ocaml/runtime/ints.c

852 lines
24 KiB
C

/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
#include <stdio.h>
#include <string.h>
#include "caml/alloc.h"
#include "caml/custom.h"
#include "caml/fail.h"
#include "caml/intext.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"
/* Comparison resulting in -1,0,1, with type intnat,
without extra integer width conversion (GPR#2250). */
#define COMPARE_INT(v1, v2) \
(intnat)(v1 > v2) - (intnat)(v1 < v2)
static const char * parse_sign_and_base(const char * p,
/*out*/ int * base,
/*out*/ int * signedness,
/*out*/ int * sign)
{
*sign = 1;
if (*p == '-') {
*sign = -1;
p++;
} else if (*p == '+')
p++;
*base = 10; *signedness = 1;
if (*p == '0') {
switch (p[1]) {
case 'x': case 'X':
*base = 16; *signedness = 0; p += 2; break;
case 'o': case 'O':
*base = 8; *signedness = 0; p += 2; break;
case 'b': case 'B':
*base = 2; *signedness = 0; p += 2; break;
case 'u': case 'U':
*signedness = 0; p += 2; break;
}
}
return p;
}
static int parse_digit(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
else if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
else if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
else
return -1;
}
#define INT_ERRMSG "int_of_string"
#define INT32_ERRMSG "Int32.of_string"
#define INT64_ERRMSG "Int64.of_string"
#define INTNAT_ERRMSG "Nativeint.of_string"
static intnat parse_intnat(value s, int nbits, const char *errmsg)
{
const char * p;
uintnat res, threshold;
int sign, base, signedness, d;
p = parse_sign_and_base(String_val(s), &base, &signedness, &sign);
threshold = ((uintnat) -1) / base;
d = parse_digit(*p);
if (d < 0 || d >= base) caml_failwith(errmsg);
for (p++, res = d; /*nothing*/; p++) {
char c = *p;
if (c == '_') continue;
d = parse_digit(c);
if (d < 0 || d >= base) break;
/* Detect overflow in multiplication base * res */
if (res > threshold) caml_failwith(errmsg);
res = base * res + d;
/* Detect overflow in addition (base * res) + d */
if (res < (uintnat) d) caml_failwith(errmsg);
}
if (p != String_val(s) + caml_string_length(s)){
caml_failwith(errmsg);
}
if (signedness) {
/* Signed representation expected, allow -2^(nbits-1) to 2^(nbits-1) - 1 */
if (sign >= 0) {
if (res >= (uintnat)1 << (nbits - 1)) caml_failwith(errmsg);
} else {
if (res > (uintnat)1 << (nbits - 1)) caml_failwith(errmsg);
}
} else {
/* Unsigned representation expected, allow 0 to 2^nbits - 1
and tolerate -(2^nbits - 1) to 0 */
if (nbits < sizeof(uintnat) * 8 && res >= (uintnat)1 << nbits)
caml_failwith(errmsg);
}
return sign < 0 ? -((intnat) res) : (intnat) res;
}
value caml_bswap16_direct(value x)
{
return ((((x & 0x00FF) << 8) |
((x & 0xFF00) >> 8)));
}
CAMLprim value caml_bswap16(value v)
{
intnat x = Int_val(v);
return (Val_int ((((x & 0x00FF) << 8) |
((x & 0xFF00) >> 8))));
}
/* Tagged integers */
CAMLprim value caml_int_compare(value v1, value v2)
{
return Val_long(COMPARE_INT(v1, v2));
}
CAMLprim value caml_int_of_string(value s)
{
return Val_long(parse_intnat(s, 8 * sizeof(value) - 1, INT_ERRMSG));
}
#define FORMAT_BUFFER_SIZE 32
static char parse_format(value fmt,
char * suffix,
char format_string[FORMAT_BUFFER_SIZE])
{
char * p;
char lastletter;
mlsize_t len, len_suffix;
/* Copy OCaml format fmt to format_string,
adding the suffix before the last letter of the format */
len = caml_string_length(fmt);
len_suffix = strlen(suffix);
if (len + len_suffix + 1 >= FORMAT_BUFFER_SIZE)
caml_invalid_argument("format_int: format too long");
memmove(format_string, String_val(fmt), len);
p = format_string + len - 1;
lastletter = *p;
/* Compress two-letter formats, ignoring the [lnL] annotation */
if (p[-1] == 'l' || p[-1] == 'n' || p[-1] == 'L') p--;
memmove(p, suffix, len_suffix); p += len_suffix;
*p++ = lastletter;
*p = 0;
/* Return the conversion type (last letter) */
return lastletter;
}
CAMLprim value caml_format_int(value fmt, value arg)
{
char format_string[FORMAT_BUFFER_SIZE];
char conv;
value res;
conv = parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string);
switch (conv) {
case 'u': case 'x': case 'X': case 'o':
res = caml_alloc_sprintf(format_string, Unsigned_long_val(arg));
break;
default:
res = caml_alloc_sprintf(format_string, Long_val(arg));
break;
}
return res;
}
/* 32-bit integers */
static int int32_cmp(value v1, value v2)
{
int32_t i1 = Int32_val(v1);
int32_t i2 = Int32_val(v2);
return (i1 > i2) - (i1 < i2);
}
static intnat int32_hash(value v)
{
return Int32_val(v);
}
static void int32_serialize(value v, uintnat * bsize_32,
uintnat * bsize_64)
{
caml_serialize_int_4(Int32_val(v));
*bsize_32 = *bsize_64 = 4;
}
static uintnat int32_deserialize(void * dst)
{
*((int32_t *) dst) = caml_deserialize_sint_4();
return 4;
}
static const struct custom_fixed_length int32_length = { 4, 4 };
CAMLexport struct custom_operations caml_int32_ops = {
"_i",
custom_finalize_default,
int32_cmp,
int32_hash,
int32_serialize,
int32_deserialize,
custom_compare_ext_default,
&int32_length
};
CAMLexport value caml_copy_int32(int32_t i)
{
value res = caml_alloc_custom(&caml_int32_ops, 4, 0, 1);
Int32_val(res) = i;
return res;
}
CAMLprim value caml_int32_neg(value v)
{ return caml_copy_int32(- Int32_val(v)); }
CAMLprim value caml_int32_add(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) + Int32_val(v2)); }
CAMLprim value caml_int32_sub(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) - Int32_val(v2)); }
CAMLprim value caml_int32_mul(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) * Int32_val(v2)); }
CAMLprim value caml_int32_div(value v1, value v2)
{
int32_t dividend = Int32_val(v1);
int32_t divisor = Int32_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, division crashes on overflow.
Implement the same behavior as for type "int". */
if (dividend == (1<<31) && divisor == -1) return v1;
return caml_copy_int32(dividend / divisor);
}
CAMLprim value caml_int32_mod(value v1, value v2)
{
int32_t dividend = Int32_val(v1);
int32_t divisor = Int32_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, modulus crashes if division overflows.
Implement the same behavior as for type "int". */
if (dividend == (1<<31) && divisor == -1) return caml_copy_int32(0);
return caml_copy_int32(dividend % divisor);
}
CAMLprim value caml_int32_and(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) & Int32_val(v2)); }
CAMLprim value caml_int32_or(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) | Int32_val(v2)); }
CAMLprim value caml_int32_xor(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) ^ Int32_val(v2)); }
CAMLprim value caml_int32_shift_left(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) << Int_val(v2)); }
CAMLprim value caml_int32_shift_right(value v1, value v2)
{ return caml_copy_int32(Int32_val(v1) >> Int_val(v2)); }
CAMLprim value caml_int32_shift_right_unsigned(value v1, value v2)
{ return caml_copy_int32((uint32_t)Int32_val(v1) >> Int_val(v2)); }
static int32_t caml_swap32(int32_t x)
{
return (((x & 0x000000FF) << 24) |
((x & 0x0000FF00) << 8) |
((x & 0x00FF0000) >> 8) |
((x & 0xFF000000) >> 24));
}
value caml_int32_direct_bswap(value v)
{ return caml_swap32((int32_t) v); }
CAMLprim value caml_int32_bswap(value v)
{ return caml_copy_int32(caml_swap32(Int32_val(v))); }
CAMLprim value caml_int32_of_int(value v)
{ return caml_copy_int32((int32_t) Long_val(v)); }
CAMLprim value caml_int32_to_int(value v)
{ return Val_long(Int32_val(v)); }
int32_t caml_int32_of_float_unboxed(double x)
{ return (int32_t) x; }
CAMLprim value caml_int32_of_float(value v)
{ return caml_copy_int32((int32_t)(Double_val(v))); }
double caml_int32_to_float_unboxed(int32_t x)
{ return (double) x; }
CAMLprim value caml_int32_to_float(value v)
{ return caml_copy_double((double)(Int32_val(v))); }
intnat caml_int32_compare_unboxed(int32_t i1, int32_t i2)
{
return COMPARE_INT(i1, i2);
}
CAMLprim value caml_int32_compare(value v1, value v2)
{
return Val_int(caml_int32_compare_unboxed(Int32_val(v1),Int32_val(v2)));
}
CAMLprim value caml_int32_format(value fmt, value arg)
{
char format_string[FORMAT_BUFFER_SIZE];
parse_format(fmt, ARCH_INT32_PRINTF_FORMAT, format_string);
return caml_alloc_sprintf(format_string, Int32_val(arg));
}
CAMLprim value caml_int32_of_string(value s)
{
return caml_copy_int32((int32_t) parse_intnat(s, 32, INT32_ERRMSG));
}
int32_t caml_int32_bits_of_float_unboxed(double d)
{
union { float f; int32_t i; } u;
u.f = (float) d;
return u.i;
}
double caml_int32_float_of_bits_unboxed(int32_t i)
{
union { float f; int32_t i; } u;
u.i = i;
return (double) u.f;
}
CAMLprim value caml_int32_bits_of_float(value vd)
{
return caml_copy_int32(caml_int32_bits_of_float_unboxed(Double_val(vd)));
}
CAMLprim value caml_int32_float_of_bits(value vi)
{
return caml_copy_double(caml_int32_float_of_bits_unboxed(Int32_val(vi)));
}
/* 64-bit integers */
#ifdef ARCH_ALIGN_INT64
CAMLexport int64_t caml_Int64_val(value v)
{
union { int32_t i[2]; int64_t j; } buffer;
buffer.i[0] = ((int32_t *) Data_custom_val(v))[0];
buffer.i[1] = ((int32_t *) Data_custom_val(v))[1];
return buffer.j;
}
#endif
static int int64_cmp(value v1, value v2)
{
int64_t i1 = Int64_val(v1);
int64_t i2 = Int64_val(v2);
return (i1 > i2) - (i1 < i2);
}
static intnat int64_hash(value v)
{
int64_t x = Int64_val(v);
uint32_t lo = (uint32_t) x, hi = (uint32_t) (x >> 32);
return hi ^ lo;
}
static void int64_serialize(value v, uintnat * bsize_32,
uintnat * bsize_64)
{
caml_serialize_int_8(Int64_val(v));
*bsize_32 = *bsize_64 = 8;
}
static uintnat int64_deserialize(void * dst)
{
#ifndef ARCH_ALIGN_INT64
*((int64_t *) dst) = caml_deserialize_sint_8();
#else
union { int32_t i[2]; int64_t j; } buffer;
buffer.j = caml_deserialize_sint_8();
((int32_t *) dst)[0] = buffer.i[0];
((int32_t *) dst)[1] = buffer.i[1];
#endif
return 8;
}
static const struct custom_fixed_length int64_length = { 8, 8 };
CAMLexport struct custom_operations caml_int64_ops = {
"_j",
custom_finalize_default,
int64_cmp,
int64_hash,
int64_serialize,
int64_deserialize,
custom_compare_ext_default,
&int64_length
};
CAMLexport value caml_copy_int64(int64_t i)
{
value res = caml_alloc_custom(&caml_int64_ops, 8, 0, 1);
#ifndef ARCH_ALIGN_INT64
Int64_val(res) = i;
#else
union { int32_t i[2]; int64_t j; } buffer;
buffer.j = i;
((int32_t *) Data_custom_val(res))[0] = buffer.i[0];
((int32_t *) Data_custom_val(res))[1] = buffer.i[1];
#endif
return res;
}
#define CAMLprim_int64_1(name) \
CAMLprim int64_t caml_int64_##name##_native(int64_t); \
\
CAMLprim value caml_int64_##name(value v) \
{ return caml_copy_int64(caml_int64_##name##_native(Int64_val(v))); } \
\
CAMLprim int64_t caml_int64_##name##_native
#define CAMLprim_int64_2(name) \
CAMLprim int64_t caml_int64_##name##_native(int64_t, int64_t); \
\
CAMLprim value caml_int64_##name(value v1, value v2) \
{ return caml_copy_int64(caml_int64_##name##_native(Int64_val(v1), \
Int64_val(v2))); } \
\
CAMLprim int64_t caml_int64_##name##_native
CAMLprim_int64_1(neg)(int64_t i)
{ return -i; }
CAMLprim_int64_2(add)(int64_t i1, int64_t i2)
{ return i1 + i2; }
CAMLprim_int64_2(sub)(int64_t i1, int64_t i2)
{ return i1 - i2; }
CAMLprim_int64_2(mul)(int64_t i1, int64_t i2)
{ return i1 * i2; }
CAMLprim_int64_2(div)(int64_t dividend, int64_t divisor)
{
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, division crashes on overflow.
Implement the same behavior as for type "int". */
if (dividend == ((int64_t)1 << 63) && divisor == -1) return dividend;
return dividend / divisor;
}
CAMLprim_int64_2(mod)(int64_t dividend, int64_t divisor)
{
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, division crashes on overflow.
Implement the same behavior as for type "int". */
if (dividend == ((int64_t)1 << 63) && divisor == -1) return 0;
return dividend % divisor;
}
CAMLprim_int64_2(and)(int64_t i1, int64_t i2)
{ return i1 & i2; }
CAMLprim_int64_2(or)(int64_t i1, int64_t i2)
{ return i1 | i2; }
CAMLprim_int64_2(xor)(int64_t i1, int64_t i2)
{ return i1 ^ i2; }
CAMLprim value caml_int64_shift_left(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) << Int_val(v2)); }
CAMLprim value caml_int64_shift_right(value v1, value v2)
{ return caml_copy_int64(Int64_val(v1) >> Int_val(v2)); }
CAMLprim value caml_int64_shift_right_unsigned(value v1, value v2)
{ return caml_copy_int64((uint64_t) (Int64_val(v1)) >> Int_val(v2)); }
#ifdef ARCH_SIXTYFOUR
static value caml_swap64(value x)
{
return (((((x) & 0x00000000000000FF) << 56) |
(((x) & 0x000000000000FF00) << 40) |
(((x) & 0x0000000000FF0000) << 24) |
(((x) & 0x00000000FF000000) << 8) |
(((x) & 0x000000FF00000000) >> 8) |
(((x) & 0x0000FF0000000000) >> 24) |
(((x) & 0x00FF000000000000) >> 40) |
(((x) & 0xFF00000000000000) >> 56)));
}
value caml_int64_direct_bswap(value v)
{ return caml_swap64(v); }
#endif
CAMLprim value caml_int64_bswap(value v)
{
int64_t x = Int64_val(v);
return caml_copy_int64
(((x & INT64_LITERAL(0x00000000000000FFU)) << 56) |
((x & INT64_LITERAL(0x000000000000FF00U)) << 40) |
((x & INT64_LITERAL(0x0000000000FF0000U)) << 24) |
((x & INT64_LITERAL(0x00000000FF000000U)) << 8) |
((x & INT64_LITERAL(0x000000FF00000000U)) >> 8) |
((x & INT64_LITERAL(0x0000FF0000000000U)) >> 24) |
((x & INT64_LITERAL(0x00FF000000000000U)) >> 40) |
((x & INT64_LITERAL(0xFF00000000000000U)) >> 56));
}
CAMLprim value caml_int64_of_int(value v)
{ return caml_copy_int64((int64_t) (Long_val(v))); }
CAMLprim value caml_int64_to_int(value v)
{ return Val_long((intnat) (Int64_val(v))); }
int64_t caml_int64_of_float_unboxed(double x)
{ return (int64_t) x; }
CAMLprim value caml_int64_of_float(value v)
{ return caml_copy_int64((int64_t) (Double_val(v))); }
double caml_int64_to_float_unboxed(int64_t x)
{ return (double) x; }
CAMLprim value caml_int64_to_float(value v)
{ return caml_copy_double((double) (Int64_val(v))); }
CAMLprim value caml_int64_of_int32(value v)
{ return caml_copy_int64((int64_t) (Int32_val(v))); }
CAMLprim value caml_int64_to_int32(value v)
{ return caml_copy_int32((int32_t) (Int64_val(v))); }
CAMLprim value caml_int64_of_nativeint(value v)
{ return caml_copy_int64((int64_t) (Nativeint_val(v))); }
CAMLprim value caml_int64_to_nativeint(value v)
{ return caml_copy_nativeint((intnat) (Int64_val(v))); }
intnat caml_int64_compare_unboxed(int64_t i1, int64_t i2)
{
return COMPARE_INT(i1, i2);
}
CAMLprim value caml_int64_compare(value v1, value v2)
{
return Val_int(caml_int64_compare_unboxed(Int64_val(v1),Int64_val(v2)));
}
CAMLprim value caml_int64_format(value fmt, value arg)
{
char format_string[FORMAT_BUFFER_SIZE];
parse_format(fmt, ARCH_INT64_PRINTF_FORMAT, format_string);
return caml_alloc_sprintf(format_string, Int64_val(arg));
}
CAMLprim value caml_int64_of_string(value s)
{
const char * p;
uint64_t res, threshold;
int sign, base, signedness, d;
p = parse_sign_and_base(String_val(s), &base, &signedness, &sign);
threshold = ((uint64_t) -1) / base;
d = parse_digit(*p);
if (d < 0 || d >= base) caml_failwith(INT64_ERRMSG);
res = d;
for (p++; /*nothing*/; p++) {
char c = *p;
if (c == '_') continue;
d = parse_digit(c);
if (d < 0 || d >= base) break;
/* Detect overflow in multiplication base * res */
if (res > threshold) caml_failwith(INT64_ERRMSG);
res = base * res + d;
/* Detect overflow in addition (base * res) + d */
if (res < (uint64_t) d) caml_failwith(INT64_ERRMSG);
}
if (p != String_val(s) + caml_string_length(s)){
caml_failwith(INT64_ERRMSG);
}
if (signedness) {
/* Signed representation expected, allow -2^63 to 2^63 - 1 only */
if (sign >= 0) {
if (res >= (uint64_t)1 << 63) caml_failwith(INT64_ERRMSG);
} else {
if (res > (uint64_t)1 << 63) caml_failwith(INT64_ERRMSG);
}
}
if (sign < 0) res = - res;
return caml_copy_int64(res);
}
int64_t caml_int64_bits_of_float_unboxed(double d)
{
union { double d; int64_t i; int32_t h[2]; } u;
u.d = d;
#if defined(__arm__) && !defined(__ARM_EABI__)
{ int32_t t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; }
#endif
return u.i;
}
double caml_int64_float_of_bits_unboxed(int64_t i)
{
union { double d; int64_t i; int32_t h[2]; } u;
u.i = i;
#if defined(__arm__) && !defined(__ARM_EABI__)
{ int32_t t = u.h[0]; u.h[0] = u.h[1]; u.h[1] = t; }
#endif
return u.d;
}
CAMLprim value caml_int64_bits_of_float(value vd)
{
return caml_copy_int64(caml_int64_bits_of_float_unboxed(Double_val(vd)));
}
CAMLprim value caml_int64_float_of_bits(value vi)
{
return caml_copy_double(caml_int64_float_of_bits_unboxed(Int64_val(vi)));
}
/* Native integers */
static int nativeint_cmp(value v1, value v2)
{
intnat i1 = Nativeint_val(v1);
intnat i2 = Nativeint_val(v2);
return (i1 > i2) - (i1 < i2);
}
static intnat nativeint_hash(value v)
{
intnat n = Nativeint_val(v);
#ifdef ARCH_SIXTYFOUR
/* 32/64 bits compatibility trick. See explanations in file "hash.c",
function caml_hash_mix_intnat. */
return (n >> 32) ^ (n >> 63) ^ n;
#else
return n;
#endif
}
static void nativeint_serialize(value v, uintnat * bsize_32,
uintnat * bsize_64)
{
intnat l = Nativeint_val(v);
#ifdef ARCH_SIXTYFOUR
if (l >= -((intnat)1 << 31) && l < ((intnat)1 << 31)) {
caml_serialize_int_1(1);
caml_serialize_int_4((int32_t) l);
} else {
caml_serialize_int_1(2);
caml_serialize_int_8(l);
}
#else
caml_serialize_int_1(1);
caml_serialize_int_4(l);
#endif
*bsize_32 = 4;
*bsize_64 = 8;
}
static uintnat nativeint_deserialize(void * dst)
{
switch (caml_deserialize_uint_1()) {
case 1:
*((intnat *) dst) = caml_deserialize_sint_4();
break;
case 2:
#ifdef ARCH_SIXTYFOUR
*((intnat *) dst) = caml_deserialize_sint_8();
#else
caml_deserialize_error("input_value: native integer value too large");
#endif
break;
default:
caml_deserialize_error("input_value: ill-formed native integer");
}
return sizeof(intnat);
}
static const struct custom_fixed_length nativeint_length = { 4, 8 };
CAMLexport struct custom_operations caml_nativeint_ops = {
"_n",
custom_finalize_default,
nativeint_cmp,
nativeint_hash,
nativeint_serialize,
nativeint_deserialize,
custom_compare_ext_default,
&nativeint_length
};
CAMLexport value caml_copy_nativeint(intnat i)
{
value res = caml_alloc_custom(&caml_nativeint_ops, sizeof(intnat), 0, 1);
Nativeint_val(res) = i;
return res;
}
CAMLprim value caml_nativeint_neg(value v)
{ return caml_copy_nativeint(- Nativeint_val(v)); }
CAMLprim value caml_nativeint_add(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) + Nativeint_val(v2)); }
CAMLprim value caml_nativeint_sub(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) - Nativeint_val(v2)); }
CAMLprim value caml_nativeint_mul(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) * Nativeint_val(v2)); }
#define Nativeint_min_int ((intnat) 1 << (sizeof(intnat) * 8 - 1))
CAMLprim value caml_nativeint_div(value v1, value v2)
{
intnat dividend = Nativeint_val(v1);
intnat divisor = Nativeint_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, modulus crashes if division overflows.
Implement the same behavior as for type "int". */
if (dividend == Nativeint_min_int && divisor == -1) return v1;
return caml_copy_nativeint(dividend / divisor);
}
CAMLprim value caml_nativeint_mod(value v1, value v2)
{
intnat dividend = Nativeint_val(v1);
intnat divisor = Nativeint_val(v2);
if (divisor == 0) caml_raise_zero_divide();
/* PR#4740: on some processors, modulus crashes if division overflows.
Implement the same behavior as for type "int". */
if (dividend == Nativeint_min_int && divisor == -1){
return caml_copy_nativeint(0);
}
return caml_copy_nativeint(dividend % divisor);
}
CAMLprim value caml_nativeint_and(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) & Nativeint_val(v2)); }
CAMLprim value caml_nativeint_or(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) | Nativeint_val(v2)); }
CAMLprim value caml_nativeint_xor(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) ^ Nativeint_val(v2)); }
CAMLprim value caml_nativeint_shift_left(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) << Int_val(v2)); }
CAMLprim value caml_nativeint_shift_right(value v1, value v2)
{ return caml_copy_nativeint(Nativeint_val(v1) >> Int_val(v2)); }
CAMLprim value caml_nativeint_shift_right_unsigned(value v1, value v2)
{ return caml_copy_nativeint((uintnat)Nativeint_val(v1) >> Int_val(v2)); }
value caml_nativeint_direct_bswap(value v)
{
#ifdef ARCH_SIXTYFOUR
return caml_swap64(v);
#else
return caml_swap32(v);
#endif
}
CAMLprim value caml_nativeint_bswap(value v)
{
#ifdef ARCH_SIXTYFOUR
return caml_copy_nativeint(caml_swap64(Nativeint_val(v)));
#else
return caml_copy_nativeint(caml_swap32(Nativeint_val(v)));
#endif
}
CAMLprim value caml_nativeint_of_int(value v)
{ return caml_copy_nativeint(Long_val(v)); }
CAMLprim value caml_nativeint_to_int(value v)
{ return Val_long(Nativeint_val(v)); }
intnat caml_nativeint_of_float_unboxed(double x)
{ return (intnat) x; }
CAMLprim value caml_nativeint_of_float(value v)
{ return caml_copy_nativeint((intnat)(Double_val(v))); }
double caml_nativeint_to_float_unboxed(intnat x)
{ return (double) x; }
CAMLprim value caml_nativeint_to_float(value v)
{ return caml_copy_double((double)(Nativeint_val(v))); }
CAMLprim value caml_nativeint_of_int32(value v)
{ return caml_copy_nativeint(Int32_val(v)); }
CAMLprim value caml_nativeint_to_int32(value v)
{ return caml_copy_int32((int32_t) Nativeint_val(v)); }
intnat caml_nativeint_compare_unboxed(intnat i1, intnat i2)
{
return COMPARE_INT(i1, i2);
}
CAMLprim value caml_nativeint_compare(value v1, value v2)
{
return Val_int(caml_nativeint_compare_unboxed(Nativeint_val(v1),
Nativeint_val(v2)));
}
CAMLprim value caml_nativeint_format(value fmt, value arg)
{
char format_string[FORMAT_BUFFER_SIZE];
parse_format(fmt, ARCH_INTNAT_PRINTF_FORMAT, format_string);
return caml_alloc_sprintf(format_string, Nativeint_val(arg));
}
CAMLprim value caml_nativeint_of_string(value s)
{
return caml_copy_nativeint(parse_intnat(s, 8 * sizeof(value), INTNAT_ERRMSG));
}