ocaml/stdlib/float.mli

840 lines
33 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* Nicolas Ojeda Bar, LexiFi *)
(* *)
(* Copyright 2018 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* NOTE:
If this file is float.template.mli, run tools/sync_stdlib_docs after editing
it to generate float.mli.
If this file is float.mli, do not edit it directly -- edit
templates/float.template.mli instead.
*)
(** {1 Floating-point arithmetic}
OCaml's floating-point numbers follow the
IEEE 754 standard, using double precision (64 bits) numbers.
Floating-point operations never raise an exception on overflow,
underflow, division by zero, etc. Instead, special IEEE numbers
are returned as appropriate, such as [infinity] for [1.0 /. 0.0],
[neg_infinity] for [-1.0 /. 0.0], and [nan] ('not a number')
for [0.0 /. 0.0]. These special numbers then propagate through
floating-point computations as expected: for instance,
[1.0 /. infinity] is [0.0], basic arithmetic operations
([+.], [-.], [*.], [/.]) with [nan] as an argument return [nan], ...
@since 4.07.0
*)
val zero : float
(** The floating point 0.
@since 4.08.0 *)
val one : float
(** The floating-point 1.
@since 4.08.0 *)
val minus_one : float
(** The floating-point -1.
@since 4.08.0 *)
external neg : float -> float = "%negfloat"
(** Unary negation. *)
external add : float -> float -> float = "%addfloat"
(** Floating-point addition. *)
external sub : float -> float -> float = "%subfloat"
(** Floating-point subtraction. *)
external mul : float -> float -> float = "%mulfloat"
(** Floating-point multiplication. *)
external div : float -> float -> float = "%divfloat"
(** Floating-point division. *)
external fma : float -> float -> float -> float =
"caml_fma_float" "caml_fma" [@@unboxed] [@@noalloc]
(** [fma x y z] returns [x * y + z], with a best effort for computing
this expression with a single rounding, using either hardware
instructions (providing full IEEE compliance) or a software
emulation. Note: since software emulation of the fma is costly,
make sure that you are using hardware fma support if performance
matters. @since 4.08.0 *)
external rem : float -> float -> float = "caml_fmod_float" "fmod"
[@@unboxed] [@@noalloc]
(** [rem a b] returns the remainder of [a] with respect to [b]. The returned
value is [a -. n *. b], where [n] is the quotient [a /. b] rounded towards
zero to an integer. *)
val succ : float -> float
(** [succ x] returns the floating point number right after [x] i.e.,
the smallest floating-point number greater than [x]. See also
{!next_after}.
@since 4.08.0 *)
val pred : float -> float
(** [pred x] returns the floating-point number right before [x] i.e.,
the greatest floating-point number smaller than [x]. See also
{!next_after}.
@since 4.08.0 *)
external abs : float -> float = "%absfloat"
(** [abs f] returns the absolute value of [f]. *)
val infinity : float
(** Positive infinity. *)
val neg_infinity : float
(** Negative infinity. *)
val nan : float
(** A special floating-point value denoting the result of an
undefined operation such as [0.0 /. 0.0]. Stands for
'not a number'. Any floating-point operation with [nan] as
argument returns [nan] as result. As for floating-point comparisons,
[=], [<], [<=], [>] and [>=] return [false] and [<>] returns [true]
if one or both of their arguments is [nan]. *)
val pi : float
(** The constant pi. *)
val max_float : float
(** The largest positive finite value of type [float]. *)
val min_float : float
(** The smallest positive, non-zero, non-denormalized value of type [float]. *)
val epsilon : float
(** The difference between [1.0] and the smallest exactly representable
floating-point number greater than [1.0]. *)
val is_finite : float -> bool
(** [is_finite x] is [true] iff [x] is finite i.e., not infinite and
not {!nan}.
@since 4.08.0 *)
val is_infinite : float -> bool
(** [is_infinite x] is [true] iff [x] is {!infinity} or {!neg_infinity}.
@since 4.08.0 *)
val is_nan : float -> bool
(** [is_nan x] is [true] iff [x] is not a number (see {!nan}).
@since 4.08.0 *)
val is_integer : float -> bool
(** [is_integer x] is [true] iff [x] is an integer.
@since 4.08.0 *)
external of_int : int -> float = "%floatofint"
(** Convert an integer to floating-point. *)
external to_int : float -> int = "%intoffloat"
(** Truncate the given floating-point number to an integer.
The result is unspecified if the argument is [nan] or falls outside the
range of representable integers. *)
external of_string : string -> float = "caml_float_of_string"
(** Convert the given string to a float. The string is read in decimal
(by default) or in hexadecimal (marked by [0x] or [0X]).
The format of decimal floating-point numbers is
[ [-] dd.ddd (e|E) [+|-] dd ], where [d] stands for a decimal digit.
The format of hexadecimal floating-point numbers is
[ [-] 0(x|X) hh.hhh (p|P) [+|-] dd ], where [h] stands for an
hexadecimal digit and [d] for a decimal digit.
In both cases, at least one of the integer and fractional parts must be
given; the exponent part is optional.
The [_] (underscore) character can appear anywhere in the string
and is ignored.
Depending on the execution platforms, other representations of
floating-point numbers can be accepted, but should not be relied upon.
@raise Failure if the given string is not a valid
representation of a float. *)
val of_string_opt: string -> float option
(** Same as [of_string], but returns [None] instead of raising. *)
val to_string : float -> string
(** Return the string representation of a floating-point number. *)
type fpclass = Stdlib.fpclass =
FP_normal (** Normal number, none of the below *)
| FP_subnormal (** Number very close to 0.0, has reduced precision *)
| FP_zero (** Number is 0.0 or -0.0 *)
| FP_infinite (** Number is positive or negative infinity *)
| FP_nan (** Not a number: result of an undefined operation *)
(** The five classes of floating-point numbers, as determined by
the {!classify_float} function. *)
external classify_float : (float [@unboxed]) -> fpclass =
"caml_classify_float" "caml_classify_float_unboxed" [@@noalloc]
(** Return the class of the given floating-point number:
normal, subnormal, zero, infinite, or not a number. *)
external pow : float -> float -> float = "caml_power_float" "pow"
[@@unboxed] [@@noalloc]
(** Exponentiation. *)
external sqrt : float -> float = "caml_sqrt_float" "sqrt"
[@@unboxed] [@@noalloc]
(** Square root. *)
external exp : float -> float = "caml_exp_float" "exp" [@@unboxed] [@@noalloc]
(** Exponential. *)
external log : float -> float = "caml_log_float" "log" [@@unboxed] [@@noalloc]
(** Natural logarithm. *)
external log10 : float -> float = "caml_log10_float" "log10"
[@@unboxed] [@@noalloc]
(** Base 10 logarithm. *)
external expm1 : float -> float = "caml_expm1_float" "caml_expm1"
[@@unboxed] [@@noalloc]
(** [expm1 x] computes [exp x -. 1.0], giving numerically-accurate results
even if [x] is close to [0.0]. *)
external log1p : float -> float = "caml_log1p_float" "caml_log1p"
[@@unboxed] [@@noalloc]
(** [log1p x] computes [log(1.0 +. x)] (natural logarithm),
giving numerically-accurate results even if [x] is close to [0.0]. *)
external cos : float -> float = "caml_cos_float" "cos" [@@unboxed] [@@noalloc]
(** Cosine. Argument is in radians. *)
external sin : float -> float = "caml_sin_float" "sin" [@@unboxed] [@@noalloc]
(** Sine. Argument is in radians. *)
external tan : float -> float = "caml_tan_float" "tan" [@@unboxed] [@@noalloc]
(** Tangent. Argument is in radians. *)
external acos : float -> float = "caml_acos_float" "acos"
[@@unboxed] [@@noalloc]
(** Arc cosine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [0.0] and [pi]. *)
external asin : float -> float = "caml_asin_float" "asin"
[@@unboxed] [@@noalloc]
(** Arc sine. The argument must fall within the range [[-1.0, 1.0]].
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan : float -> float = "caml_atan_float" "atan"
[@@unboxed] [@@noalloc]
(** Arc tangent.
Result is in radians and is between [-pi/2] and [pi/2]. *)
external atan2 : float -> float -> float = "caml_atan2_float" "atan2"
[@@unboxed] [@@noalloc]
(** [atan2 y x] returns the arc tangent of [y /. x]. The signs of [x]
and [y] are used to determine the quadrant of the result.
Result is in radians and is between [-pi] and [pi]. *)
external hypot : float -> float -> float = "caml_hypot_float" "caml_hypot"
[@@unboxed] [@@noalloc]
(** [hypot x y] returns [sqrt(x *. x + y *. y)], that is, the length
of the hypotenuse of a right-angled triangle with sides of length
[x] and [y], or, equivalently, the distance of the point [(x,y)]
to origin. If one of [x] or [y] is infinite, returns [infinity]
even if the other is [nan]. *)
external cosh : float -> float = "caml_cosh_float" "cosh"
[@@unboxed] [@@noalloc]
(** Hyperbolic cosine. Argument is in radians. *)
external sinh : float -> float = "caml_sinh_float" "sinh"
[@@unboxed] [@@noalloc]
(** Hyperbolic sine. Argument is in radians. *)
external tanh : float -> float = "caml_tanh_float" "tanh"
[@@unboxed] [@@noalloc]
(** Hyperbolic tangent. Argument is in radians. *)
external trunc : float -> float = "caml_trunc_float" "caml_trunc"
[@@unboxed] [@@noalloc]
(** [trunc x] rounds [x] to the nearest integer whose absolute value is
less than or equal to [x].
@since 4.08.0 *)
external round : float -> float = "caml_round_float" "caml_round"
[@@unboxed] [@@noalloc]
(** [round x] rounds [x] to the nearest integer with ties (fractional
values of 0.5) rounded away from zero, regardless of the current
rounding direction. If [x] is an integer, [+0.], [-0.], [nan], or
infinite, [x] itself is returned.
@since 4.08.0 *)
external ceil : float -> float = "caml_ceil_float" "ceil"
[@@unboxed] [@@noalloc]
(** Round above to an integer value.
[ceil f] returns the least integer value greater than or equal to [f].
The result is returned as a float. *)
external floor : float -> float = "caml_floor_float" "floor"
[@@unboxed] [@@noalloc]
(** Round below to an integer value.
[floor f] returns the greatest integer value less than or
equal to [f].
The result is returned as a float. *)
external next_after : float -> float -> float
= "caml_nextafter_float" "caml_nextafter" [@@unboxed] [@@noalloc]
(** [next_after x y] returns the next representable floating-point
value following [x] in the direction of [y]. More precisely, if
[y] is greater (resp. less) than [x], it returns the smallest
(resp. largest) representable number greater (resp. less) than [x].
If [x] equals [y], the function returns [y]. If [x] or [y] is
[nan], a [nan] is returned.
Note that [next_after max_float infinity = infinity] and that
[next_after 0. infinity] is the smallest denormalized positive number.
If [x] is the smallest denormalized positive number,
[next_after x 0. = 0.]
@since 4.08.0 *)
external copy_sign : float -> float -> float
= "caml_copysign_float" "caml_copysign"
[@@unboxed] [@@noalloc]
(** [copy_sign x y] returns a float whose absolute value is that of [x]
and whose sign is that of [y]. If [x] is [nan], returns [nan].
If [y] is [nan], returns either [x] or [-. x], but it is not
specified which. *)
external sign_bit : (float [@unboxed]) -> bool
= "caml_signbit_float" "caml_signbit" [@@noalloc]
(** [sign_bit x] is [true] iff the sign bit of [x] is set.
For example [sign_bit 1.] and [signbit 0.] are [false] while
[sign_bit (-1.)] and [sign_bit (-0.)] are [true].
@since 4.08.0 *)
external frexp : float -> float * int = "caml_frexp_float"
(** [frexp f] returns the pair of the significant
and the exponent of [f]. When [f] is zero, the
significant [x] and the exponent [n] of [f] are equal to
zero. When [f] is non-zero, they are defined by
[f = x *. 2 ** n] and [0.5 <= x < 1.0]. *)
external ldexp : (float [@unboxed]) -> (int [@untagged]) -> (float [@unboxed]) =
"caml_ldexp_float" "caml_ldexp_float_unboxed" [@@noalloc]
(** [ldexp x n] returns [x *. 2 ** n]. *)
external modf : float -> float * float = "caml_modf_float"
(** [modf f] returns the pair of the fractional and integral
part of [f]. *)
type t = float
(** An alias for the type of floating-point numbers. *)
val compare: t -> t -> int
(** [compare x y] returns [0] if [x] is equal to [y], a negative integer if [x]
is less than [y], and a positive integer if [x] is greater than
[y]. [compare] treats [nan] as equal to itself and less than any other float
value. This treatment of [nan] ensures that [compare] defines a total
ordering relation. *)
val equal: t -> t -> bool
(** The equal function for floating-point numbers, compared using {!compare}. *)
val min : t -> t -> t
(** [min x y] returns the minimum of [x] and [y]. It returns [nan]
when [x] or [y] is [nan]. Moreover [min (-0.) (+0.) = -0.]
@since 4.08.0 *)
val max : float -> float -> float
(** [max x y] returns the maximum of [x] and [y]. It returns [nan]
when [x] or [y] is [nan]. Moreover [max (-0.) (+0.) = +0.]
@since 4.08.0 *)
val min_max : float -> float -> float * float
(** [min_max x y] is [(min x y, max x y)], just more efficient.
@since 4.08.0 *)
val min_num : t -> t -> t
(** [min_num x y] returns the minimum of [x] and [y] treating [nan] as
missing values. If both [x] and [y] are [nan], [nan] is returned.
Moreover [min_num (-0.) (+0.) = -0.]
@since 4.08.0 *)
val max_num : t -> t -> t
(** [max_num x y] returns the maximum of [x] and [y] treating [nan] as
missing values. If both [x] and [y] are [nan] [nan] is returned.
Moreover [max_num (-0.) (+0.) = +0.]
@since 4.08.0 *)
val min_max_num : float -> float -> float * float
(** [min_max_num x y] is [(min_num x y, max_num x y)], just more
efficient. Note that in particular [min_max_num x nan = (x, x)]
and [min_max_num nan y = (y, y)].
@since 4.08.0 *)
val hash: t -> int
(** The hash function for floating-point numbers. *)
module Array : sig
type t = floatarray
(** The type of float arrays with packed representation.
@since 4.08.0
*)
val length : t -> int
(** Return the length (number of elements) of the given floatarray. *)
val get : t -> int -> float
(** [get a n] returns the element number [n] of floatarray [a].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val set : t -> int -> float -> unit
(** [set a n x] modifies floatarray [a] in place, replacing element
number [n] with [x].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val make : int -> float -> t
(** [make n x] returns a fresh floatarray of length [n], initialized with [x].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val create : int -> t
(** [create n] returns a fresh floatarray of length [n],
with uninitialized data.
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val init : int -> (int -> float) -> t
(** [init n f] returns a fresh floatarray of length [n],
with element number [i] initialized to the result of [f i].
In other terms, [init n f] tabulates the results of [f]
applied to the integers [0] to [n-1].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val append : t -> t -> t
(** [append v1 v2] returns a fresh floatarray containing the
concatenation of the floatarrays [v1] and [v2].
@raise Invalid_argument if
[length v1 + length v2 > Sys.max_floatarray_length]. *)
val concat : t list -> t
(** Same as {!append}, but concatenates a list of floatarrays. *)
val sub : t -> int -> int -> t
(** [sub a pos len] returns a fresh floatarray of length [len],
containing the elements number [pos] to [pos + len - 1]
of floatarray [a].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]; that is, if
[pos < 0], or [len < 0], or [pos + len > length a]. *)
val copy : t -> t
(** [copy a] returns a copy of [a], that is, a fresh floatarray
containing the same elements as [a]. *)
val fill : t -> int -> int -> float -> unit
(** [fill a pos len x] modifies the floatarray [a] in place,
storing [x] in elements number [pos] to [pos + len - 1].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]. *)
val blit : t -> int -> t -> int -> int -> unit
(** [blit src src_pos dst dst_pos len] copies [len] elements
from floatarray [src], starting at element number [src_pos],
to floatarray [dst], starting at element number [dst_pos].
It works correctly even if
[src] and [dst] are the same floatarray, and the source and
destination chunks overlap.
@raise Invalid_argument if [src_pos] and [len] do not
designate a valid subarray of [src], or if [dst_pos] and [len] do not
designate a valid subarray of [dst]. *)
val to_list : t -> float list
(** [to_list a] returns the list of all the elements of [a]. *)
val of_list : float list -> t
(** [of_list l] returns a fresh floatarray containing the elements
of [l].
@raise Invalid_argument if the length of [l] is greater than
[Sys.max_floatarray_length].*)
(** {2 Iterators} *)
val iter : (float -> unit) -> t -> unit
(** [iter f a] applies function [f] in turn to all
the elements of [a]. It is equivalent to
[f a.(0); f a.(1); ...; f a.(length a - 1); ()]. *)
val iteri : (int -> float -> unit) -> t -> unit
(** Same as {!iter}, but the
function is applied with the index of the element as first argument,
and the element itself as second argument. *)
val map : (float -> float) -> t -> t
(** [map f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
val mapi : (int -> float -> float) -> t -> t
(** Same as {!map}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val fold_left : ('a -> float -> 'a) -> 'a -> t -> 'a
(** [fold_left f x init] computes
[f (... (f (f x init.(0)) init.(1)) ...) init.(n-1)],
where [n] is the length of the floatarray [init]. *)
val fold_right : (float -> 'a -> 'a) -> t -> 'a -> 'a
(** [fold_right f a init] computes
[f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))],
where [n] is the length of the floatarray [a]. *)
(** {2 Iterators on two arrays} *)
val iter2 : (float -> float -> unit) -> t -> t -> unit
(** [Array.iter2 f a b] applies function [f] to all the elements of [a]
and [b].
@raise Invalid_argument if the floatarrays are not the same size. *)
val map2 : (float -> float -> float) -> t -> t -> t
(** [map2 f a b] applies function [f] to all the elements of [a]
and [b], and builds a floatarray with the results returned by [f]:
[[| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|]].
@raise Invalid_argument if the floatarrays are not the same size. *)
(** {2 Array scanning} *)
val for_all : (float -> bool) -> t -> bool
(** [for_all f [|a1; ...; an|]] checks if all elements of the floatarray
satisfy the predicate [f]. That is, it returns
[(f a1) && (f a2) && ... && (f an)]. *)
val exists : (float -> bool) -> t -> bool
(** [exists f [|a1; ...; an|]] checks if at least one element of
the floatarray satisfies the predicate [f]. That is, it returns
[(f a1) || (f a2) || ... || (f an)]. *)
val mem : float -> t -> bool
(** [mem a set] is true if and only if there is an element of [set] that is
structurally equal to [a], i.e. there is an [x] in [set] such
that [compare a x = 0]. *)
val mem_ieee : float -> t -> bool
(** Same as {!mem}, but uses IEEE equality instead of structural equality. *)
(** {2 Sorting} *)
val sort : (float -> float -> int) -> t -> unit
(** Sort a floatarray in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, {!Stdlib.compare} is
a suitable comparison function. After calling [sort], the
array is sorted in place in increasing order.
[sort] is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant
stack space.
Specification of the comparison function:
Let [a] be the floatarray and [cmp] the comparison function. The following
must be true for all [x], [y], [z] in [a] :
- [cmp x y] > 0 if and only if [cmp y x] < 0
- if [cmp x y] >= 0 and [cmp y z] >= 0 then [cmp x z] >= 0
When [sort] returns, [a] contains the same elements as before,
reordered in such a way that for all i and j valid indices of [a] :
- [cmp a.(i) a.(j)] >= 0 if and only if i >= j
*)
val stable_sort : (float -> float -> int) -> t -> unit
(** Same as {!sort}, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary
floatarray of length [n/2], where [n] is the length of the floatarray.
It is usually faster than the current implementation of {!sort}. *)
val fast_sort : (float -> float -> int) -> t -> unit
(** Same as {!sort} or {!stable_sort}, whichever is faster
on typical input. *)
(** {2 Iterators} *)
val to_seq : t -> float Seq.t
(** Iterate on the floatarray, in increasing order. Modifications of the
floatarray during iteration will be reflected in the iterator. *)
val to_seqi : t -> (int * float) Seq.t
(** Iterate on the floatarray, in increasing order, yielding indices along
elements. Modifications of the floatarray during iteration will be
reflected in the iterator. *)
val of_seq : float Seq.t -> t
(** Create an array from the generator. *)
val map_to_array : (float -> 'a) -> t -> 'a array
(** [map_to_array f a] applies function [f] to all the elements of [a],
and builds an array with the results returned by [f]:
[[| f a.(0); f a.(1); ...; f a.(length a - 1) |]]. *)
val map_from_array : ('a -> float) -> 'a array -> t
(** [map_from_array f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
(**/**)
(** {2 Undocumented functions} *)
(* These functions are for system use only. Do not call directly. *)
external unsafe_get : t -> int -> float = "%floatarray_unsafe_get"
external unsafe_set : t -> int -> float -> unit = "%floatarray_unsafe_set"
end
module ArrayLabels : sig
type t = floatarray
(** The type of float arrays with packed representation.
@since 4.08.0
*)
val length : t -> int
(** Return the length (number of elements) of the given floatarray. *)
val get : t -> int -> float
(** [get a n] returns the element number [n] of floatarray [a].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val set : t -> int -> float -> unit
(** [set a n x] modifies floatarray [a] in place, replacing element
number [n] with [x].
@raise Invalid_argument if [n] is outside the range 0 to
[(length a - 1)]. *)
val make : int -> float -> t
(** [make n x] returns a fresh floatarray of length [n], initialized with [x].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val create : int -> t
(** [create n] returns a fresh floatarray of length [n],
with uninitialized data.
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val init : int -> f:(int -> float) -> t
(** [init n ~f] returns a fresh floatarray of length [n],
with element number [i] initialized to the result of [f i].
In other terms, [init n ~f] tabulates the results of [f]
applied to the integers [0] to [n-1].
@raise Invalid_argument if [n < 0] or [n > Sys.max_floatarray_length]. *)
val append : t -> t -> t
(** [append v1 v2] returns a fresh floatarray containing the
concatenation of the floatarrays [v1] and [v2].
@raise Invalid_argument if
[length v1 + length v2 > Sys.max_floatarray_length]. *)
val concat : t list -> t
(** Same as {!append}, but concatenates a list of floatarrays. *)
val sub : t -> pos:int -> len:int -> t
(** [sub a ~pos ~len] returns a fresh floatarray of length [len],
containing the elements number [pos] to [pos + len - 1]
of floatarray [a].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]; that is, if
[pos < 0], or [len < 0], or [pos + len > length a]. *)
val copy : t -> t
(** [copy a] returns a copy of [a], that is, a fresh floatarray
containing the same elements as [a]. *)
val fill : t -> pos:int -> len:int -> float -> unit
(** [fill a ~pos ~len x] modifies the floatarray [a] in place,
storing [x] in elements number [pos] to [pos + len - 1].
@raise Invalid_argument if [pos] and [len] do not
designate a valid subarray of [a]. *)
val blit : src:t -> src_pos:int -> dst:t -> dst_pos:int -> len:int -> unit
(** [blit ~src ~src_pos ~dst ~dst_pos ~len] copies [len] elements
from floatarray [src], starting at element number [src_pos],
to floatarray [dst], starting at element number [dst_pos].
It works correctly even if
[src] and [dst] are the same floatarray, and the source and
destination chunks overlap.
@raise Invalid_argument if [src_pos] and [len] do not
designate a valid subarray of [src], or if [dst_pos] and [len] do not
designate a valid subarray of [dst]. *)
val to_list : t -> float list
(** [to_list a] returns the list of all the elements of [a]. *)
val of_list : float list -> t
(** [of_list l] returns a fresh floatarray containing the elements
of [l].
@raise Invalid_argument if the length of [l] is greater than
[Sys.max_floatarray_length].*)
(** {2 Iterators} *)
val iter : f:(float -> unit) -> t -> unit
(** [iter ~f a] applies function [f] in turn to all
the elements of [a]. It is equivalent to
[f a.(0); f a.(1); ...; f a.(length a - 1); ()]. *)
val iteri : f:(int -> float -> unit) -> t -> unit
(** Same as {!iter}, but the
function is applied with the index of the element as first argument,
and the element itself as second argument. *)
val map : f:(float -> float) -> t -> t
(** [map ~f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
val mapi : f:(int -> float -> float) -> t -> t
(** Same as {!map}, but the
function is applied to the index of the element as first argument,
and the element itself as second argument. *)
val fold_left : f:('a -> float -> 'a) -> init:'a -> t -> 'a
(** [fold_left ~f x ~init] computes
[f (... (f (f x init.(0)) init.(1)) ...) init.(n-1)],
where [n] is the length of the floatarray [init]. *)
val fold_right : f:(float -> 'a -> 'a) -> t -> init:'a -> 'a
(** [fold_right f a init] computes
[f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...))],
where [n] is the length of the floatarray [a]. *)
(** {2 Iterators on two arrays} *)
val iter2 : f:(float -> float -> unit) -> t -> t -> unit
(** [Array.iter2 ~f a b] applies function [f] to all the elements of [a]
and [b].
@raise Invalid_argument if the floatarrays are not the same size. *)
val map2 : f:(float -> float -> float) -> t -> t -> t
(** [map2 ~f a b] applies function [f] to all the elements of [a]
and [b], and builds a floatarray with the results returned by [f]:
[[| f a.(0) b.(0); ...; f a.(length a - 1) b.(length b - 1)|]].
@raise Invalid_argument if the floatarrays are not the same size. *)
(** {2 Array scanning} *)
val for_all : f:(float -> bool) -> t -> bool
(** [for_all ~f [|a1; ...; an|]] checks if all elements of the floatarray
satisfy the predicate [f]. That is, it returns
[(f a1) && (f a2) && ... && (f an)]. *)
val exists : f:(float -> bool) -> t -> bool
(** [exists f [|a1; ...; an|]] checks if at least one element of
the floatarray satisfies the predicate [f]. That is, it returns
[(f a1) || (f a2) || ... || (f an)]. *)
val mem : float -> set:t -> bool
(** [mem a ~set] is true if and only if there is an element of [set] that is
structurally equal to [a], i.e. there is an [x] in [set] such
that [compare a x = 0]. *)
val mem_ieee : float -> set:t -> bool
(** Same as {!mem}, but uses IEEE equality instead of structural equality. *)
(** {2 Sorting} *)
val sort : cmp:(float -> float -> int) -> t -> unit
(** Sort a floatarray in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, {!Stdlib.compare} is
a suitable comparison function. After calling [sort], the
array is sorted in place in increasing order.
[sort] is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant
stack space.
Specification of the comparison function:
Let [a] be the floatarray and [cmp] the comparison function. The following
must be true for all [x], [y], [z] in [a] :
- [cmp x y] > 0 if and only if [cmp y x] < 0
- if [cmp x y] >= 0 and [cmp y z] >= 0 then [cmp x z] >= 0
When [sort] returns, [a] contains the same elements as before,
reordered in such a way that for all i and j valid indices of [a] :
- [cmp a.(i) a.(j)] >= 0 if and only if i >= j
*)
val stable_sort : cmp:(float -> float -> int) -> t -> unit
(** Same as {!sort}, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary
floatarray of length [n/2], where [n] is the length of the floatarray.
It is usually faster than the current implementation of {!sort}. *)
val fast_sort : cmp:(float -> float -> int) -> t -> unit
(** Same as {!sort} or {!stable_sort}, whichever is faster
on typical input. *)
(** {2 Iterators} *)
val to_seq : t -> float Seq.t
(** Iterate on the floatarray, in increasing order. Modifications of the
floatarray during iteration will be reflected in the iterator. *)
val to_seqi : t -> (int * float) Seq.t
(** Iterate on the floatarray, in increasing order, yielding indices along
elements. Modifications of the floatarray during iteration will be
reflected in the iterator. *)
val of_seq : float Seq.t -> t
(** Create an array from the generator. *)
val map_to_array : f:(float -> 'a) -> t -> 'a array
(** [map_to_array ~f a] applies function [f] to all the elements of [a],
and builds an array with the results returned by [f]:
[[| f a.(0); f a.(1); ...; f a.(length a - 1) |]]. *)
val map_from_array : f:('a -> float) -> 'a array -> t
(** [map_from_array ~f a] applies function [f] to all the elements of [a],
and builds a floatarray with the results returned by [f]. *)
(**/**)
(** {2 Undocumented functions} *)
(* These functions are for system use only. Do not call directly. *)
external unsafe_get : t -> int -> float = "%floatarray_unsafe_get"
external unsafe_set : t -> int -> float -> unit = "%floatarray_unsafe_set"
end