ty1 = object_fields (repr sign1.csig_self) in
let ty2 = object_fields (repr sign2.csig_self) in
let (fields1, _rest1) = flatten_fields ty1
and (fields2, _rest2) = flatten_fields ty2 in
let (pairs, _miss1, _miss2) = associate_fields fields1 fields2 in
List.iter
(fun (lab, _k1, t1, _k2, t2) ->
begin try moregen true type_pairs env t1 t2 with Unify trace ->
raise (Failure [CM_Meth_type_mismatch
(lab, env, expand_trace env trace)])
end)
pairs;
Vars.iter
(fun lab (_mut, _v, ty) ->
let (_mut', _v', ty') = Vars.find lab sign1.csig_vars in
try moregen true type_pairs env ty' ty with Unify trace ->
raise (Failure [CM_Val_type_mismatch
(lab, env, expand_trace env trace)]))
sign2.csig_vars
| _ ->
raise (Failure [])
with
Failure error when trace || error = [] ->
raise (Failure (CM_Class_type_mismatch (env, cty1, cty2)::error))
let match_class_types ?(trace=true) env pat_sch subj_sch =
let type_pairs = TypePairs.create 53 in
let old_level = !current_level in
current_level := generic_level - 1;
(*
Generic variables are first duplicated with [instance]. So,
their levels are lowered to [generic_level - 1]. The subject is
then copied with [duplicate_type]. That way, its levels won't be
changed.
*)
let (_, subj_inst) = instance_class [] subj_sch in
let subj = duplicate_class_type subj_inst in
current_level := generic_level;
(* Duplicate generic variables *)
let (_, patt) = instance_class [] pat_sch in
let res =
let sign1 = signature_of_class_type patt in
let sign2 = signature_of_class_type subj in
let t1 = repr sign1.csig_self in
let t2 = repr sign2.csig_self in
TypePairs.add type_pairs (t1, t2) ();
let (fields1, rest1) = flatten_fields (object_fields t1)
and (fields2, rest2) = flatten_fields (object_fields t2) in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
let error =
List.fold_right
(fun (lab, k, _) err ->
let err =
let k = field_kind_repr k in
begin match k with
Fvar r -> set_kind r Fabsent; err
| _ -> CM_Hide_public lab::err
end
in
if lab = dummy_method || Concr.mem lab sign1.csig_concr then err
else CM_Hide_virtual ("method", lab) :: err)
miss1 []
in
let missing_method = List.map (fun (m, _, _) -> m) miss2 in
let error =
(List.map (fun m -> CM_Missing_method m) missing_method) @ error
in
(* Always succeeds *)
moregen true type_pairs env rest1 rest2;
let error =
List.fold_right
(fun (lab, k1, _t1, k2, _t2) err ->
try moregen_kind k1 k2; err with
Unify _ -> CM_Public_method lab::err)
pairs error
in
let error =
Vars.fold
(fun lab (mut, vr, _ty) err ->
try
let (mut', vr', _ty') = Vars.find lab sign1.csig_vars in
if mut = Mutable && mut' <> Mutable then
CM_Non_mutable_value lab::err
else if vr = Concrete && vr' <> Concrete then
CM_Non_concrete_value lab::err
else
err
with Not_found ->
CM_Missing_value lab::err)
sign2.csig_vars error
in
let error =
Vars.fold
(fun lab (_,vr,_) err ->
if vr = Virtual && not (Vars.mem lab sign2.csig_vars) then
CM_Hide_virtual ("instance variable", lab) :: err
else err)
sign1.csig_vars error
in
let error =
List.fold_right
(fun e l ->
if List.mem e missing_method then l else CM_Virtual_method e::l)
(Concr.elements (Concr.diff sign2.csig_concr sign1.csig_concr))
error
in
match error with
[] ->
begin try
moregen_clty trace type_pairs env patt subj;
[]
with
Failure r -> r
end
| error ->
CM_Class_type_mismatch (env, patt, subj)::error
in
current_level := old_level;
res
let rec equal_clty trace type_pairs subst env cty1 cty2 =
try
match cty1, cty2 with
Cty_constr (_, _, cty1), Cty_constr (_, _, cty2) ->
equal_clty true type_pairs subst env cty1 cty2
| Cty_constr (_, _, cty1), _ ->
equal_clty true type_pairs subst env cty1 cty2
| _, Cty_constr (_, _, cty2) ->
equal_clty true type_pairs subst env cty1 cty2
| Cty_arrow (l1, ty1, cty1'), Cty_arrow (l2, ty2, cty2') when l1 = l2 ->
begin try eqtype true type_pairs subst env ty1 ty2 with Unify trace ->
raise (Failure [CM_Parameter_mismatch (env, expand_trace env trace)])
end;
equal_clty false type_pairs subst env cty1' cty2'
| Cty_signature sign1, Cty_signature sign2 ->
let ty1 = object_fields (repr sign1.csig_self) in
let ty2 = object_fields (repr sign2.csig_self) in
let (fields1, _rest1) = flatten_fields ty1
and (fields2, _rest2) = flatten_fields ty2 in
let (pairs, _miss1, _miss2) = associate_fields fields1 fields2 in
List.iter
(fun (lab, _k1, t1, _k2, t2) ->
begin try eqtype true type_pairs subst env t1 t2 with
Unify trace ->
raise (Failure [CM_Meth_type_mismatch
(lab, env, expand_trace env trace)])
end)
pairs;
Vars.iter
(fun lab (_, _, ty) ->
let (_, _, ty') = Vars.find lab sign1.csig_vars in
try eqtype true type_pairs subst env ty' ty with Unify trace ->
raise (Failure [CM_Val_type_mismatch
(lab, env, expand_trace env trace)]))
sign2.csig_vars
| _ ->
raise
(Failure (if trace then []
else [CM_Class_type_mismatch (env, cty1, cty2)]))
with
Failure error when trace ->
raise (Failure (CM_Class_type_mismatch (env, cty1, cty2)::error))
let match_class_declarations env patt_params patt_type subj_params subj_type =
let type_pairs = TypePairs.create 53 in
let subst = ref [] in
let sign1 = signature_of_class_type patt_type in
let sign2 = signature_of_class_type subj_type in
let t1 = repr sign1.csig_self in
let t2 = repr sign2.csig_self in
TypePairs.add type_pairs (t1, t2) ();
let (fields1, rest1) = flatten_fields (object_fields t1)
and (fields2, rest2) = flatten_fields (object_fields t2) in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
let error =
List.fold_right
(fun (lab, k, _) err ->
let err =
let k = field_kind_repr k in
begin match k with
Fvar _ -> err
| _ -> CM_Hide_public lab::err
end
in
if Concr.mem lab sign1.csig_concr then err
else CM_Hide_virtual ("method", lab) :: err)
miss1 []
in
let missing_method = List.map (fun (m, _, _) -> m) miss2 in
let error =
(List.map (fun m -> CM_Missing_method m) missing_method) @ error
in
(* Always succeeds *)
eqtype true type_pairs subst env rest1 rest2;
let error =
List.fold_right
(fun (lab, k1, _t1, k2, _t2) err ->
let k1 = field_kind_repr k1 in
let k2 = field_kind_repr k2 in
match k1, k2 with
(Fvar _, Fvar _)
| (Fpresent, Fpresent) -> err
| (Fvar _, Fpresent) -> CM_Private_method lab::err
| (Fpresent, Fvar _) -> CM_Public_method lab::err
| _ -> assert false)
pairs error
in
let error =
Vars.fold
(fun lab (mut, vr, _ty) err ->
try
let (mut', vr', _ty') = Vars.find lab sign1.csig_vars in
if mut = Mutable && mut' <> Mutable then
CM_Non_mutable_value lab::err
else if vr = Concrete && vr' <> Concrete then
CM_Non_concrete_value lab::err
else
err
with Not_found ->
CM_Missing_value lab::err)
sign2.csig_vars error
in
let error =
Vars.fold
(fun lab (_,vr,_) err ->
if vr = Virtual && not (Vars.mem lab sign2.csig_vars) then
CM_Hide_virtual ("instance variable", lab) :: err
else err)
sign1.csig_vars error
in
let error =
List.fold_right
(fun e l ->
if List.mem e missing_method then l else CM_Virtual_method e::l)
(Concr.elements (Concr.diff sign2.csig_concr sign1.csig_concr))
error
in
match error with
[] ->
begin try
let lp = List.length patt_params in
let ls = List.length subj_params in
if lp <> ls then
raise (Failure [CM_Parameter_arity_mismatch (lp, ls)]);
List.iter2 (fun p s ->
try eqtype true type_pairs subst env p s with Unify trace ->
raise (Failure [CM_Type_parameter_mismatch
(env, expand_trace env trace)]))
patt_params subj_params;
(* old code: equal_clty false type_pairs subst env patt_type subj_type; *)
equal_clty false type_pairs subst env
(Cty_signature sign1) (Cty_signature sign2);
(* Use moregeneral for class parameters, need to recheck everything to
keeps relationships (PR#4824) *)
let clty_params =
List.fold_right (fun ty cty -> Cty_arrow (Labelled "*",ty,cty)) in
match_class_types ~trace:false env
(clty_params patt_params patt_type)
(clty_params subj_params subj_type)
with
Failure r -> r
end
| error ->
error
(***************)
(* Subtyping *)
(***************)
(**** Build a subtype of a given type. ****)
(* build_subtype:
[visited] traces traversed object and variant types
[loops] is a mapping from variables to variables, to reproduce
positive loops in a class type
[posi] true if the current variance is positive
[level] number of expansions/enlargement allowed on this branch *)
let warn = ref false (* whether double coercion might do better *)
let pred_expand n = if n mod 2 = 0 && n > 0 then pred n else n
let pred_enlarge n = if n mod 2 = 1 then pred n else n
type change = Unchanged | Equiv | Changed
let collect l = List.fold_left (fun c1 (_, c2) -> max c1 c2) Unchanged l
let rec filter_visited = function
[] -> []
| {desc=Tobject _|Tvariant _} :: _ as l -> l
| _ :: l -> filter_visited l
let memq_warn t visited =
if List.memq t visited then (warn := true; true) else false
let find_cltype_for_path env p =
let cl_abbr = Env.find_hash_type p env in
match cl_abbr.type_manifest with
Some ty ->
begin match (repr ty).desc with
Tobject(_,{contents=Some(p',_)}) when Path.same p p' -> cl_abbr, ty
| _ -> raise Not_found
end
| None -> assert false
let has_constr_row' env t =
has_constr_row (expand_abbrev env t)
let rec build_subtype env visited loops posi level t =
let t = repr t in
match t.desc with
Tvar _ ->
if posi then
try
let t' = List.assq t loops in
warn := true;
(t', Equiv)
with Not_found ->
(t, Unchanged)
else
(t, Unchanged)
| Tarrow(l, t1, t2, _) ->
if memq_warn t visited then (t, Unchanged) else
let visited = t :: visited in
let (t1', c1) = build_subtype env visited loops (not posi) level t1 in
let (t2', c2) = build_subtype env visited loops posi level t2 in
let c = max c1 c2 in
if c > Unchanged then (newty (Tarrow(l, t1', t2', Cok)), c)
else (t, Unchanged)
| Ttuple tlist ->
if memq_warn t visited then (t, Unchanged) else
let visited = t :: visited in
let tlist' =
List.map (build_subtype env visited loops posi level) tlist
in
let c = collect tlist' in
if c > Unchanged then (newty (Ttuple (List.map fst tlist')), c)
else (t, Unchanged)
| Tconstr(p, tl, abbrev)
when level > 0 && generic_abbrev env p && safe_abbrev env t
&& not (has_constr_row' env t) ->
let t' = repr (expand_abbrev env t) in
let level' = pred_expand level in
begin try match t'.desc with
Tobject _ when posi && not (opened_object t') ->
let cl_abbr, body = find_cltype_for_path env p in
let ty =
subst env !current_level Public abbrev None
cl_abbr.type_params tl body in
let ty = repr ty in
let ty1, tl1 =
match ty.desc with
Tobject(ty1,{contents=Some(p',tl1)}) when Path.same p p' ->
ty1, tl1
| _ -> raise Not_found
in
(* Fix PR#4505: do not set ty to Tvar when it appears in tl1,
as this occurrence might break the occur check.
XXX not clear whether this correct anyway... *)
if List.exists (deep_occur ty) tl1 then raise Not_found;
ty.desc <- Tvar None;
let t'' = newvar () in
let loops = (ty, t'') :: loops in
(* May discard [visited] as level is going down *)
let (ty1', c) =
build_subtype env [t'] loops posi (pred_enlarge level') ty1 in
assert (is_Tvar t'');
let nm =
if c > Equiv || deep_occur ty ty1' then None else Some(p,tl1) in
t''.desc <- Tobject (ty1', ref nm);
(try unify_var env ty t with Unify _ -> assert false);
(t'', Changed)
| _ -> raise Not_found
with Not_found ->
let (t'',c) = build_subtype env visited loops posi level' t' in
if c > Unchanged then (t'',c)
else (t, Unchanged)
end
| Tconstr(p, tl, _abbrev) ->
(* Must check recursion on constructors, since we do not always
expand them *)
if memq_warn t visited then (t, Unchanged) else
let visited = t :: visited in
begin try
let decl = Env.find_type p env in
if level = 0 && generic_abbrev env p && safe_abbrev env t
&& not (has_constr_row' env t)
then warn := true;
let tl' =
List.map2
(fun v t ->
let (co,cn) = Variance.get_upper v in
if cn then
if co then (t, Unchanged)
else build_subtype env visited loops (not posi) level t
else
if co then build_subtype env visited loops posi level t
else (newvar(), Changed))
decl.type_variance tl
in
let c = collect tl' in
if c > Unchanged then (newconstr p (List.map fst tl'), c)
else (t, Unchanged)
with Not_found ->
(t, Unchanged)
end
| Tvariant row ->
let row = row_repr row in
if memq_warn t visited || not (static_row row) then (t, Unchanged) else
let level' = pred_enlarge level in
let visited =
t :: if level' < level then [] else filter_visited visited in
let fields = filter_row_fields false row.row_fields in
let fields =
List.map
(fun (l,f as orig) -> match row_field_repr f with
Rpresent None ->
if posi then
(l, Reither(true, [], false, ref None)), Unchanged
else
orig, Unchanged
| Rpresent(Some t) ->
let (t', c) = build_subtype env visited loops posi level' t in
let f =
if posi && level > 0
then Reither(false, [t'], false, ref None)
else Rpresent(Some t')
in (l, f), c
| _ -> assert false)
fields
in
let c = collect fields in
let row =
{ row_fields = List.map fst fields; row_more = newvar();
row_bound = (); row_closed = posi; row_fixed = None;
row_name = if c > Unchanged then None else row.row_name }
in
(newty (Tvariant row), Changed)
| Tobject (t1, _) ->
if memq_warn t visited || opened_object t1 then (t, Unchanged) else
let level' = pred_enlarge level in
let visited =
t :: if level' < level then [] else filter_visited visited in
let (t1', c) = build_subtype env visited loops posi level' t1 in
if c > Unchanged then (newty (Tobject (t1', ref None)), c)
else (t, Unchanged)
| Tfield(s, _, t1, t2) (* Always present *) ->
let (t1', c1) = build_subtype env visited loops posi level t1 in
let (t2', c2) = build_subtype env visited loops posi level t2 in
let c = max c1 c2 in
if c > Unchanged then (newty (Tfield(s, Fpresent, t1', t2')), c)
else (t, Unchanged)
| Tnil ->
if posi then
let v = newvar () in
(v, Changed)
else begin
warn := true;
(t, Unchanged)
end
| Tsubst _ | Tlink _ ->
assert false
| Tpoly(t1, tl) ->
let (t1', c) = build_subtype env visited loops posi level t1 in
if c > Unchanged then (newty (Tpoly(t1', tl)), c)
else (t, Unchanged)
| Tunivar _ | Tpackage _ ->
(t, Unchanged)
let enlarge_type env ty =
warn := false;
(* [level = 4] allows 2 expansions involving objects/variants *)
let (ty', _) = build_subtype env [] [] true 4 ty in
(ty', !warn)
(**** Check whether a type is a subtype of another type. ****)
(*
During the traversal, a trace of visited types is maintained. It
is printed in case of error.
Constraints (pairs of types that must be equals) are accumulated
rather than being enforced straight. Indeed, the result would
otherwise depend on the order in which these constraints are
enforced.
A function enforcing these constraints is returned. That way, type
variables can be bound to their actual values before this function
is called (see Typecore).
Only well-defined abbreviations are expanded (hence the tests
[generic_abbrev ...]).
*)
let subtypes = TypePairs.create 17
let subtype_error env trace =
raise (Subtype (expand_trace env (List.rev trace), []))
let rec subtype_rec env trace t1 t2 cstrs =
let t1 = repr t1 in
let t2 = repr t2 in
if t1 == t2 then cstrs else
begin try
TypePairs.find subtypes (t1, t2);
cstrs
with Not_found ->
TypePairs.add subtypes (t1, t2) ();
match (t1.desc, t2.desc) with
(Tvar _, _) | (_, Tvar _) ->
(trace, t1, t2, !univar_pairs)::cstrs
| (Tarrow(l1, t1, u1, _), Tarrow(l2, t2, u2, _)) when l1 = l2
|| !Clflags.classic && not (is_optional l1 || is_optional l2) ->
let cstrs = subtype_rec env (Trace.diff t2 t1::trace) t2 t1 cstrs in
subtype_rec env (Trace.diff u1 u2::trace) u1 u2 cstrs
| (Ttuple tl1, Ttuple tl2) ->
subtype_list env trace tl1 tl2 cstrs
| (Tconstr(p1, [], _), Tconstr(p2, [], _)) when Path.same p1 p2 ->
cstrs
| (Tconstr(p1, _tl1, _abbrev1), _)
when generic_abbrev env p1 && safe_abbrev env t1 ->
subtype_rec env trace (expand_abbrev env t1) t2 cstrs
| (_, Tconstr(p2, _tl2, _abbrev2))
when generic_abbrev env p2 && safe_abbrev env t2 ->
subtype_rec env trace t1 (expand_abbrev env t2) cstrs
| (Tconstr(p1, tl1, _), Tconstr(p2, tl2, _)) when Path.same p1 p2 ->
begin try
let decl = Env.find_type p1 env in
List.fold_left2
(fun cstrs v (t1, t2) ->
let (co, cn) = Variance.get_upper v in
if co then
if cn then
(trace, newty2 t1.level (Ttuple[t1]),
newty2 t2.level (Ttuple[t2]), !univar_pairs) :: cstrs
else subtype_rec env (Trace.diff t1 t2::trace) t1 t2 cstrs
else
if cn then subtype_rec env (Trace.diff t2 t1::trace) t2 t1 cstrs
else cstrs)
cstrs decl.type_variance (List.combine tl1 tl2)
with Not_found ->
(trace, t1, t2, !univar_pairs)::cstrs
end
| (Tconstr(p1, _, _), _) when generic_private_abbrev env p1 ->
subtype_rec env trace (expand_abbrev_opt env t1) t2 cstrs
(* | (_, Tconstr(p2, _, _)) when generic_private_abbrev false env p2 ->
subtype_rec env trace t1 (expand_abbrev_opt env t2) cstrs *)
| (Tobject (f1, _), Tobject (f2, _))
when is_Tvar (object_row f1) && is_Tvar (object_row f2) ->
(* Same row variable implies same object. *)
(trace, t1, t2, !univar_pairs)::cstrs
| (Tobject (f1, _), Tobject (f2, _)) ->
subtype_fields env trace f1 f2 cstrs
| (Tvariant row1, Tvariant row2) ->
begin try
subtype_row env trace row1 row2 cstrs
with Exit ->
(trace, t1, t2, !univar_pairs)::cstrs
end
| (Tpoly (u1, []), Tpoly (u2, [])) ->
subtype_rec env trace u1 u2 cstrs
| (Tpoly (u1, tl1), Tpoly (u2, [])) ->
let _, u1' = instance_poly false tl1 u1 in
subtype_rec env trace u1' u2 cstrs
| (Tpoly (u1, tl1), Tpoly (u2,tl2)) ->
begin try
enter_poly env univar_pairs u1 tl1 u2 tl2
(fun t1 t2 -> subtype_rec env trace t1 t2 cstrs)
with Unify _ ->
(trace, t1, t2, !univar_pairs)::cstrs
end
| (Tpackage (p1, nl1, tl1), Tpackage (p2, nl2, tl2)) ->
begin try
let ntl1 = complete_type_list env nl2 t1.level (Mty_ident p1) nl1 tl1
and ntl2 = complete_type_list env nl1 t2.level (Mty_ident p2) nl2 tl2
~allow_absent:true in
let cstrs' =
List.map
(fun (n2,t2) -> (trace, List.assoc n2 ntl1, t2, !univar_pairs))
ntl2
in
if eq_package_path env p1 p2 then cstrs' @ cstrs
else begin
(* need to check module subtyping *)
let snap = Btype.snapshot () in
try
List.iter (fun (_, t1, t2, _) -> unify env t1 t2) cstrs';
if !package_subtype env p1 nl1 tl1 p2 nl2 tl2
then (Btype.backtrack snap; cstrs' @ cstrs)
else raise (Unify [])
with Unify _ ->
Btype.backtrack snap; raise Not_found
end
with Not_found ->
(trace, t1, t2, !univar_pairs)::cstrs
end
| (_, _) ->
(trace, t1, t2, !univar_pairs)::cstrs
end
and subtype_list env trace tl1 tl2 cstrs =
if List.length tl1 <> List.length tl2 then
subtype_error env trace;
List.fold_left2
(fun cstrs t1 t2 -> subtype_rec env (Trace.diff t1 t2::trace) t1 t2 cstrs)
cstrs tl1 tl2
and subtype_fields env trace ty1 ty2 cstrs =
(* Assume that either rest1 or rest2 is not Tvar *)
let (fields1, rest1) = flatten_fields ty1 in
let (fields2, rest2) = flatten_fields ty2 in
let (pairs, miss1, miss2) = associate_fields fields1 fields2 in
let cstrs =
if rest2.desc = Tnil then cstrs else
if miss1 = [] then
subtype_rec env (Trace.diff rest1 rest2::trace) rest1 rest2 cstrs
else
(trace, build_fields (repr ty1).level miss1 rest1, rest2,
!univar_pairs) :: cstrs
in
let cstrs =
if miss2 = [] then cstrs else
(trace, rest1, build_fields (repr ty2).level miss2 (newvar ()),
!univar_pairs) :: cstrs
in
List.fold_left
(fun cstrs (_, _k1, t1, _k2, t2) ->
(* These fields are always present *)
subtype_rec env (Trace.diff t1 t2::trace) t1 t2 cstrs)
cstrs pairs
and subtype_row env trace row1 row2 cstrs =
let row1 = row_repr row1 and row2 = row_repr row2 in
let r1, r2, pairs =
merge_row_fields row1.row_fields row2.row_fields in
let r1 = if row2.row_closed then filter_row_fields false r1 else r1 in
let r2 = if row1.row_closed then filter_row_fields false r2 else r2 in
let more1 = repr row1.row_more
and more2 = repr row2.row_more in
match more1.desc, more2.desc with
Tconstr(p1,_,_), Tconstr(p2,_,_) when Path.same p1 p2 ->
subtype_rec env (Trace.diff more1 more2::trace) more1 more2 cstrs
| (Tvar _|Tconstr _|Tnil), (Tvar _|Tconstr _|Tnil)
when row1.row_closed && r1 = [] ->
List.fold_left
(fun cstrs (_,f1,f2) ->
match row_field_repr f1, row_field_repr f2 with
(Rpresent None|Reither(true,_,_,_)), Rpresent None ->
cstrs
| Rpresent(Some t1), Rpresent(Some t2) ->
subtype_rec env (Trace.diff t1 t2::trace) t1 t2 cstrs
| Reither(false, t1::_, _, _), Rpresent(Some t2) ->
subtype_rec env (Trace.diff t1 t2::trace) t1 t2 cstrs
| Rabsent, _ -> cstrs
| _ -> raise Exit)
cstrs pairs
| Tunivar _, Tunivar _
when row1.row_closed = row2.row_closed && r1 = [] && r2 = [] ->
let cstrs =
subtype_rec env (Trace.diff more1 more2::trace) more1 more2 cstrs in
List.fold_left
(fun cstrs (_,f1,f2) ->
match row_field_repr f1, row_field_repr f2 with
Rpresent None, Rpresent None
| Reither(true,[],_,_), Reither(true,[],_,_)
| Rabsent, Rabsent ->
cstrs
| Rpresent(Some t1), Rpresent(Some t2)
| Reither(false,[t1],_,_), Reither(false,[t2],_,_) ->
subtype_rec env (Trace.diff t1 t2::trace) t1 t2 cstrs
| _ -> raise Exit)
cstrs pairs
| _ ->
raise Exit
let subtype env ty1 ty2 =
TypePairs.clear subtypes;
univar_pairs := [];
(* Build constraint set. *)
let cstrs = subtype_rec env [Trace.diff ty1 ty2] ty1 ty2 [] in
TypePairs.clear subtypes;
(* Enforce constraints. *)
function () ->
List.iter
(function (trace0, t1, t2, pairs) ->
try unify_pairs (ref env) t1 t2 pairs with Unify trace ->
raise (Subtype (expand_trace env (List.rev trace0),
List.tl trace)))
(List.rev cstrs)
(*******************)
(* Miscellaneous *)
(*******************)
(* Utility for printing. The resulting type is not used in computation. *)
let rec unalias_object ty =
let ty = repr ty in
match ty.desc with
Tfield (s, k, t1, t2) ->
newty2 ty.level (Tfield (s, k, t1, unalias_object t2))
| Tvar _ | Tnil ->
newty2 ty.level ty.desc
| Tunivar _ ->
ty
| Tconstr _ ->
newvar2 ty.level
| _ ->
assert false
let unalias ty =
let ty = repr ty in
match ty.desc with
Tvar _ | Tunivar _ ->
ty
| Tvariant row ->
let row = row_repr row in
let more = row.row_more in
newty2 ty.level
(Tvariant {row with row_more = newty2 more.level more.desc})
| Tobject (ty, nm) ->
newty2 ty.level (Tobject (unalias_object ty, nm))
| _ ->
newty2 ty.level ty.desc
(* Return the arity (as for curried functions) of the given type. *)
let rec arity ty =
match (repr ty).desc with
Tarrow(_, _t1, t2, _) -> 1 + arity t2
| _ -> 0
(* Check whether an abbreviation expands to itself. *)
let cyclic_abbrev env id ty =
let rec check_cycle seen ty =
let ty = repr ty in
match ty.desc with
Tconstr (p, _tl, _abbrev) ->
p = Path.Pident id || List.memq ty seen ||
begin try
check_cycle (ty :: seen) (expand_abbrev_opt env ty)
with
Cannot_expand -> false
| Unify _ -> true
end
| _ ->
false
in check_cycle [] ty
(* Check for non-generalizable type variables *)
exception Non_closed0
let visited = ref TypeSet.empty
let rec closed_schema_rec env ty =
let ty = repr ty in
if TypeSet.mem ty !visited then () else begin
visited := TypeSet.add ty !visited;
match ty.desc with
Tvar _ when ty.level <> generic_level ->
raise Non_closed0
| Tconstr _ ->
let old = !visited in
begin try iter_type_expr (closed_schema_rec env) ty
with Non_closed0 -> try
visited := old;
closed_schema_rec env (try_expand_head try_expand_safe env ty)
with Cannot_expand ->
raise Non_closed0
end
| Tfield(_, kind, t1, t2) ->
if field_kind_repr kind = Fpresent then
closed_schema_rec env t1;
closed_schema_rec env t2
| Tvariant row ->
let row = row_repr row in
iter_row (closed_schema_rec env) row;
if not (static_row row) then closed_schema_rec env row.row_more
| _ ->
iter_type_expr (closed_schema_rec env) ty
end
(* Return whether all variables of type [ty] are generic. *)
let closed_schema env ty =
visited := TypeSet.empty;
try
closed_schema_rec env ty;
visited := TypeSet.empty;
true
with Non_closed0 ->
visited := TypeSet.empty;
false
(* Normalize a type before printing, saving... *)
(* Cannot use mark_type because deep_occur uses it too *)
let rec normalize_type_rec env visited ty =
let ty = repr ty in
if not (TypeSet.mem ty !visited) then begin
visited := TypeSet.add ty !visited;
let tm = row_of_type ty in
begin if not (is_Tconstr ty) && is_constr_row ~allow_ident:false tm then
match tm.desc with (* PR#7348 *)
Tconstr (Path.Pdot(m,i), tl, _abbrev) ->
let i' = String.sub i 0 (String.length i - 4) in
set_type_desc ty (Tconstr(Path.Pdot(m,i'), tl, ref Mnil))
| _ -> assert false
else match ty.desc with
| Tvariant row ->
let row = row_repr row in
let fields = List.map
(fun (l,f0) ->
let f = row_field_repr f0 in l,
match f with Reither(b, ty::(_::_ as tyl), m, e) ->
let tyl' =
List.fold_left
(fun tyl ty ->
if List.exists (fun ty' -> equal env false [ty] [ty']) tyl
then tyl else ty::tyl)
[ty] tyl
in
if f != f0 || List.length tyl' < List.length tyl then
Reither(b, List.rev tyl', m, e)
else f
| _ -> f)
row.row_fields in
let fields =
List.sort (fun (p,_) (q,_) -> compare p q)
(List.filter (fun (_,fi) -> fi <> Rabsent) fields) in
set_type_desc ty (Tvariant {row with row_fields = fields})
| Tobject (fi, nm) ->
begin match !nm with
| None -> ()
| Some (n, v :: l) ->
if deep_occur ty (newgenty (Ttuple l)) then
(* The abbreviation may be hiding something, so remove it *)
set_name nm None
else let v' = repr v in
begin match v'.desc with
| Tvar _ | Tunivar _ ->
if v' != v then set_name nm (Some (n, v' :: l))
| Tnil ->
set_type_desc ty (Tconstr (n, l, ref Mnil))
| _ -> set_name nm None
end
| _ ->
fatal_error "Ctype.normalize_type_rec"
end;
let fi = repr fi in
if fi.level < lowest_level then () else
let fields, row = flatten_fields fi in
let fi' = build_fields fi.level fields row in
set_type_desc fi fi'.desc
| _ -> ()
end;
iter_type_expr (normalize_type_rec env visited) ty
end
let normalize_type env ty =
normalize_type_rec env (ref TypeSet.empty) ty
(*************************)
(* Remove dependencies *)
(*************************)
(*
Variables are left unchanged. Other type nodes are duplicated, with
levels set to generic level.
We cannot use Tsubst here, because unification may be called by
expand_abbrev.
*)
let nondep_hash = TypeHash.create 47
let nondep_variants = TypeHash.create 17
let clear_hash () =
TypeHash.clear nondep_hash; TypeHash.clear nondep_variants
let rec nondep_type_rec ?(expand_private=false) env ids ty =
let expand_abbrev env t =
if expand_private then expand_abbrev_opt env t else expand_abbrev env t
in
match ty.desc with
Tvar _ | Tunivar _ -> ty
| Tlink ty -> nondep_type_rec env ids ty
| _ -> try TypeHash.find nondep_hash ty
with Not_found ->
let ty' = newgenvar () in (* Stub *)
TypeHash.add nondep_hash ty ty';
ty'.desc <-
begin match ty.desc with
| Tconstr(p, tl, _abbrev) ->
begin try
(* First, try keeping the same type constructor p *)
match Path.find_free_opt ids p with
| Some id ->
raise (Nondep_cannot_erase id)
| None ->
Tconstr(p, List.map (nondep_type_rec env ids) tl, ref Mnil)
with (Nondep_cannot_erase _) as exn ->
(* If that doesn't work, try expanding abbrevs *)
try Tlink (nondep_type_rec ~expand_private env ids
(expand_abbrev env (newty2 ty.level ty.desc)))
(*
The [Tlink] is important. The expanded type may be a
variable, or may not be completely copied yet
(recursive type), so one cannot just take its
description.
*)
with Cannot_expand | Unify _ -> raise exn
end
| Tpackage(p, nl, tl) when Path.exists_free ids p ->
let p' = normalize_package_path env p in
begin match Path.find_free_opt ids p' with
| Some id -> raise (Nondep_cannot_erase id)
| None -> Tpackage (p', nl, List.map (nondep_type_rec env ids) tl)
end
| Tobject (t1, name) ->
Tobject (nondep_type_rec env ids t1,
ref (match !name with
None -> None
| Some (p, tl) ->
if Path.exists_free ids p then None
else Some (p, List.map (nondep_type_rec env ids) tl)))
| Tvariant row ->
let row = row_repr row in
let more = repr row.row_more in
(* We must keep sharing according to the row variable *)
begin try
let ty2 = TypeHash.find nondep_variants more in
(* This variant type has been already copied *)
TypeHash.add nondep_hash ty ty2;
Tlink ty2
with Not_found ->
(* Register new type first for recursion *)
TypeHash.add nondep_variants more ty';
let static = static_row row in
let more' = if static then newgenty Tnil else more in
(* Return a new copy *)
let row =
copy_row (nondep_type_rec env ids) true row true more' in
match row.row_name with
Some (p, _tl) when Path.exists_free ids p ->
Tvariant {row with row_name = None}
| _ -> Tvariant row
end
| _ -> copy_type_desc (nondep_type_rec env ids) ty.desc
end;
ty'
let nondep_type env id ty =
try
let ty' = nondep_type_rec env id ty in
clear_hash ();
ty'
with Nondep_cannot_erase _ as exn ->
clear_hash ();
raise exn
let () = nondep_type' := nondep_type
(* Preserve sharing inside type declarations. *)
let nondep_type_decl env mid is_covariant decl =
try
let params = List.map (nondep_type_rec env mid) decl.type_params in
let tk =
try map_kind (nondep_type_rec env mid) decl.type_kind
with Nondep_cannot_erase _ when is_covariant -> Type_abstract
and tm, priv =
match decl.type_manifest with
| None -> None, decl.type_private
| Some ty ->
try Some (nondep_type_rec env mid ty), decl.type_private
with Nondep_cannot_erase _ when is_covariant ->
clear_hash ();
try Some (nondep_type_rec ~expand_private:true env mid ty),
Private
with Nondep_cannot_erase _ ->
None, decl.type_private
in
clear_hash ();
let priv =
match tm with
| Some ty when Btype.has_constr_row ty -> Private
| _ -> priv
in
{ type_params = params;
type_arity = decl.type_arity;
type_kind = tk;
type_manifest = tm;
type_private = priv;
type_variance = decl.type_variance;
type_separability = decl.type_separability;
type_is_newtype = false;
type_expansion_scope = Btype.lowest_level;
type_loc = decl.type_loc;
type_attributes = decl.type_attributes;
type_immediate = decl.type_immediate;
type_unboxed = decl.type_unboxed;
type_uid = decl.type_uid;
}
with Nondep_cannot_erase _ as exn ->
clear_hash ();
raise exn
(* Preserve sharing inside extension constructors. *)
let nondep_extension_constructor env ids ext =
try
let type_path, type_params =
match Path.find_free_opt ids ext.ext_type_path with
| Some id ->
begin
let ty =
newgenty (Tconstr(ext.ext_type_path, ext.ext_type_params, ref Mnil))
in
let ty' = nondep_type_rec env ids ty in
match (repr ty').desc with
Tconstr(p, tl, _) -> p, tl
| _ -> raise (Nondep_cannot_erase id)
end
| None ->
let type_params =
List.map (nondep_type_rec env ids) ext.ext_type_params
in
ext.ext_type_path, type_params
in
let args = map_type_expr_cstr_args (nondep_type_rec env ids) ext.ext_args in
let ret_type = Option.map (nondep_type_rec env ids) ext.ext_ret_type in
clear_hash ();
{ ext_type_path = type_path;
ext_type_params = type_params;
ext_args = args;
ext_ret_type = ret_type;
ext_private = ext.ext_private;
ext_attributes = ext.ext_attributes;
ext_loc = ext.ext_loc;
ext_uid = ext.ext_uid;
}
with Nondep_cannot_erase _ as exn ->
clear_hash ();
raise exn
(* Preserve sharing inside class types. *)
let nondep_class_signature env id sign =
{ csig_self = nondep_type_rec env id sign.csig_self;
csig_vars =
Vars.map (function (m, v, t) -> (m, v, nondep_type_rec env id t))
sign.csig_vars;
csig_concr = sign.csig_concr;
csig_inher =
List.map (fun (p,tl) -> (p, List.map (nondep_type_rec env id) tl))
sign.csig_inher }
let rec nondep_class_type env ids =
function
Cty_constr (p, _, cty) when Path.exists_free ids p ->
nondep_class_type env ids cty
| Cty_constr (p, tyl, cty) ->
Cty_constr (p, List.map (nondep_type_rec env ids) tyl,
nondep_class_type env ids cty)
| Cty_signature sign ->
Cty_signature (nondep_class_signature env ids sign)
| Cty_arrow (l, ty, cty) ->
Cty_arrow (l, nondep_type_rec env ids ty, nondep_class_type env ids cty)
let nondep_class_declaration env ids decl =
assert (not (Path.exists_free ids decl.cty_path));
let decl =
{ cty_params = List.map (nondep_type_rec env ids) decl.cty_params;
cty_variance = decl.cty_variance;
cty_type = nondep_class_type env ids decl.cty_type;
cty_path = decl.cty_path;
cty_new =
begin match decl.cty_new with
None -> None
| Some ty -> Some (nondep_type_rec env ids ty)
end;
cty_loc = decl.cty_loc;
cty_attributes = decl.cty_attributes;
cty_uid = decl.cty_uid;
}
in
clear_hash ();
decl
let nondep_cltype_declaration env ids decl =
assert (not (Path.exists_free ids decl.clty_path));
let decl =
{ clty_params = List.map (nondep_type_rec env ids) decl.clty_params;
clty_variance = decl.clty_variance;
clty_type = nondep_class_type env ids decl.clty_type;
clty_path = decl.clty_path;
clty_loc = decl.clty_loc;
clty_attributes = decl.clty_attributes;
clty_uid = decl.clty_uid;
}
in
clear_hash ();
decl
(* collapse conjunctive types in class parameters *)
let rec collapse_conj env visited ty =
let ty = repr ty in
if List.memq ty visited then () else
let visited = ty :: visited in
match ty.desc with
Tvariant row ->
let row = row_repr row in
List.iter
(fun (_l,fi) ->
match row_field_repr fi with
Reither (c, t1::(_::_ as tl), m, e) ->
List.iter (unify env t1) tl;
set_row_field e (Reither (c, [t1], m, ref None))
| _ ->
())
row.row_fields;
iter_row (collapse_conj env visited) row
| _ ->
iter_type_expr (collapse_conj env visited) ty
let collapse_conj_params env params =
List.iter (collapse_conj env []) params
let same_constr env t1 t2 =
let t1 = expand_head env t1 in
let t2 = expand_head env t2 in
match t1.desc, t2.desc with
| Tconstr (p1, _, _), Tconstr (p2, _, _) -> Path.same p1 p2
| _ -> false
let () =
Env.same_constr := same_constr
let is_immediate = function
| Type_immediacy.Unknown -> false
| Type_immediacy.Always -> true
| Type_immediacy.Always_on_64bits ->
(* In bytecode, we don't know at compile time whether we are
targeting 32 or 64 bits. *)
!Clflags.native_code && Sys.word_size = 64
let immediacy env typ =
match (repr typ).desc with
| Tconstr(p, _args, _abbrev) ->
begin try
let type_decl = Env.find_type p env in
type_decl.type_immediate
with Not_found -> Type_immediacy.Unknown
(* This can happen due to e.g. missing -I options,
causing some .cmi files to be unavailable.
Maybe we should emit a warning. *)
end
| Tvariant row ->
let row = Btype.row_repr row in
(* if all labels are devoid of arguments, not a pointer *)
if
not row.row_closed
|| List.exists
(function
| _, (Rpresent (Some _) | Reither (false, _, _, _)) -> true
| _ -> false)
row.row_fields
then
Type_immediacy.Unknown
else
Type_immediacy.Always
| _ -> Type_immediacy.Unknown
let maybe_pointer_type env typ = not (is_immediate (immediacy env typ))