ocaml/runtime/array.c

633 lines
19 KiB
C

/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
/* Operations on arrays */
#include <string.h>
#include "caml/alloc.h"
#include "caml/fail.h"
#include "caml/memory.h"
#include "caml/misc.h"
#include "caml/mlvalues.h"
#include "caml/signals.h"
#include "caml/eventlog.h"
static const mlsize_t mlsize_t_max = -1;
/* returns number of elements (either fields or floats) */
/* [ 'a array -> int ] */
CAMLexport mlsize_t caml_array_length(value array)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return Wosize_val(array) / Double_wosize;
else
#endif
return Wosize_val(array);
}
CAMLexport int caml_is_double_array(value array)
{
return (Tag_val(array) == Double_array_tag);
}
/* Note: the OCaml types on the following primitives will work both with
and without the -no-flat-float-array configure-time option. If you
respect them, your C code should work in both configurations.
*/
/* [ 'a array -> int -> 'a ] where 'a != float */
CAMLprim value caml_array_get_addr(value array, value index)
{
intnat idx = Long_val(index);
if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error();
return Field(array, idx);
}
/* [ float array -> int -> float ] */
CAMLprim value caml_array_get_float(value array, value index)
{
intnat idx = Long_val(index);
#ifdef FLAT_FLOAT_ARRAY
double d;
value res;
if (idx < 0 || idx >= Wosize_val(array) / Double_wosize)
caml_array_bound_error();
d = Double_flat_field(array, idx);
#define Setup_for_gc
#define Restore_after_gc
Alloc_small(res, Double_wosize, Double_tag);
#undef Setup_for_gc
#undef Restore_after_gc
Store_double_val(res, d);
return res;
#else
CAMLassert (Tag_val (array) != Double_array_tag);
if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error();
return Field(array, idx);
#endif /* FLAT_FLOAT_ARRAY */
}
/* [ 'a array -> int -> 'a ] */
CAMLprim value caml_array_get(value array, value index)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_array_get_float(array, index);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return caml_array_get_addr(array, index);
}
/* [ floatarray -> int -> float ] */
CAMLprim value caml_floatarray_get(value array, value index)
{
intnat idx = Long_val(index);
double d;
value res;
CAMLassert (Tag_val(array) == Double_array_tag);
if (idx < 0 || idx >= Wosize_val(array) / Double_wosize)
caml_array_bound_error();
d = Double_flat_field(array, idx);
#define Setup_for_gc
#define Restore_after_gc
Alloc_small(res, Double_wosize, Double_tag);
#undef Setup_for_gc
#undef Restore_after_gc
Store_double_val(res, d);
return res;
}
/* [ 'a array -> int -> 'a -> unit ] where 'a != float */
CAMLprim value caml_array_set_addr(value array, value index, value newval)
{
intnat idx = Long_val(index);
if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error();
Modify(&Field(array, idx), newval);
return Val_unit;
}
/* [ float array -> int -> float -> unit ] */
CAMLprim value caml_array_set_float(value array, value index, value newval)
{
intnat idx = Long_val(index);
#ifdef FLAT_FLOAT_ARRAY
double d = Double_val (newval);
if (idx < 0 || idx >= Wosize_val(array) / Double_wosize)
caml_array_bound_error();
Store_double_flat_field(array, idx, d);
#else
CAMLassert (Tag_val (array) != Double_array_tag);
if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error();
Modify(&Field(array, idx), newval);
#endif
return Val_unit;
}
/* [ 'a array -> int -> 'a -> unit ] */
CAMLprim value caml_array_set(value array, value index, value newval)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_array_set_float(array, index, newval);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return caml_array_set_addr(array, index, newval);
}
/* [ floatarray -> int -> float -> unit ] */
CAMLprim value caml_floatarray_set(value array, value index, value newval)
{
intnat idx = Long_val(index);
double d = Double_val (newval);
CAMLassert (Tag_val(array) == Double_array_tag);
if (idx < 0 || idx >= Wosize_val(array) / Double_wosize)
caml_array_bound_error();
Store_double_flat_field(array, idx, d);
return Val_unit;
}
/* [ float array -> int -> float ] */
CAMLprim value caml_array_unsafe_get_float(value array, value index)
{
intnat idx = Long_val (index);
#ifdef FLAT_FLOAT_ARRAY
double d;
value res;
d = Double_flat_field(array, idx);
#define Setup_for_gc
#define Restore_after_gc
Alloc_small(res, Double_wosize, Double_tag);
#undef Setup_for_gc
#undef Restore_after_gc
Store_double_val(res, d);
return res;
#else /* FLAT_FLOAT_ARRAY */
CAMLassert (Tag_val(array) != Double_array_tag);
return Field(array, idx);
#endif /* FLAT_FLOAT_ARRAY */
}
/* [ 'a array -> int -> 'a ] */
CAMLprim value caml_array_unsafe_get(value array, value index)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_array_unsafe_get_float(array, index);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return Field(array, Long_val(index));
}
/* [ floatarray -> int -> float ] */
CAMLprim value caml_floatarray_unsafe_get(value array, value index)
{
intnat idx = Long_val(index);
double d;
value res;
CAMLassert (Tag_val(array) == Double_array_tag);
d = Double_flat_field(array, idx);
#define Setup_for_gc
#define Restore_after_gc
Alloc_small(res, Double_wosize, Double_tag);
#undef Setup_for_gc
#undef Restore_after_gc
Store_double_val(res, d);
return res;
}
/* [ 'a array -> int -> 'a -> unit ] where 'a != float */
CAMLprim value caml_array_unsafe_set_addr(value array, value index,value newval)
{
intnat idx = Long_val(index);
Modify(&Field(array, idx), newval);
return Val_unit;
}
/* [ float array -> int -> float -> unit ] */
CAMLprim value caml_array_unsafe_set_float(value array,value index,value newval)
{
intnat idx = Long_val(index);
#ifdef FLAT_FLOAT_ARRAY
double d = Double_val (newval);
Store_double_flat_field(array, idx, d);
#else
Modify(&Field(array, idx), newval);
#endif
return Val_unit;
}
/* [ 'a array -> int -> 'a -> unit ] */
CAMLprim value caml_array_unsafe_set(value array, value index, value newval)
{
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag)
return caml_array_unsafe_set_float(array, index, newval);
#else
CAMLassert (Tag_val(array) != Double_array_tag);
#endif
return caml_array_unsafe_set_addr(array, index, newval);
}
/* [ floatarray -> int -> float -> unit ] */
CAMLprim value caml_floatarray_unsafe_set(value array, value index,value newval)
{
intnat idx = Long_val(index);
double d = Double_val (newval);
Store_double_flat_field(array, idx, d);
return Val_unit;
}
/* [len] is a [value] representing number of floats. */
/* [ int -> floatarray ] */
CAMLprim value caml_floatarray_create(value len)
{
mlsize_t wosize = Long_val(len) * Double_wosize;
value result;
if (wosize <= Max_young_wosize){
if (wosize == 0)
return Atom(0);
else
#define Setup_for_gc
#define Restore_after_gc
Alloc_small (result, wosize, Double_array_tag);
#undef Setup_for_gc
#undef Restore_after_gc
}else if (wosize > Max_wosize)
caml_invalid_argument("Float.Array.create");
else {
result = caml_alloc_shr (wosize, Double_array_tag);
}
// Give the GC a chance to run, and run memprof callbacks
return caml_process_pending_actions_with_root (result);
}
/* [len] is a [value] representing number of words or floats */
CAMLprim value caml_make_vect(value len, value init)
{
CAMLparam2 (len, init);
CAMLlocal1 (res);
mlsize_t size, i;
size = Long_val(len);
if (size == 0) {
res = Atom(0);
#ifdef FLAT_FLOAT_ARRAY
} else if (Is_block(init)
&& Is_in_value_area(init)
&& Tag_val(init) == Double_tag) {
mlsize_t wsize;
double d;
d = Double_val(init);
wsize = size * Double_wosize;
if (wsize > Max_wosize) caml_invalid_argument("Array.make");
res = caml_alloc(wsize, Double_array_tag);
for (i = 0; i < size; i++) {
Store_double_flat_field(res, i, d);
}
#endif
} else {
if (size <= Max_young_wosize) {
res = caml_alloc_small(size, 0);
for (i = 0; i < size; i++) Field(res, i) = init;
}
else if (size > Max_wosize) caml_invalid_argument("Array.make");
else {
if (Is_block(init) && Is_young(init)) {
/* We don't want to create so many major-to-minor references,
so [init] is moved to the major heap by doing a minor GC. */
CAML_EV_COUNTER (EV_C_FORCE_MINOR_MAKE_VECT, 1);
caml_minor_collection ();
}
CAMLassert(!(Is_block(init) && Is_young(init)));
res = caml_alloc_shr(size, 0);
/* We now know that [init] is not in the minor heap, so there is
no need to call [caml_initialize]. */
for (i = 0; i < size; i++) Field(res, i) = init;
}
}
// Give the GC a chance to run, and run memprof callbacks
caml_process_pending_actions ();
CAMLreturn (res);
}
/* [len] is a [value] representing number of floats */
/* [ int -> float array ] */
CAMLprim value caml_make_float_vect(value len)
{
#ifdef FLAT_FLOAT_ARRAY
return caml_floatarray_create (len);
#else
static value uninitialized_float = Val_unit;
if (uninitialized_float == Val_unit){
uninitialized_float = caml_alloc_shr (Double_wosize, Double_tag);
caml_register_generational_global_root (&uninitialized_float);
}
return caml_make_vect (len, uninitialized_float);
#endif
}
/* This primitive is used internally by the compiler to compile
explicit array expressions.
For float arrays when FLAT_FLOAT_ARRAY is true, it takes an array of
boxed floats and returns the corresponding flat-allocated [float array].
In all other cases, it just returns its argument unchanged.
*/
CAMLprim value caml_make_array(value init)
{
#ifdef FLAT_FLOAT_ARRAY
CAMLparam1 (init);
mlsize_t wsize, size, i;
CAMLlocal2 (v, res);
size = Wosize_val(init);
if (size == 0) {
CAMLreturn (init);
} else {
v = Field(init, 0);
if (Is_long(v)
|| ! Is_in_value_area(v)
|| Tag_val(v) != Double_tag) {
CAMLreturn (init);
} else {
wsize = size * Double_wosize;
if (wsize <= Max_young_wosize) {
res = caml_alloc_small(wsize, Double_array_tag);
} else {
res = caml_alloc_shr(wsize, Double_array_tag);
}
for (i = 0; i < size; i++) {
double d = Double_val(Field(init, i));
Store_double_flat_field(res, i, d);
}
// run memprof callbacks
caml_process_pending_actions();
CAMLreturn (res);
}
}
#else
return init;
#endif
}
/* Blitting */
CAMLprim value caml_array_blit(value a1, value ofs1, value a2, value ofs2,
value n)
{
value * src, * dst;
intnat count;
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(a2) == Double_array_tag) {
/* Arrays of floats. The values being copied are floats, not
pointer, so we can do a direct copy. memmove takes care of
potential overlap between the copied areas. */
memmove((double *)a2 + Long_val(ofs2),
(double *)a1 + Long_val(ofs1),
Long_val(n) * sizeof(double));
return Val_unit;
}
#endif
CAMLassert (Tag_val(a2) != Double_array_tag);
if (Is_young(a2)) {
/* Arrays of values, destination is in young generation.
Here too we can do a direct copy since this cannot create
old-to-young pointers, nor mess up with the incremental major GC.
Again, memmove takes care of overlap. */
memmove(&Field(a2, Long_val(ofs2)),
&Field(a1, Long_val(ofs1)),
Long_val(n) * sizeof(value));
return Val_unit;
}
/* Array of values, destination is in old generation.
We must use caml_modify. */
count = Long_val(n);
if (a1 == a2 && Long_val(ofs1) < Long_val(ofs2)) {
/* Copy in descending order */
for (dst = &Field(a2, Long_val(ofs2) + count - 1),
src = &Field(a1, Long_val(ofs1) + count - 1);
count > 0;
count--, src--, dst--) {
caml_modify(dst, *src);
}
} else {
/* Copy in ascending order */
for (dst = &Field(a2, Long_val(ofs2)), src = &Field(a1, Long_val(ofs1));
count > 0;
count--, src++, dst++) {
caml_modify(dst, *src);
}
}
/* Many caml_modify in a row can create a lot of old-to-young refs.
Give the minor GC a chance to run if it needs to. */
caml_check_urgent_gc(Val_unit);
return Val_unit;
}
/* A generic function for extraction and concatenation of sub-arrays */
static value caml_array_gather(intnat num_arrays,
value arrays[/*num_arrays*/],
intnat offsets[/*num_arrays*/],
intnat lengths[/*num_arrays*/])
{
CAMLparamN(arrays, num_arrays);
value res; /* no need to register it as a root */
#ifdef FLAT_FLOAT_ARRAY
int isfloat = 0;
mlsize_t wsize;
#endif
mlsize_t i, size, count, pos;
value * src;
/* Determine total size and whether result array is an array of floats */
size = 0;
for (i = 0; i < num_arrays; i++) {
if (mlsize_t_max - lengths[i] < size) caml_invalid_argument("Array.concat");
size += lengths[i];
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(arrays[i]) == Double_array_tag) isfloat = 1;
#endif
}
if (size == 0) {
/* If total size = 0, just return empty array */
res = Atom(0);
}
#ifdef FLAT_FLOAT_ARRAY
else if (isfloat) {
/* This is an array of floats. We can use memcpy directly. */
if (size > Max_wosize/Double_wosize) caml_invalid_argument("Array.concat");
wsize = size * Double_wosize;
res = caml_alloc(wsize, Double_array_tag);
for (i = 0, pos = 0; i < num_arrays; i++) {
memcpy((double *)res + pos,
(double *)arrays[i] + offsets[i],
lengths[i] * sizeof(double));
pos += lengths[i];
}
CAMLassert(pos == size);
}
#endif
else if (size <= Max_young_wosize) {
/* Array of values, small enough to fit in young generation.
We can use memcpy directly. */
res = caml_alloc_small(size, 0);
for (i = 0, pos = 0; i < num_arrays; i++) {
memcpy(&Field(res, pos),
&Field(arrays[i], offsets[i]),
lengths[i] * sizeof(value));
pos += lengths[i];
}
CAMLassert(pos == size);
}
else if (size > Max_wosize) {
/* Array of values, too big. */
caml_invalid_argument("Array.concat");
} else {
/* Array of values, must be allocated in old generation and filled
using caml_initialize. */
res = caml_alloc_shr(size, 0);
for (i = 0, pos = 0; i < num_arrays; i++) {
for (src = &Field(arrays[i], offsets[i]), count = lengths[i];
count > 0;
count--, src++, pos++) {
caml_initialize(&Field(res, pos), *src);
}
}
CAMLassert(pos == size);
/* Many caml_initialize in a row can create a lot of old-to-young
refs. Give the minor GC a chance to run if it needs to.
Run memprof callbacks for the major allocation. */
res = caml_process_pending_actions_with_root (res);
}
CAMLreturn (res);
}
CAMLprim value caml_array_sub(value a, value ofs, value len)
{
value arrays[1] = { a };
intnat offsets[1] = { Long_val(ofs) };
intnat lengths[1] = { Long_val(len) };
return caml_array_gather(1, arrays, offsets, lengths);
}
CAMLprim value caml_array_append(value a1, value a2)
{
value arrays[2] = { a1, a2 };
intnat offsets[2] = { 0, 0 };
intnat lengths[2] = { caml_array_length(a1), caml_array_length(a2) };
return caml_array_gather(2, arrays, offsets, lengths);
}
CAMLprim value caml_array_concat(value al)
{
#define STATIC_SIZE 16
value static_arrays[STATIC_SIZE], * arrays;
intnat static_offsets[STATIC_SIZE], * offsets;
intnat static_lengths[STATIC_SIZE], * lengths;
intnat n, i;
value l, res;
/* Length of list = number of arrays */
for (n = 0, l = al; l != Val_int(0); l = Field(l, 1)) n++;
/* Allocate extra storage if too many arrays */
if (n <= STATIC_SIZE) {
arrays = static_arrays;
offsets = static_offsets;
lengths = static_lengths;
} else {
arrays = caml_stat_alloc(n * sizeof(value));
offsets = caml_stat_alloc_noexc(n * sizeof(intnat));
if (offsets == NULL) {
caml_stat_free(arrays);
caml_raise_out_of_memory();
}
lengths = caml_stat_alloc_noexc(n * sizeof(value));
if (lengths == NULL) {
caml_stat_free(offsets);
caml_stat_free(arrays);
caml_raise_out_of_memory();
}
}
/* Build the parameters to caml_array_gather */
for (i = 0, l = al; l != Val_int(0); l = Field(l, 1), i++) {
arrays[i] = Field(l, 0);
offsets[i] = 0;
lengths[i] = caml_array_length(Field(l, 0));
}
/* Do the concatenation */
res = caml_array_gather(n, arrays, offsets, lengths);
/* Free the extra storage if needed */
if (n > STATIC_SIZE) {
caml_stat_free(arrays);
caml_stat_free(offsets);
caml_stat_free(lengths);
}
return res;
}
CAMLprim value caml_array_fill(value array,
value v_ofs,
value v_len,
value val)
{
intnat ofs = Long_val(v_ofs);
intnat len = Long_val(v_len);
value* fp;
/* This duplicates the logic of caml_modify. Please refer to the
implementation of that function for a description of GC
invariants we need to enforce.*/
#ifdef FLAT_FLOAT_ARRAY
if (Tag_val(array) == Double_array_tag) {
double d = Double_val (val);
for (; len > 0; len--, ofs++)
Store_double_flat_field(array, ofs, d);
return Val_unit;
}
#endif
fp = &Field(array, ofs);
if (Is_young(array)) {
for (; len > 0; len--, fp++) *fp = val;
} else {
int is_val_young_block = Is_block(val) && Is_young(val);
CAMLassert(Is_in_heap(fp));
for (; len > 0; len--, fp++) {
value old = *fp;
if (old == val) continue;
*fp = val;
if (Is_block(old)) {
if (Is_young(old)) continue;
if (caml_gc_phase == Phase_mark) caml_darken(old, NULL);
}
if (is_val_young_block)
add_to_ref_table (Caml_state->ref_table, fp);
}
if (is_val_young_block) caml_check_urgent_gc (Val_unit);
}
return Val_unit;
}