ocaml/bytecomp/bytegen.ml

1110 lines
43 KiB
OCaml

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* bytegen.ml : translation of lambda terms to lists of instructions. *)
open Misc
open Asttypes
open Primitive
open Types
open Lambda
open Switch
open Instruct
open Debuginfo.Scoped_location
(**** Label generation ****)
let label_counter = ref 0
let new_label () =
incr label_counter; !label_counter
(**** Operations on compilation environments. ****)
let empty_env =
{ ce_stack = Ident.empty; ce_heap = Ident.empty; ce_rec = Ident.empty }
(* Add a stack-allocated variable *)
let add_var id pos env =
{ ce_stack = Ident.add id pos env.ce_stack;
ce_heap = env.ce_heap;
ce_rec = env.ce_rec }
let rec add_vars idlist pos env =
match idlist with
[] -> env
| id :: rem -> add_vars rem (pos + 1) (add_var id pos env)
(**** Examination of the continuation ****)
(* Return a label to the beginning of the given continuation.
If the sequence starts with a branch, use the target of that branch
as the label, thus avoiding a jump to a jump. *)
let label_code = function
Kbranch lbl :: _ as cont -> (lbl, cont)
| Klabel lbl :: _ as cont -> (lbl, cont)
| cont -> let lbl = new_label() in (lbl, Klabel lbl :: cont)
(* Return a branch to the continuation. That is, an instruction that,
when executed, branches to the continuation or performs what the
continuation performs. We avoid generating branches to branches and
branches to returns. *)
let rec make_branch_2 lbl n cont =
function
Kreturn m :: _ -> (Kreturn (n + m), cont)
| Klabel _ :: c -> make_branch_2 lbl n cont c
| Kpop m :: c -> make_branch_2 lbl (n + m) cont c
| _ ->
match lbl with
Some lbl -> (Kbranch lbl, cont)
| None -> let lbl = new_label() in (Kbranch lbl, Klabel lbl :: cont)
let make_branch cont =
match cont with
(Kbranch _ as branch) :: _ -> (branch, cont)
| (Kreturn _ as return) :: _ -> (return, cont)
| Kraise k :: _ -> (Kraise k, cont)
| Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont
| _ -> make_branch_2 (None) 0 cont cont
(* Avoid a branch to a label that follows immediately *)
let branch_to label cont = match cont with
| Klabel label0::_ when label = label0 -> cont
| _ -> Kbranch label::cont
(* Discard all instructions up to the next label.
This function is to be applied to the continuation before adding a
non-terminating instruction (branch, raise, return) in front of it. *)
let rec discard_dead_code = function
[] -> []
| (Klabel _ | Krestart | Ksetglobal _) :: _ as cont -> cont
| _ :: cont -> discard_dead_code cont
(* Check if we're in tailcall position *)
let rec is_tailcall = function
Kreturn _ :: _ -> true
| Klabel _ :: c -> is_tailcall c
| Kpop _ :: c -> is_tailcall c
| _ -> false
(* Will this primitive result in an OCaml call which would benefit
from the tail call optimization? *)
let preserve_tailcall_for_prim = function
Pidentity | Popaque | Pdirapply | Prevapply | Psequor | Psequand ->
true
| Pbytes_to_string | Pbytes_of_string | Pignore | Pgetglobal _ | Psetglobal _
| Pmakeblock _ | Pfield _ | Pfield_computed | Psetfield _
| Psetfield_computed _ | Pfloatfield _ | Psetfloatfield _ | Pduprecord _
| Pccall _ | Praise _ | Pnot | Pnegint | Paddint | Psubint | Pmulint
| Pdivint _ | Pmodint _ | Pandint | Porint | Pxorint | Plslint | Plsrint
| Pasrint | Pintcomp _ | Poffsetint _ | Poffsetref _ | Pintoffloat
| Pfloatofint | Pnegfloat | Pabsfloat | Paddfloat | Psubfloat | Pmulfloat
| Pdivfloat | Pfloatcomp _ | Pstringlength | Pstringrefu | Pstringrefs
| Pcompare_ints | Pcompare_floats | Pcompare_bints _
| Pbyteslength | Pbytesrefu | Pbytessetu | Pbytesrefs | Pbytessets
| Pmakearray _ | Pduparray _ | Parraylength _ | Parrayrefu _ | Parraysetu _
| Parrayrefs _ | Parraysets _ | Pisint | Pisout | Pbintofint _ | Pintofbint _
| Pcvtbint _ | Pnegbint _ | Paddbint _ | Psubbint _ | Pmulbint _ | Pdivbint _
| Pmodbint _ | Pandbint _ | Porbint _ | Pxorbint _ | Plslbint _ | Plsrbint _
| Pasrbint _ | Pbintcomp _ | Pbigarrayref _ | Pbigarrayset _ | Pbigarraydim _
| Pstring_load_16 _ | Pstring_load_32 _ | Pstring_load_64 _ | Pbytes_load_16 _
| Pbytes_load_32 _ | Pbytes_load_64 _ | Pbytes_set_16 _ | Pbytes_set_32 _
| Pbytes_set_64 _ | Pbigstring_load_16 _ | Pbigstring_load_32 _
| Pbigstring_load_64 _ | Pbigstring_set_16 _ | Pbigstring_set_32 _
| Pbigstring_set_64 _ | Pctconst _ | Pbswap16 | Pbbswap _ | Pint_as_pointer ->
false
(* Add a Kpop N instruction in front of a continuation *)
let rec add_pop n cont =
if n = 0 then cont else
match cont with
Kpop m :: cont -> add_pop (n + m) cont
| Kreturn m :: cont -> Kreturn(n + m) :: cont
| Kraise _ :: _ -> cont
| _ -> Kpop n :: cont
(* Add the constant "unit" in front of a continuation *)
let add_const_unit = function
(Kacc _ | Kconst _ | Kgetglobal _ | Kpush_retaddr _) :: _ as cont -> cont
| cont -> Kconst const_unit :: cont
let rec push_dummies n k = match n with
| 0 -> k
| _ -> Kconst const_unit::Kpush::push_dummies (n-1) k
(**** Auxiliary for compiling "let rec" ****)
type rhs_kind =
| RHS_block of int
| RHS_infix of { blocksize : int; offset : int }
| RHS_floatblock of int
| RHS_nonrec
| RHS_function of int * int
;;
let rec check_recordwith_updates id e =
match e with
| Lsequence (Lprim ((Psetfield _ | Psetfloatfield _), [Lvar id2; _], _), cont)
-> id2 = id && check_recordwith_updates id cont
| Lvar id2 -> id2 = id
| _ -> false
;;
let rec size_of_lambda env = function
| Lvar id ->
begin try Ident.find_same id env with Not_found -> RHS_nonrec end
| Lfunction{params} as funct ->
RHS_function (2 + Ident.Set.cardinal(free_variables funct),
List.length params)
| Llet (Strict, _k, id, Lprim (Pduprecord (kind, size), _, _), body)
when check_recordwith_updates id body ->
begin match kind with
| Record_regular | Record_inlined _ -> RHS_block size
| Record_unboxed _ -> assert false
| Record_float -> RHS_floatblock size
| Record_extension _ -> RHS_block (size + 1)
end
| Llet(_str, _k, id, arg, body) ->
size_of_lambda (Ident.add id (size_of_lambda env arg) env) body
(* See the Lletrec case of comp_expr *)
| Lletrec(bindings, body) when
List.for_all (function (_, Lfunction _) -> true | _ -> false) bindings ->
(* let rec of functions *)
let fv =
Ident.Set.elements (free_variables (Lletrec(bindings, lambda_unit))) in
(* See Instruct(CLOSUREREC) in interp.c *)
let blocksize = List.length bindings * 3 - 1 + List.length fv in
let offsets = List.mapi (fun i (id, _e) -> (id, i * 3)) bindings in
let env = List.fold_right (fun (id, offset) env ->
Ident.add id (RHS_infix { blocksize; offset }) env) offsets env in
size_of_lambda env body
| Lletrec(bindings, body) ->
let env = List.fold_right
(fun (id, e) env -> Ident.add id (size_of_lambda env e) env)
bindings env
in
size_of_lambda env body
| Lprim(Pmakeblock _, args, _) -> RHS_block (List.length args)
| Lprim (Pmakearray ((Paddrarray|Pintarray), _), args, _) ->
RHS_block (List.length args)
| Lprim (Pmakearray (Pfloatarray, _), args, _) ->
RHS_floatblock (List.length args)
| Lprim (Pmakearray (Pgenarray, _), _, _) ->
(* Pgenarray is excluded from recursive bindings by the
check in Translcore.check_recursive_lambda *)
RHS_nonrec
| Lprim (Pduprecord ((Record_regular | Record_inlined _), size), _, _) ->
RHS_block size
| Lprim (Pduprecord (Record_unboxed _, _), _, _) ->
assert false
| Lprim (Pduprecord (Record_extension _, size), _, _) ->
RHS_block (size + 1)
| Lprim (Pduprecord (Record_float, size), _, _) -> RHS_floatblock size
| Levent (lam, _) -> size_of_lambda env lam
| Lsequence (_lam, lam') -> size_of_lambda env lam'
| _ -> RHS_nonrec
(**** Merging consecutive events ****)
let copy_event ev kind info repr =
{ ev with
ev_pos = 0; (* patched in emitcode *)
ev_kind = kind;
ev_info = info;
ev_repr = repr }
let merge_infos ev ev' =
match ev.ev_info, ev'.ev_info with
Event_other, info -> info
| info, Event_other -> info
| _ -> fatal_error "Bytegen.merge_infos"
let merge_repr ev ev' =
match ev.ev_repr, ev'.ev_repr with
Event_none, x -> x
| x, Event_none -> x
| Event_parent r, Event_child r' when r == r' && !r = 1 -> Event_none
| Event_child r, Event_parent r' when r == r' -> Event_parent r
| _, _ -> fatal_error "Bytegen.merge_repr"
let merge_events ev ev' =
let (maj, min) =
match ev.ev_kind, ev'.ev_kind with
(* Discard pseudo-events *)
Event_pseudo, _ -> ev', ev
| _, Event_pseudo -> ev, ev'
(* Keep following event, supposedly more informative *)
| Event_before, (Event_after _ | Event_before) -> ev', ev
(* Discard following events, supposedly less informative *)
| Event_after _, (Event_after _ | Event_before) -> ev, ev'
in
copy_event maj maj.ev_kind (merge_infos maj min) (merge_repr maj min)
let weaken_event ev cont =
match ev.ev_kind with
Event_after _ ->
begin match cont with
Kpush :: Kevent ({ev_repr = Event_none} as ev') :: c ->
begin match ev.ev_info with
Event_return _ ->
(* Weaken event *)
let repr = ref 1 in
let ev =
copy_event ev Event_pseudo ev.ev_info (Event_parent repr)
and ev' =
copy_event ev' ev'.ev_kind ev'.ev_info (Event_child repr)
in
Kevent ev :: Kpush :: Kevent ev' :: c
| _ ->
(* Only keep following event, equivalent *)
cont
end
| _ ->
Kevent ev :: cont
end
| _ ->
Kevent ev :: cont
let add_event ev =
function
Kevent ev' :: cont -> weaken_event (merge_events ev ev') cont
| cont -> weaken_event ev cont
(* Pseudo events are ignored by the debugger. They are only used for
generating backtraces.
We prefer adding this event here rather than in lambda generation
1) there are many different situations where a Pmakeblock can
be generated
2) we prefer inserting a pseudo event rather than an event after
to prevent the debugger to stop at every single allocation. *)
let add_pseudo_event loc modname c =
if !Clflags.debug then
let ev_defname = string_of_scoped_location loc in
let ev =
{ ev_pos = 0; (* patched in emitcode *)
ev_module = modname;
ev_loc = to_location loc;
ev_defname;
ev_kind = Event_pseudo;
ev_info = Event_other; (* Dummy *)
ev_typenv = Env.Env_empty; (* Dummy *)
ev_typsubst = Subst.identity; (* Dummy *)
ev_compenv = empty_env; (* Dummy *)
ev_stacksize = 0; (* Dummy *)
ev_repr = Event_none } (* Dummy *)
in
add_event ev c
else c
(**** Compilation of a lambda expression ****)
let try_blocks = ref [] (* list of stack size for each nested try block *)
(* association staticraise numbers -> (lbl,size of stack, try_blocks *)
let sz_static_raises = ref []
let push_static_raise i lbl_handler sz =
sz_static_raises := (i, (lbl_handler, sz, !try_blocks)) :: !sz_static_raises
let find_raise_label i =
try
List.assoc i !sz_static_raises
with
| Not_found ->
Misc.fatal_error
("exit("^Int.to_string i^") outside appropriated catch")
(* Will the translation of l lead to a jump to label ? *)
let code_as_jump l sz = match l with
| Lstaticraise (i,[]) ->
let label,size,tb = find_raise_label i in
if sz = size && tb == !try_blocks then
Some label
else
None
| _ -> None
(* Function bodies that remain to be compiled *)
type function_to_compile =
{ params: Ident.t list; (* function parameters *)
body: lambda; (* the function body *)
label: label; (* the label of the function entry *)
free_vars: Ident.t list; (* free variables of the function *)
num_defs: int; (* number of mutually recursive definitions *)
rec_vars: Ident.t list; (* mutually recursive fn names *)
rec_pos: int } (* rank in recursive definition *)
let functions_to_compile = (Stack.create () : function_to_compile Stack.t)
(* Name of current compilation unit (for debugging events) *)
let compunit_name = ref ""
(* Maximal stack size reached during the current function body *)
let max_stack_used = ref 0
(* Sequence of string tests *)
(* Translate a primitive to a bytecode instruction (possibly a call to a C
function) *)
let comp_bint_primitive bi suff args =
let pref =
match bi with Pnativeint -> "caml_nativeint_"
| Pint32 -> "caml_int32_"
| Pint64 -> "caml_int64_" in
Kccall(pref ^ suff, List.length args)
let comp_primitive p args =
match p with
Pgetglobal id -> Kgetglobal id
| Psetglobal id -> Ksetglobal id
| Pintcomp cmp -> Kintcomp cmp
| Pcompare_ints -> Kccall("caml_int_compare", 2)
| Pcompare_floats -> Kccall("caml_float_compare", 2)
| Pcompare_bints bi -> comp_bint_primitive bi "compare" args
| Pfield n -> Kgetfield n
| Pfield_computed -> Kgetvectitem
| Psetfield(n, _ptr, _init) -> Ksetfield n
| Psetfield_computed(_ptr, _init) -> Ksetvectitem
| Psetfloatfield (n, _init) -> Ksetfloatfield n
| Pduprecord _ -> Kccall("caml_obj_dup", 1)
| Pccall p -> Kccall(p.prim_name, p.prim_arity)
| Pnegint -> Knegint
| Paddint -> Kaddint
| Psubint -> Ksubint
| Pmulint -> Kmulint
| Pdivint _ -> Kdivint
| Pmodint _ -> Kmodint
| Pandint -> Kandint
| Porint -> Korint
| Pxorint -> Kxorint
| Plslint -> Klslint
| Plsrint -> Klsrint
| Pasrint -> Kasrint
| Poffsetint n -> Koffsetint n
| Poffsetref n -> Koffsetref n
| Pintoffloat -> Kccall("caml_int_of_float", 1)
| Pfloatofint -> Kccall("caml_float_of_int", 1)
| Pnegfloat -> Kccall("caml_neg_float", 1)
| Pabsfloat -> Kccall("caml_abs_float", 1)
| Paddfloat -> Kccall("caml_add_float", 2)
| Psubfloat -> Kccall("caml_sub_float", 2)
| Pmulfloat -> Kccall("caml_mul_float", 2)
| Pdivfloat -> Kccall("caml_div_float", 2)
| Pstringlength -> Kccall("caml_ml_string_length", 1)
| Pbyteslength -> Kccall("caml_ml_bytes_length", 1)
| Pstringrefs -> Kccall("caml_string_get", 2)
| Pbytesrefs -> Kccall("caml_bytes_get", 2)
| Pbytessets -> Kccall("caml_bytes_set", 3)
| Pstringrefu -> Kgetstringchar
| Pbytesrefu -> Kgetbyteschar
| Pbytessetu -> Ksetbyteschar
| Pstring_load_16(_) -> Kccall("caml_string_get16", 2)
| Pstring_load_32(_) -> Kccall("caml_string_get32", 2)
| Pstring_load_64(_) -> Kccall("caml_string_get64", 2)
| Pbytes_set_16(_) -> Kccall("caml_bytes_set16", 3)
| Pbytes_set_32(_) -> Kccall("caml_bytes_set32", 3)
| Pbytes_set_64(_) -> Kccall("caml_bytes_set64", 3)
| Pbytes_load_16(_) -> Kccall("caml_bytes_get16", 2)
| Pbytes_load_32(_) -> Kccall("caml_bytes_get32", 2)
| Pbytes_load_64(_) -> Kccall("caml_bytes_get64", 2)
| Parraylength _ -> Kvectlength
| Parrayrefs Pgenarray -> Kccall("caml_array_get", 2)
| Parrayrefs Pfloatarray -> Kccall("caml_floatarray_get", 2)
| Parrayrefs _ -> Kccall("caml_array_get_addr", 2)
| Parraysets Pgenarray -> Kccall("caml_array_set", 3)
| Parraysets Pfloatarray -> Kccall("caml_floatarray_set", 3)
| Parraysets _ -> Kccall("caml_array_set_addr", 3)
| Parrayrefu Pgenarray -> Kccall("caml_array_unsafe_get", 2)
| Parrayrefu Pfloatarray -> Kccall("caml_floatarray_unsafe_get", 2)
| Parrayrefu _ -> Kgetvectitem
| Parraysetu Pgenarray -> Kccall("caml_array_unsafe_set", 3)
| Parraysetu Pfloatarray -> Kccall("caml_floatarray_unsafe_set", 3)
| Parraysetu _ -> Ksetvectitem
| Pctconst c ->
let const_name = match c with
| Big_endian -> "big_endian"
| Word_size -> "word_size"
| Int_size -> "int_size"
| Max_wosize -> "max_wosize"
| Ostype_unix -> "ostype_unix"
| Ostype_win32 -> "ostype_win32"
| Ostype_cygwin -> "ostype_cygwin"
| Backend_type -> "backend_type" in
Kccall(Printf.sprintf "caml_sys_const_%s" const_name, 1)
| Pisint -> Kisint
| Pisout -> Kisout
| Pbintofint bi -> comp_bint_primitive bi "of_int" args
| Pintofbint bi -> comp_bint_primitive bi "to_int" args
| Pcvtbint(Pint32, Pnativeint) -> Kccall("caml_nativeint_of_int32", 1)
| Pcvtbint(Pnativeint, Pint32) -> Kccall("caml_nativeint_to_int32", 1)
| Pcvtbint(Pint32, Pint64) -> Kccall("caml_int64_of_int32", 1)
| Pcvtbint(Pint64, Pint32) -> Kccall("caml_int64_to_int32", 1)
| Pcvtbint(Pnativeint, Pint64) -> Kccall("caml_int64_of_nativeint", 1)
| Pcvtbint(Pint64, Pnativeint) -> Kccall("caml_int64_to_nativeint", 1)
| Pnegbint bi -> comp_bint_primitive bi "neg" args
| Paddbint bi -> comp_bint_primitive bi "add" args
| Psubbint bi -> comp_bint_primitive bi "sub" args
| Pmulbint bi -> comp_bint_primitive bi "mul" args
| Pdivbint { size = bi } -> comp_bint_primitive bi "div" args
| Pmodbint { size = bi } -> comp_bint_primitive bi "mod" args
| Pandbint bi -> comp_bint_primitive bi "and" args
| Porbint bi -> comp_bint_primitive bi "or" args
| Pxorbint bi -> comp_bint_primitive bi "xor" args
| Plslbint bi -> comp_bint_primitive bi "shift_left" args
| Plsrbint bi -> comp_bint_primitive bi "shift_right_unsigned" args
| Pasrbint bi -> comp_bint_primitive bi "shift_right" args
| Pbintcomp(_, Ceq) -> Kccall("caml_equal", 2)
| Pbintcomp(_, Cne) -> Kccall("caml_notequal", 2)
| Pbintcomp(_, Clt) -> Kccall("caml_lessthan", 2)
| Pbintcomp(_, Cgt) -> Kccall("caml_greaterthan", 2)
| Pbintcomp(_, Cle) -> Kccall("caml_lessequal", 2)
| Pbintcomp(_, Cge) -> Kccall("caml_greaterequal", 2)
| Pbigarrayref(_, n, _, _) -> Kccall("caml_ba_get_" ^ Int.to_string n, n + 1)
| Pbigarrayset(_, n, _, _) -> Kccall("caml_ba_set_" ^ Int.to_string n, n + 2)
| Pbigarraydim(n) -> Kccall("caml_ba_dim_" ^ Int.to_string n, 1)
| Pbigstring_load_16(_) -> Kccall("caml_ba_uint8_get16", 2)
| Pbigstring_load_32(_) -> Kccall("caml_ba_uint8_get32", 2)
| Pbigstring_load_64(_) -> Kccall("caml_ba_uint8_get64", 2)
| Pbigstring_set_16(_) -> Kccall("caml_ba_uint8_set16", 3)
| Pbigstring_set_32(_) -> Kccall("caml_ba_uint8_set32", 3)
| Pbigstring_set_64(_) -> Kccall("caml_ba_uint8_set64", 3)
| Pbswap16 -> Kccall("caml_bswap16", 1)
| Pbbswap(bi) -> comp_bint_primitive bi "bswap" args
| Pint_as_pointer -> Kccall("caml_int_as_pointer", 1)
| Pbytes_to_string -> Kccall("caml_string_of_bytes", 1)
| Pbytes_of_string -> Kccall("caml_bytes_of_string", 1)
| _ -> fatal_error "Bytegen.comp_primitive"
let is_immed n = immed_min <= n && n <= immed_max
module Storer =
Switch.Store
(struct type t = lambda type key = lambda
let compare_key = Stdlib.compare
let make_key = Lambda.make_key end)
(* Compile an expression.
The value of the expression is left in the accumulator.
env = compilation environment
exp = the lambda expression to compile
sz = current size of the stack frame
cont = list of instructions to execute afterwards
Result = list of instructions that evaluate exp, then perform cont. *)
let rec comp_expr env exp sz cont =
if sz > !max_stack_used then max_stack_used := sz;
match exp with
Lvar id ->
begin try
let pos = Ident.find_same id env.ce_stack in
Kacc(sz - pos) :: cont
with Not_found ->
try
let pos = Ident.find_same id env.ce_heap in
Kenvacc(pos) :: cont
with Not_found ->
try
let ofs = Ident.find_same id env.ce_rec in
Koffsetclosure(ofs) :: cont
with Not_found ->
fatal_error ("Bytegen.comp_expr: var " ^ Ident.unique_name id)
end
| Lconst cst ->
Kconst cst :: cont
| Lapply{ap_func = func; ap_args = args} ->
let nargs = List.length args in
if is_tailcall cont then begin
comp_args env args sz
(Kpush :: comp_expr env func (sz + nargs)
(Kappterm(nargs, sz + nargs) :: discard_dead_code cont))
end else begin
if nargs < 4 then
comp_args env args sz
(Kpush :: comp_expr env func (sz + nargs) (Kapply nargs :: cont))
else begin
let (lbl, cont1) = label_code cont in
Kpush_retaddr lbl ::
comp_args env args (sz + 3)
(Kpush :: comp_expr env func (sz + 3 + nargs)
(Kapply nargs :: cont1))
end
end
| Lsend(kind, met, obj, args, _) ->
let args = if kind = Cached then List.tl args else args in
let nargs = List.length args + 1 in
let getmethod, args' =
if kind = Self then (Kgetmethod, met::obj::args) else
match met with
Lconst(Const_base(Const_int n)) -> (Kgetpubmet n, obj::args)
| _ -> (Kgetdynmet, met::obj::args)
in
if is_tailcall cont then
comp_args env args' sz
(getmethod :: Kappterm(nargs, sz + nargs) :: discard_dead_code cont)
else
if nargs < 4 then
comp_args env args' sz
(getmethod :: Kapply nargs :: cont)
else begin
let (lbl, cont1) = label_code cont in
Kpush_retaddr lbl ::
comp_args env args' (sz + 3)
(getmethod :: Kapply nargs :: cont1)
end
| Lfunction{params; body; loc} -> (* assume kind = Curried *)
let cont = add_pseudo_event loc !compunit_name cont in
let lbl = new_label() in
let fv = Ident.Set.elements(free_variables exp) in
let to_compile =
{ params = List.map fst params; body = body; label = lbl;
free_vars = fv; num_defs = 1; rec_vars = []; rec_pos = 0 } in
Stack.push to_compile functions_to_compile;
comp_args env (List.map (fun n -> Lvar n) fv) sz
(Kclosure(lbl, List.length fv) :: cont)
| Llet(_str, _k, id, arg, body) ->
comp_expr env arg sz
(Kpush :: comp_expr (add_var id (sz+1) env) body (sz+1)
(add_pop 1 cont))
| Lletrec(decl, body) ->
let ndecl = List.length decl in
if List.for_all (function (_, Lfunction _) -> true | _ -> false)
decl then begin
(* let rec of functions *)
let fv =
Ident.Set.elements (free_variables (Lletrec(decl, lambda_unit))) in
let rec_idents = List.map (fun (id, _lam) -> id) decl in
let rec comp_fun pos = function
[] -> []
| (_id, Lfunction{params; body}) :: rem ->
let lbl = new_label() in
let to_compile =
{ params = List.map fst params; body = body; label = lbl;
free_vars = fv; num_defs = ndecl; rec_vars = rec_idents;
rec_pos = pos} in
Stack.push to_compile functions_to_compile;
lbl :: comp_fun (pos + 1) rem
| _ -> assert false in
let lbls = comp_fun 0 decl in
comp_args env (List.map (fun n -> Lvar n) fv) sz
(Kclosurerec(lbls, List.length fv) ::
(comp_expr (add_vars rec_idents (sz+1) env) body (sz + ndecl)
(add_pop ndecl cont)))
end else begin
let decl_size =
List.map (fun (id, exp) -> (id, exp, size_of_lambda Ident.empty exp))
decl in
let rec comp_init new_env sz = function
| [] -> comp_nonrec new_env sz ndecl decl_size
| (id, _exp, RHS_floatblock blocksize) :: rem ->
Kconst(Const_base(Const_int blocksize)) ::
Kccall("caml_alloc_dummy_float", 1) :: Kpush ::
comp_init (add_var id (sz+1) new_env) (sz+1) rem
| (id, _exp, RHS_block blocksize) :: rem ->
Kconst(Const_base(Const_int blocksize)) ::
Kccall("caml_alloc_dummy", 1) :: Kpush ::
comp_init (add_var id (sz+1) new_env) (sz+1) rem
| (id, _exp, RHS_infix { blocksize; offset }) :: rem ->
Kconst(Const_base(Const_int offset)) ::
Kpush ::
Kconst(Const_base(Const_int blocksize)) ::
Kccall("caml_alloc_dummy_infix", 2) :: Kpush ::
comp_init (add_var id (sz+1) new_env) (sz+1) rem
| (id, _exp, RHS_function (blocksize,arity)) :: rem ->
Kconst(Const_base(Const_int arity)) ::
Kpush ::
Kconst(Const_base(Const_int blocksize)) ::
Kccall("caml_alloc_dummy_function", 2) :: Kpush ::
comp_init (add_var id (sz+1) new_env) (sz+1) rem
| (id, _exp, RHS_nonrec) :: rem ->
Kconst(Const_base(Const_int 0)) :: Kpush ::
comp_init (add_var id (sz+1) new_env) (sz+1) rem
and comp_nonrec new_env sz i = function
| [] -> comp_rec new_env sz ndecl decl_size
| (_id, _exp, (RHS_block _ | RHS_infix _ |
RHS_floatblock _ | RHS_function _))
:: rem ->
comp_nonrec new_env sz (i-1) rem
| (_id, exp, RHS_nonrec) :: rem ->
comp_expr new_env exp sz
(Kassign (i-1) :: comp_nonrec new_env sz (i-1) rem)
and comp_rec new_env sz i = function
| [] -> comp_expr new_env body sz (add_pop ndecl cont)
| (_id, exp, (RHS_block _ | RHS_infix _ |
RHS_floatblock _ | RHS_function _))
:: rem ->
comp_expr new_env exp sz
(Kpush :: Kacc i :: Kccall("caml_update_dummy", 2) ::
comp_rec new_env sz (i-1) rem)
| (_id, _exp, RHS_nonrec) :: rem ->
comp_rec new_env sz (i-1) rem
in
comp_init env sz decl_size
end
| Lprim((Pidentity | Popaque), [arg], _) ->
comp_expr env arg sz cont
| Lprim(Pignore, [arg], _) ->
comp_expr env arg sz (add_const_unit cont)
| Lprim(Pdirapply, [func;arg], loc)
| Lprim(Prevapply, [arg;func], loc) ->
let exp = Lapply{
ap_loc=loc;
ap_func=func;
ap_args=[arg];
ap_tailcall=Default_tailcall;
ap_inlined=Default_inline;
ap_specialised=Default_specialise;
} in
comp_expr env exp sz cont
| Lprim(Pnot, [arg], _) ->
let newcont =
match cont with
Kbranchif lbl :: cont1 -> Kbranchifnot lbl :: cont1
| Kbranchifnot lbl :: cont1 -> Kbranchif lbl :: cont1
| _ -> Kboolnot :: cont in
comp_expr env arg sz newcont
| Lprim(Psequand, [exp1; exp2], _) ->
begin match cont with
Kbranchifnot lbl :: _ ->
comp_expr env exp1 sz (Kbranchifnot lbl ::
comp_expr env exp2 sz cont)
| Kbranchif lbl :: cont1 ->
let (lbl2, cont2) = label_code cont1 in
comp_expr env exp1 sz (Kbranchifnot lbl2 ::
comp_expr env exp2 sz (Kbranchif lbl :: cont2))
| _ ->
let (lbl, cont1) = label_code cont in
comp_expr env exp1 sz (Kstrictbranchifnot lbl ::
comp_expr env exp2 sz cont1)
end
| Lprim(Psequor, [exp1; exp2], _) ->
begin match cont with
Kbranchif lbl :: _ ->
comp_expr env exp1 sz (Kbranchif lbl ::
comp_expr env exp2 sz cont)
| Kbranchifnot lbl :: cont1 ->
let (lbl2, cont2) = label_code cont1 in
comp_expr env exp1 sz (Kbranchif lbl2 ::
comp_expr env exp2 sz (Kbranchifnot lbl :: cont2))
| _ ->
let (lbl, cont1) = label_code cont in
comp_expr env exp1 sz (Kstrictbranchif lbl ::
comp_expr env exp2 sz cont1)
end
| Lprim(Praise k, [arg], _) ->
comp_expr env arg sz (Kraise k :: discard_dead_code cont)
| Lprim(Paddint, [arg; Lconst(Const_base(Const_int n))], _)
when is_immed n ->
comp_expr env arg sz (Koffsetint n :: cont)
| Lprim(Psubint, [arg; Lconst(Const_base(Const_int n))], _)
when is_immed (-n) ->
comp_expr env arg sz (Koffsetint (-n) :: cont)
| Lprim (Poffsetint n, [arg], _)
when not (is_immed n) ->
comp_expr env arg sz
(Kpush::
Kconst (Const_base (Const_int n))::
Kaddint::cont)
| Lprim(Pmakearray (kind, _), args, loc) ->
let cont = add_pseudo_event loc !compunit_name cont in
begin match kind with
Pintarray | Paddrarray ->
comp_args env args sz (Kmakeblock(List.length args, 0) :: cont)
| Pfloatarray ->
comp_args env args sz (Kmakefloatblock(List.length args) :: cont)
| Pgenarray ->
if args = []
then Kmakeblock(0, 0) :: cont
else comp_args env args sz
(Kmakeblock(List.length args, 0) ::
Kccall("caml_make_array", 1) :: cont)
end
| Lprim (Pduparray (kind, mutability),
[Lprim (Pmakearray (kind',_),args,_)], loc) ->
assert (kind = kind');
comp_expr env (Lprim (Pmakearray (kind, mutability), args, loc)) sz cont
| Lprim (Pduparray _, [arg], loc) ->
let prim_obj_dup =
Primitive.simple ~name:"caml_obj_dup" ~arity:1 ~alloc:true
in
comp_expr env (Lprim (Pccall prim_obj_dup, [arg], loc)) sz cont
| Lprim (Pduparray _, _, _) ->
Misc.fatal_error "Bytegen.comp_expr: Pduparray takes exactly one arg"
(* Integer first for enabling further optimization (cf. emitcode.ml) *)
| Lprim (Pintcomp c, [arg ; (Lconst _ as k)], _) ->
let p = Pintcomp (swap_integer_comparison c)
and args = [k ; arg] in
comp_args env args sz (comp_primitive p args :: cont)
| Lprim (Pfloatcomp cmp, args, _) ->
let cont =
match cmp with
| CFeq -> Kccall("caml_eq_float", 2) :: cont
| CFneq -> Kccall("caml_neq_float", 2) :: cont
| CFlt -> Kccall("caml_lt_float", 2) :: cont
| CFnlt -> Kccall("caml_lt_float", 2) :: Kboolnot :: cont
| CFgt -> Kccall("caml_gt_float", 2) :: cont
| CFngt -> Kccall("caml_gt_float", 2) :: Kboolnot :: cont
| CFle -> Kccall("caml_le_float", 2) :: cont
| CFnle -> Kccall("caml_le_float", 2) :: Kboolnot :: cont
| CFge -> Kccall("caml_ge_float", 2) :: cont
| CFnge -> Kccall("caml_ge_float", 2) :: Kboolnot :: cont
in
comp_args env args sz cont
| Lprim(Pmakeblock(tag, _mut, _), args, loc) ->
let cont = add_pseudo_event loc !compunit_name cont in
comp_args env args sz (Kmakeblock(List.length args, tag) :: cont)
| Lprim(Pfloatfield n, args, loc) ->
let cont = add_pseudo_event loc !compunit_name cont in
comp_args env args sz (Kgetfloatfield n :: cont)
| Lprim(p, args, _) ->
comp_args env args sz (comp_primitive p args :: cont)
| Lstaticcatch (body, (i, vars) , handler) ->
let vars = List.map fst vars in
let nvars = List.length vars in
let branch1, cont1 = make_branch cont in
let r =
if nvars <> 1 then begin (* general case *)
let lbl_handler, cont2 =
label_code
(comp_expr
(add_vars vars (sz+1) env)
handler (sz+nvars) (add_pop nvars cont1)) in
push_static_raise i lbl_handler (sz+nvars);
push_dummies nvars
(comp_expr env body (sz+nvars)
(add_pop nvars (branch1 :: cont2)))
end else begin (* small optimization for nvars = 1 *)
let var = match vars with [var] -> var | _ -> assert false in
let lbl_handler, cont2 =
label_code
(Kpush::comp_expr
(add_var var (sz+1) env)
handler (sz+1) (add_pop 1 cont1)) in
push_static_raise i lbl_handler sz;
comp_expr env body sz (branch1 :: cont2)
end in
sz_static_raises := List.tl !sz_static_raises ;
r
| Lstaticraise (i, args) ->
let cont = discard_dead_code cont in
let label,size,tb = find_raise_label i in
let cont = branch_to label cont in
let rec loop sz tbb =
if tb == tbb then add_pop (sz-size) cont
else match tbb with
| [] -> assert false
| try_sz :: tbb -> add_pop (sz-try_sz-4) (Kpoptrap :: loop try_sz tbb)
in
let cont = loop sz !try_blocks in
begin match args with
| [arg] -> (* optim, argument passed in accumulator *)
comp_expr env arg sz cont
| _ -> comp_exit_args env args sz size cont
end
| Ltrywith(body, id, handler) ->
let (branch1, cont1) = make_branch cont in
let lbl_handler = new_label() in
let body_cont =
Kpoptrap :: branch1 ::
Klabel lbl_handler :: Kpush ::
comp_expr (add_var id (sz+1) env) handler (sz+1) (add_pop 1 cont1)
in
try_blocks := sz :: !try_blocks;
let l = comp_expr env body (sz+4) body_cont in
try_blocks := List.tl !try_blocks;
Kpushtrap lbl_handler :: l
| Lifthenelse(cond, ifso, ifnot) ->
comp_binary_test env cond ifso ifnot sz cont
| Lsequence(exp1, exp2) ->
comp_expr env exp1 sz (comp_expr env exp2 sz cont)
| Lwhile(cond, body) ->
let lbl_loop = new_label() in
let lbl_test = new_label() in
Kbranch lbl_test :: Klabel lbl_loop :: Kcheck_signals ::
comp_expr env body sz
(Klabel lbl_test ::
comp_expr env cond sz (Kbranchif lbl_loop :: add_const_unit cont))
| Lfor(param, start, stop, dir, body) ->
let lbl_loop = new_label() in
let lbl_exit = new_label() in
let offset = match dir with Upto -> 1 | Downto -> -1 in
let comp = match dir with Upto -> Cgt | Downto -> Clt in
comp_expr env start sz
(Kpush :: comp_expr env stop (sz+1)
(Kpush :: Kpush :: Kacc 2 :: Kintcomp comp :: Kbranchif lbl_exit ::
Klabel lbl_loop :: Kcheck_signals ::
comp_expr (add_var param (sz+1) env) body (sz+2)
(Kacc 1 :: Kpush :: Koffsetint offset :: Kassign 2 ::
Kacc 1 :: Kintcomp Cne :: Kbranchif lbl_loop ::
Klabel lbl_exit :: add_const_unit (add_pop 2 cont))))
| Lswitch(arg, sw, _loc) ->
let (branch, cont1) = make_branch cont in
let c = ref (discard_dead_code cont1) in
(* Build indirection vectors *)
let store = Storer.mk_store () in
let act_consts = Array.make sw.sw_numconsts 0
and act_blocks = Array.make sw.sw_numblocks 0 in
begin match sw.sw_failaction with (* default is index 0 *)
| Some fail -> ignore (store.act_store () fail)
| None -> ()
end ;
List.iter
(fun (n, act) -> act_consts.(n) <- store.act_store () act) sw.sw_consts;
List.iter
(fun (n, act) -> act_blocks.(n) <- store.act_store () act) sw.sw_blocks;
(* Compile and label actions *)
let acts = store.act_get () in
(*
let a = store.act_get_shared () in
Array.iter
(function
| Switch.Shared (Lstaticraise _) -> ()
| Switch.Shared act ->
Printlambda.lambda Format.str_formatter act ;
Printf.eprintf "SHARE BYTE:\n%s\n" (Format.flush_str_formatter ())
| _ -> ())
a ;
*)
let lbls = Array.make (Array.length acts) 0 in
for i = Array.length acts-1 downto 0 do
let lbl,c1 = label_code (comp_expr env acts.(i) sz (branch :: !c)) in
lbls.(i) <- lbl ;
c := discard_dead_code c1
done ;
(* Build label vectors *)
let lbl_blocks = Array.make sw.sw_numblocks 0 in
for i = sw.sw_numblocks - 1 downto 0 do
lbl_blocks.(i) <- lbls.(act_blocks.(i))
done;
let lbl_consts = Array.make sw.sw_numconsts 0 in
for i = sw.sw_numconsts - 1 downto 0 do
lbl_consts.(i) <- lbls.(act_consts.(i))
done;
comp_expr env arg sz (Kswitch(lbl_consts, lbl_blocks) :: !c)
| Lstringswitch (arg,sw,d,loc) ->
comp_expr env (Matching.expand_stringswitch loc arg sw d) sz cont
| Lassign(id, expr) ->
begin try
let pos = Ident.find_same id env.ce_stack in
comp_expr env expr sz (Kassign(sz - pos) :: cont)
with Not_found ->
fatal_error "Bytegen.comp_expr: assign"
end
| Levent(lam, lev) ->
let ev_defname = match lev.lev_loc with
| Loc_unknown -> "??"
| Loc_known { loc = _; scopes } -> string_of_scopes scopes in
let event kind info =
{ ev_pos = 0; (* patched in emitcode *)
ev_module = !compunit_name;
ev_loc = to_location lev.lev_loc;
ev_kind = kind;
ev_defname;
ev_info = info;
ev_typenv = Env.summary lev.lev_env;
ev_typsubst = Subst.identity;
ev_compenv = env;
ev_stacksize = sz;
ev_repr =
begin match lev.lev_repr with
None ->
Event_none
| Some ({contents = 1} as repr) when lev.lev_kind = Lev_function ->
Event_child repr
| Some ({contents = 1} as repr) ->
Event_parent repr
| Some repr when lev.lev_kind = Lev_function ->
Event_parent repr
| Some repr ->
Event_child repr
end }
in
begin match lev.lev_kind with
Lev_before ->
let c = comp_expr env lam sz cont in
let ev = event Event_before Event_other in
add_event ev c
| Lev_function ->
let c = comp_expr env lam sz cont in
let ev = event Event_pseudo Event_function in
add_event ev c
| Lev_pseudo ->
let c = comp_expr env lam sz cont in
let ev = event Event_pseudo Event_other in
add_event ev c
| Lev_after ty ->
let preserve_tailcall =
match lam with
| Lprim(prim, _, _) -> preserve_tailcall_for_prim prim
| _ -> true
in
if preserve_tailcall && is_tailcall cont then
(* don't destroy tail call opt *)
comp_expr env lam sz cont
else begin
let info =
match lam with
Lapply{ap_args = args} -> Event_return (List.length args)
| Lsend(_, _, _, args, _) -> Event_return (List.length args + 1)
| Lprim(_,args,_) -> Event_return (List.length args)
| _ -> Event_other
in
let ev = event (Event_after ty) info in
let cont1 = add_event ev cont in
comp_expr env lam sz cont1
end
| Lev_module_definition _ ->
comp_expr env lam sz cont
end
| Lifused (_, exp) ->
comp_expr env exp sz cont
(* Compile a list of arguments [e1; ...; eN] to a primitive operation.
The values of eN ... e2 are pushed on the stack, e2 at top of stack,
then e3, then ... The value of e1 is left in the accumulator. *)
and comp_args env argl sz cont =
comp_expr_list env (List.rev argl) sz cont
and comp_expr_list env exprl sz cont = match exprl with
[] -> cont
| [exp] -> comp_expr env exp sz cont
| exp :: rem ->
comp_expr env exp sz (Kpush :: comp_expr_list env rem (sz+1) cont)
and comp_exit_args env argl sz pos cont =
comp_expr_list_assign env (List.rev argl) sz pos cont
and comp_expr_list_assign env exprl sz pos cont = match exprl with
| [] -> cont
| exp :: rem ->
comp_expr env exp sz
(Kassign (sz-pos)::comp_expr_list_assign env rem sz (pos-1) cont)
(* Compile an if-then-else test. *)
and comp_binary_test env cond ifso ifnot sz cont =
let cont_cond =
if ifnot = Lconst const_unit then begin
let (lbl_end, cont1) = label_code cont in
Kstrictbranchifnot lbl_end :: comp_expr env ifso sz cont1
end else
match code_as_jump ifso sz with
| Some label ->
let cont = comp_expr env ifnot sz cont in
Kbranchif label :: cont
| _ ->
match code_as_jump ifnot sz with
| Some label ->
let cont = comp_expr env ifso sz cont in
Kbranchifnot label :: cont
| _ ->
let (branch_end, cont1) = make_branch cont in
let (lbl_not, cont2) = label_code(comp_expr env ifnot sz cont1) in
Kbranchifnot lbl_not ::
comp_expr env ifso sz (branch_end :: cont2) in
comp_expr env cond sz cont_cond
(**** Compilation of a code block (with tracking of stack usage) ****)
let comp_block env exp sz cont =
max_stack_used := 0;
let code = comp_expr env exp sz cont in
let used_safe = !max_stack_used + Config.stack_safety_margin in
if used_safe > Config.stack_threshold then
Kconst(Const_base(Const_int used_safe)) ::
Kccall("caml_ensure_stack_capacity", 1) ::
code
else
code
(**** Compilation of functions ****)
let comp_function tc cont =
let arity = List.length tc.params in
let rec positions pos delta = function
[] -> Ident.empty
| id :: rem -> Ident.add id pos (positions (pos + delta) delta rem) in
let env =
{ ce_stack = positions arity (-1) tc.params;
ce_heap = positions (3 * (tc.num_defs - tc.rec_pos) - 1) 1 tc.free_vars;
ce_rec = positions (-3 * tc.rec_pos) 3 tc.rec_vars } in
let cont =
comp_block env tc.body arity (Kreturn arity :: cont) in
if arity > 1 then
Krestart :: Klabel tc.label :: Kgrab(arity - 1) :: cont
else
Klabel tc.label :: cont
let comp_remainder cont =
let c = ref cont in
begin try
while true do
c := comp_function (Stack.pop functions_to_compile) !c
done
with Stack.Empty ->
()
end;
!c
(**** Compilation of a lambda phrase ****)
let compile_implementation modulename expr =
Stack.clear functions_to_compile;
label_counter := 0;
sz_static_raises := [] ;
compunit_name := modulename;
let init_code = comp_block empty_env expr 0 [] in
if Stack.length functions_to_compile > 0 then begin
let lbl_init = new_label() in
Kbranch lbl_init :: comp_remainder (Klabel lbl_init :: init_code)
end else
init_code
let compile_phrase expr =
Stack.clear functions_to_compile;
label_counter := 0;
sz_static_raises := [] ;
let init_code = comp_block empty_env expr 1 [Kreturn 1] in
let fun_code = comp_remainder [] in
(init_code, fun_code)
let reset () =
label_counter := 0;
sz_static_raises := [];
compunit_name := "";
Stack.clear functions_to_compile;
max_stack_used := 0