emit_nt is not needed anymore.

git-svn-id: http://caml.inria.fr/svn/ocaml/branches/abstract_intel_emit@15179 f963ae5c-01c2-4b8c-9fe0-0dff7051ff02
master
Alain Frisch 2014-09-02 14:58:33 +00:00
parent dfe5d892d9
commit 46b8de0b24
2 changed files with 0 additions and 1688 deletions

View File

@ -1,795 +0,0 @@
(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Emission of x86-64 (AMD 64) assembly code, MASM syntax *)
module StringSet =
Set.Make(struct type t = string let compare (x:t) y = compare x y end)
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
let rdx = phys_reg 4
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
let stack_offset = ref 0
(* Layout of the stack frame *)
let frame_required () =
!contains_calls || num_stack_slots.(0) > 0 || num_stack_slots.(1) > 0
let frame_size () = (* includes return address *)
if frame_required() then begin
let sz =
(!stack_offset + 8 * (num_stack_slots.(0) + num_stack_slots.(1)) + 8)
in Misc.align sz 16
end else
!stack_offset + 8
let slot_offset loc cl =
match loc with
Incoming n -> frame_size() + n
| Local n ->
if cl = 0
then !stack_offset + n * 8
else !stack_offset + (num_stack_slots.(0) + n) * 8
| Outgoing n -> n
(* Output a 32 or 64 bit integer in hex *)
let emit_int32 n = emit_printf "0%lxh" n
let emit_int64 n = emit_printf "0%Lxh" n
(* Symbols *)
let emit_symbol s =
Emitaux.emit_symbol '$' s
(* Record symbols used and defined - at the end generate extern for those
used but not defined *)
let symbols_defined = ref StringSet.empty
let symbols_used = ref StringSet.empty
let add_def_symbol s =
symbols_defined := StringSet.add s !symbols_defined
let add_used_symbol s =
symbols_used := StringSet.add s !symbols_used
(* Output a label *)
let emit_label lbl =
emit_string "L"; emit_int lbl
let emit_data_label lbl =
emit_string "Ld"; emit_int lbl
(* Output a .align directive. *)
let emit_align n =
` ALIGN {emit_int n}\n`
let emit_Llabel fallthrough lbl =
if not fallthrough && !fastcode_flag then emit_align 4;
emit_label lbl
(* Output a pseudo-register *)
let emit_reg = function
{ loc = Reg r } ->
emit_string (register_name r)
| { loc = Stack s; typ = Float } as r ->
let ofs = slot_offset s (register_class r) in
`REAL8 PTR {emit_int ofs}[rsp]`
| { loc = Stack s; typ = _ } as r ->
let ofs = slot_offset s (register_class r) in
`QWORD PTR {emit_int ofs}[rsp]`
| { loc = Unknown } ->
assert false
(* Output a reference to the lower 8, 16 or 32 bits of a register *)
let reg_low_8_name =
[| "al"; "bl"; "dil"; "sil"; "dl"; "cl"; "r8b"; "r9b";
"r12b"; "r13b"; "r10b"; "r11b"; "bpl" |]
let reg_low_16_name =
[| "ax"; "bx"; "di"; "si"; "dx"; "cx"; "r8w"; "r9w";
"r12w"; "r13w"; "r10w"; "r11w"; "bp" |]
let reg_low_32_name =
[| "eax"; "ebx"; "edi"; "esi"; "edx"; "ecx"; "r8d"; "r9d";
"r12d"; "r13d"; "r10d"; "r11d"; "ebp" |]
let emit_subreg tbl pref r =
match r.loc with
Reg r when r < 13 ->
emit_string tbl.(r)
| Stack s ->
let ofs = slot_offset s (register_class r) in
`{emit_string pref} PTR {emit_int ofs}[rsp]`
| _ ->
assert false
let emit_reg8 r = emit_subreg reg_low_8_name "BYTE" r
let emit_reg16 r = emit_subreg reg_low_16_name "WORD" r
let emit_reg32 r = emit_subreg reg_low_32_name "DWORD" r
(* Output an addressing mode *)
let emit_signed_int d =
if d > 0 then emit_char '+';
if d <> 0 then emit_int d
let emit_addressing addr r n =
match addr with
Ibased(s, d) ->
add_used_symbol s;
`{emit_symbol s}{emit_signed_int d}`
| Iindexed d ->
`[{emit_reg r.(n)}{emit_signed_int d}]`
| Iindexed2 d ->
`[{emit_reg r.(n)}+{emit_reg r.(n+1)}{emit_signed_int d}]`
| Iscaled(2, d) ->
`[{emit_reg r.(n)}+{emit_reg r.(n)}{emit_signed_int d}]`
| Iscaled(scale, d) ->
`[{emit_reg r.(n)}*{emit_int scale}{emit_signed_int d}]`
| Iindexed2scaled(scale, d) ->
`[{emit_reg r.(n)}+{emit_reg r.(n+1)}*{emit_int scale}{emit_signed_int d}]`
(* Record live pointers at call points *)
let record_frame_label live dbg =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := ((r lsl 1) + 1) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset;
fd_debuginfo = dbg } :: !frame_descriptors;
lbl
let record_frame live dbg =
let lbl = record_frame_label live dbg in `{emit_label lbl}:\n`
(* Record calls to the GC -- we've moved them out of the way *)
type gc_call =
{ gc_lbl: label; (* Entry label *)
gc_return_lbl: label; (* Where to branch after GC *)
gc_frame: label } (* Label of frame descriptor *)
let call_gc_sites = ref ([] : gc_call list)
let emit_call_gc gc =
`{emit_label gc.gc_lbl}: call {emit_symbol "caml_call_gc"}\n`;
`{emit_label gc.gc_frame}: jmp {emit_label gc.gc_return_lbl}\n`
(* Record calls to caml_ml_array_bound_error.
In -g mode, we maintain one call to caml_ml_array_bound_error
per bound check site. Without -g, we can share a single call. *)
type bound_error_call =
{ bd_lbl: label; (* Entry label *)
bd_frame: label } (* Label of frame descriptor *)
let bound_error_sites = ref ([] : bound_error_call list)
let bound_error_call = ref 0
let bound_error_label dbg =
if !Clflags.debug then begin
let lbl_bound_error = new_label() in
let lbl_frame = record_frame_label Reg.Set.empty dbg in
bound_error_sites :=
{ bd_lbl = lbl_bound_error; bd_frame = lbl_frame } :: !bound_error_sites;
lbl_bound_error
end else begin
if !bound_error_call = 0 then bound_error_call := new_label();
!bound_error_call
end
let emit_call_bound_error bd =
`{emit_label bd.bd_lbl}: call caml_ml_array_bound_error\n`;
`{emit_label bd.bd_frame}:\n`
let emit_call_bound_errors () =
List.iter emit_call_bound_error !bound_error_sites;
if !bound_error_call > 0 then
`{emit_label !bound_error_call}: call caml_ml_array_bound_error\n`
(* Names for instructions *)
let instr_for_intop = function
Iadd -> "add"
| Isub -> "sub"
| Imul -> "imul"
| Iand -> "and"
| Ior -> "or"
| Ixor -> "xor"
| Ilsl -> "sal"
| Ilsr -> "shr"
| Iasr -> "sar"
| _ -> assert false
let instr_for_floatop = function
Iaddf -> "addsd"
| Isubf -> "subsd"
| Imulf -> "mulsd"
| Idivf -> "divsd"
| _ -> assert false
let instr_for_floatarithmem = function
Ifloatadd -> "addsd"
| Ifloatsub -> "subsd"
| Ifloatmul -> "mulsd"
| Ifloatdiv -> "divsd"
let name_for_cond_branch = function
Isigned Ceq -> "e" | Isigned Cne -> "ne"
| Isigned Cle -> "le" | Isigned Cgt -> "g"
| Isigned Clt -> "l" | Isigned Cge -> "ge"
| Iunsigned Ceq -> "e" | Iunsigned Cne -> "ne"
| Iunsigned Cle -> "be" | Iunsigned Cgt -> "a"
| Iunsigned Clt -> "b" | Iunsigned Cge -> "ae"
(* Output an = 0 or <> 0 test. *)
let output_test_zero arg =
match arg.loc with
Reg r -> ` test {emit_reg arg}, {emit_reg arg}\n`
| _ -> ` cmp {emit_reg arg}, 0\n`
(* Output a floating-point compare and branch *)
let emit_float_test cmp neg arg lbl =
(* Effect of comisd on flags and conditional branches:
ZF PF CF cond. branches taken
unordered 1 1 1 je, jb, jbe, jp
> 0 0 0 jne, jae, ja
< 0 0 1 jne, jbe, jb
= 1 0 0 je, jae, jbe.
If FP traps are on (they are off by default),
comisd traps on QNaN and SNaN but ucomisd traps on SNaN only.
*)
match (cmp, neg) with
| (Ceq, false) | (Cne, true) ->
let next = new_label() in
` ucomisd {emit_reg arg.(0)}, {emit_reg arg.(1)}\n`;
` jp {emit_label next}\n`; (* skip if unordered *)
` je {emit_label lbl}\n`; (* branch taken if x=y *)
`{emit_label next}:\n`
| (Cne, false) | (Ceq, true) ->
` ucomisd {emit_reg arg.(0)}, {emit_reg arg.(1)}\n`;
` jp {emit_label lbl}\n`; (* branch taken if unordered *)
` jne {emit_label lbl}\n` (* branch taken if x<y or x>y *)
| (Clt, _) ->
` comisd {emit_reg arg.(1)}, {emit_reg arg.(0)}\n`; (* swap compare *)
if not neg then
` ja {emit_label lbl}\n` (* branch taken if y>x i.e. x<y *)
else
` jbe {emit_label lbl}\n` (* taken if unordered or y<=x i.e. !(x<y) *)
| (Cle, _) ->
` comisd {emit_reg arg.(1)}, {emit_reg arg.(0)}\n`; (* swap compare *)
if not neg then
` jae {emit_label lbl}\n` (* branch taken if y>=x i.e. x<=y *)
else
` jb {emit_label lbl}\n` (* taken if unordered or y<x i.e. !(x<=y) *)
| (Cgt, _) ->
` comisd {emit_reg arg.(0)}, {emit_reg arg.(1)}\n`;
if not neg then
` ja {emit_label lbl}\n` (* branch taken if x>y *)
else
` jbe {emit_label lbl}\n` (* taken if unordered or x<=y i.e. !(x>y) *)
| (Cge, _) ->
` comisd {emit_reg arg.(0)}, {emit_reg arg.(1)}\n`; (* swap compare *)
if not neg then
` jae {emit_label lbl}\n` (* branch taken if x>=y *)
else
` jb {emit_label lbl}\n` (* taken if unordered or x<y i.e. !(x>=y) *)
(* Deallocate the stack frame before a return or tail call *)
let output_epilogue () =
if frame_required() then begin
let n = frame_size() - 8 in
` add rsp, {emit_int n}\n`
end
(* Floating-point constants *)
let float_constants = ref ([] : (int64 * int) list)
let add_float_constant cst =
let repr = Int64.bits_of_float cst in
try
List.assoc repr !float_constants
with
Not_found ->
let lbl = new_label() in
float_constants := (repr, lbl) :: !float_constants;
lbl
let emit_float_constant (cst, lbl) =
`{emit_label lbl} QWORD {emit_int64 cst}\n`
let emit_movabs reg n =
(* force ml64 to use mov reg, imm64 instruction *)
` mov {emit_reg reg}, {emit_printf "0%nxH" n}\n`
(* Output the assembly code for an instruction *)
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
let emit_instr fallthrough i =
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then begin
match src.typ, src.loc, dst.loc with
Float, Reg _, Reg _ ->
` movapd {emit_reg dst}, {emit_reg src}\n`
| Float, _, _ ->
` movsd {emit_reg dst}, {emit_reg src}\n`
| _ ->
` mov {emit_reg dst}, {emit_reg src}\n`
end
| Lop(Iconst_int n | Iconst_blockheader n) ->
if n = 0n then begin
match i.res.(0).loc with
Reg n -> ` xor {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| _ -> ` mov {emit_reg i.res.(0)}, 0\n`
end else if n >= -0x80000000n && n <= 0x7FFFFFFFn then
` mov {emit_reg i.res.(0)}, {emit_nativeint n}\n`
else if n >= 0x80000000n && n <= 0xFFFFFFFFn then
(* work around bug in ml64 *)
` mov {emit_reg32 i.res.(0)}, {emit_nativeint n}\n`
else
emit_movabs i.res.(0) n
| Lop(Iconst_float f) ->
begin match Int64.bits_of_float f with
| 0x0000_0000_0000_0000L -> (* +0.0 *)
` xorpd {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| _ ->
let lbl = add_float_constant f in
` movsd {emit_reg i.res.(0)}, {emit_label lbl}\n`
end
| Lop(Iconst_symbol s) ->
add_used_symbol s;
if !pic_code then
` lea {emit_reg i.res.(0)}, {emit_symbol s}\n`
else
` mov {emit_reg i.res.(0)}, OFFSET {emit_symbol s}\n`
| Lop(Icall_ind) ->
` call {emit_reg i.arg.(0)}\n`;
record_frame i.live i.dbg
| Lop(Icall_imm s) ->
add_used_symbol s;
` call {emit_symbol s}\n`;
record_frame i.live i.dbg
| Lop(Itailcall_ind) ->
output_epilogue();
` jmp {emit_reg i.arg.(0)}\n`
| Lop(Itailcall_imm s) ->
if s = !function_name then
` jmp {emit_label !tailrec_entry_point}\n`
else begin
add_used_symbol s;
output_epilogue();
` jmp {emit_symbol s}\n`
end
| Lop(Iextcall(s, alloc)) ->
add_used_symbol s;
if alloc then begin
` lea rax, {emit_symbol s}\n`;
` call {emit_symbol "caml_c_call"}\n`;
record_frame i.live i.dbg
end else begin
` call {emit_symbol s}\n`
end
| Lop(Istackoffset n) ->
if n < 0
then ` add rsp, {emit_int(-n)}\n`
else ` sub rsp, {emit_int(n)}\n`;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let dest = i.res.(0) in
begin match chunk with
| Word ->
` mov {emit_reg dest}, QWORD PTR {emit_addressing addr i.arg 0}\n`
| Byte_unsigned ->
` movzx {emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n`
| Byte_signed ->
` movsx {emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n`
| Sixteen_unsigned ->
` movzx {emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n`
| Sixteen_signed ->
` movsx {emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n`
| Thirtytwo_unsigned ->
(* load to low 32 bits sets high 32 bits to 0 *)
` mov {emit_reg32 dest}, DWORD PTR {emit_addressing addr i.arg 0}\n`
| Thirtytwo_signed ->
` movsxd {emit_reg dest}, DWORD PTR {emit_addressing addr i.arg 0}\n`
| Single ->
` cvtss2sd {emit_reg dest}, REAL4 PTR {emit_addressing addr i.arg 0}\n`
| Double | Double_u ->
` movsd {emit_reg dest}, REAL8 PTR {emit_addressing addr i.arg 0}\n`
end
| Lop(Istore(chunk, addr, _)) ->
begin match chunk with
| Word ->
` mov QWORD PTR {emit_addressing addr i.arg 1}, {emit_reg i.arg.(0)}\n`
| Byte_unsigned | Byte_signed ->
` mov BYTE PTR {emit_addressing addr i.arg 1}, {emit_reg8 i.arg.(0)}\n`
| Sixteen_unsigned | Sixteen_signed ->
` mov WORD PTR {emit_addressing addr i.arg 1}, {emit_reg16 i.arg.(0)}\n`
| Thirtytwo_signed | Thirtytwo_unsigned ->
` mov DWORD PTR {emit_addressing addr i.arg 1}, {emit_reg32 i.arg.(0)}\n`
| Single ->
` cvtsd2ss xmm15, {emit_reg i.arg.(0)}\n`;
` movss REAL4 PTR {emit_addressing addr i.arg 1}, xmm15\n`
| Double | Double_u ->
` movsd REAL8 PTR {emit_addressing addr i.arg 1}, {emit_reg i.arg.(0)}\n`
end
| Lop(Ialloc n) ->
if !fastcode_flag then begin
let lbl_redo = new_label() in
`{emit_label lbl_redo}: sub r15, {emit_int n}\n`;
` cmp r15, {emit_symbol "caml_young_limit"}\n`;
let lbl_call_gc = new_label() in
let lbl_frame = record_frame_label i.live Debuginfo.none in
` jb {emit_label lbl_call_gc}\n`;
` lea {emit_reg i.res.(0)}, [r15+8]\n`;
call_gc_sites :=
{ gc_lbl = lbl_call_gc;
gc_return_lbl = lbl_redo;
gc_frame = lbl_frame } :: !call_gc_sites
end else begin
begin match n with
16 -> ` call {emit_symbol "caml_alloc1"}\n`
| 24 -> ` call {emit_symbol "caml_alloc2"}\n`
| 32 -> ` call {emit_symbol "caml_alloc3"}\n`
| _ -> ` mov rax, {emit_int n}\n`;
` call {emit_symbol "caml_allocN"}\n`
end;
`{record_frame i.live Debuginfo.none} lea {emit_reg i.res.(0)}, [r15+8]\n`
end
| Lop(Iintop(Icomp cmp)) ->
` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} al\n`;
` movzx {emit_reg i.res.(0)}, al\n`
| Lop(Iintop_imm(Icomp cmp, n)) ->
` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} al\n`;
` movzx {emit_reg i.res.(0)}, al\n`
| Lop(Iintop Icheckbound) ->
let lbl = bound_error_label i.dbg in
` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` jbe {emit_label lbl}\n`
| Lop(Iintop_imm(Icheckbound, n)) ->
let lbl = bound_error_label i.dbg in
` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`;
` jbe {emit_label lbl}\n`
| Lop(Iintop(Idiv | Imod)) ->
` cqo\n`;
` idiv {emit_reg i.arg.(1)}\n`
| Lop(Iintop(Ilsl | Ilsr | Iasr as op)) ->
(* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %rcx *)
` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, cl\n`
| Lop(Iintop Imulh) ->
` imul {emit_reg i.arg.(1)}\n`
| Lop(Iintop op) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, {emit_reg i.arg.(1)}\n`
| Lop(Iintop_imm(Iadd, n)) when i.arg.(0).loc <> i.res.(0).loc ->
` lea {emit_reg i.res.(0)}, {emit_int n}[{emit_reg i.arg.(0)}]\n`
| Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) ->
` inc {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) ->
` dec {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(op, n)) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, {emit_int n}\n`
| Lop(Inegf) ->
` xorpd {emit_reg i.res.(0)}, {emit_symbol "caml_negf_mask"}\n`
| Lop(Iabsf) ->
` andpd {emit_reg i.res.(0)}, {emit_symbol "caml_absf_mask"}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf as floatop) ->
` {emit_string(instr_for_floatop floatop)} {emit_reg i.res.(0)}, {emit_reg i.arg.(1)}\n`
| Lop(Ifloatofint) ->
` cvtsi2sd {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`
| Lop(Iintoffloat) ->
` cvttsd2si {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`
| Lop(Ispecific(Ilea addr)) ->
` lea {emit_reg i.res.(0)}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Istore_int(n, addr, _))) ->
` mov QWORD PTR {emit_addressing addr i.arg 0}, {emit_nativeint n}\n`
| Lop(Ispecific(Istore_symbol(s, addr, _))) ->
assert (not !pic_code);
add_used_symbol s;
` mov QWORD PTR {emit_addressing addr i.arg 0}, OFFSET {emit_symbol s}\n`
| Lop(Ispecific(Ioffset_loc(n, addr))) ->
` add QWORD PTR {emit_addressing addr i.arg 0}, {emit_int n}\n`
| Lop(Ispecific(Ifloatarithmem(op, addr))) ->
` {emit_string(instr_for_floatarithmem op)} {emit_reg i.res.(0)}, REAL8 PTR {emit_addressing addr i.arg 1}\n`
| Lop(Ispecific(Ibswap size)) ->
begin match size with
| 16 ->
` xchg ah, al\n`;
` movzx {emit_reg i.res.(0)}, {emit_reg16 i.res.(0)}\n`
| 32 ->
` bswap {emit_reg32 i.res.(0)}\n`;
` movsxd {emit_reg i.res.(0)}, {emit_reg32 i.res.(0)}\n`
| 64 ->
` bswap {emit_reg i.res.(0)}\n`
| _ -> assert false
end
| Lop(Ispecific Isqrtf) ->
` sqrtsd {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`
| Lop(Ispecific(Ifloatsqrtf addr)) ->
` sqrtsd {emit_reg i.res.(0)}, REAL8 PTR {emit_addressing addr i.arg 0}\n`
| Lreloadretaddr ->
()
| Lreturn ->
output_epilogue();
` ret\n`
| Llabel lbl ->
`{emit_Llabel fallthrough lbl}:\n`
| Lbranch lbl ->
` jmp {emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
output_test_zero i.arg.(0);
` jne {emit_label lbl}\n`
| Ifalsetest ->
output_test_zero i.arg.(0);
` je {emit_label lbl}\n`
| Iinttest cmp ->
` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm((Isigned Ceq | Isigned Cne |
Iunsigned Ceq | Iunsigned Cne) as cmp, 0) ->
output_test_zero i.arg.(0);
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Ifloattest(cmp, neg) ->
emit_float_test cmp neg i.arg lbl
| Ioddtest ->
` test {emit_reg8 i.arg.(0)}, 1\n`;
` jne {emit_label lbl}\n`
| Ieventest ->
` test {emit_reg8 i.arg.(0)}, 1\n`;
` je {emit_label lbl}\n`
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` cmp {emit_reg i.arg.(0)}, 1\n`;
begin match lbl0 with
None -> ()
| Some lbl -> ` jb {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` je {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` jg {emit_label lbl}\n`
end
| Lswitch jumptbl ->
let lbl = new_label() in
(* rax and rdx are clobbered by the Lswitch,
meaning that no variable that is live across the Lswitch
is assigned to rax or rdx. However, the argument to Lswitch
can still be assigned to one of these two registers, so
we must be careful not to clobber it before use. *)
let (tmp1, tmp2) =
if i.arg.(0).loc = Reg 0 (* rax *)
then (phys_reg 4 (*rdx*), phys_reg 0 (*rax*))
else (phys_reg 0 (*rax*), phys_reg 4 (*rdx*)) in
` lea {emit_reg tmp1}, {emit_label lbl}\n`;
` movsxd {emit_reg tmp2}, DWORD PTR [{emit_reg tmp1}+{emit_reg i.arg.(0)}*4]\n`;
` add {emit_reg tmp1}, {emit_reg tmp2}\n`;
` jmp {emit_reg tmp1}\n`;
emit_align 4;
`{emit_label lbl} LABEL DWORD\n`;
for i = 0 to Array.length jumptbl - 1 do
` DWORD {emit_label jumptbl.(i)} - {emit_label lbl}\n`
done
| Lsetuptrap lbl ->
` call {emit_label lbl}\n`
| Lpushtrap ->
` push r14\n`;
` mov r14, rsp\n`;
stack_offset := !stack_offset + 16
| Lpoptrap ->
` pop r14\n`;
` add rsp, 8\n`;
stack_offset := !stack_offset - 16
| Lraise k ->
begin match !Clflags.debug, k with
| true, Lambda.Raise_regular ->
` call caml_raise_exn\n`;
record_frame Reg.Set.empty i.dbg
| true, Lambda.Raise_reraise ->
` call caml_reraise_exn\n`;
record_frame Reg.Set.empty i.dbg
| false, _
| true, Lambda.Raise_notrace ->
` mov rsp, r14\n`;
` pop r14\n`;
` ret\n`
end
let rec emit_all fallthrough i =
match i.desc with
| Lend -> ()
| _ ->
emit_instr fallthrough i;
emit_all (Linearize.has_fallthrough i.desc) i.next
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
tailrec_entry_point := new_label();
stack_offset := 0;
call_gc_sites := [];
bound_error_sites := [];
bound_error_call := 0;
` .CODE\n`;
emit_align 16;
add_def_symbol fundecl.fun_name;
` PUBLIC {emit_symbol fundecl.fun_name}\n`;
`{emit_symbol fundecl.fun_name}:\n`;
if frame_required() then begin
let n = frame_size() - 8 in
` sub rsp, {emit_int n}\n`
end;
`{emit_label !tailrec_entry_point}:\n`;
emit_all true fundecl.fun_body;
List.iter emit_call_gc !call_gc_sites;
emit_call_bound_errors()
(* Emission of data *)
let emit_item = function
Cglobal_symbol s ->
` PUBLIC {emit_symbol s}\n`;
| Cdefine_symbol s ->
add_def_symbol s;
`{emit_symbol s} LABEL QWORD\n`
| Cdefine_label lbl ->
`{emit_data_label lbl} LABEL QWORD\n`
| Cint8 n ->
` BYTE {emit_int n}\n`
| Cint16 n ->
` WORD {emit_int n}\n`
| Cint32 n ->
` DWORD {emit_nativeint n}\n`
| Cint n ->
` QWORD {emit_nativeint n}\n`
| Csingle f ->
` DWORD {emit_int32 (Int32.bits_of_float f)}\n`
| Cdouble f ->
` QWORD {emit_int64 (Int64.bits_of_float f)}\n`
| Csymbol_address s ->
add_used_symbol s;
` QWORD {emit_symbol s}\n`
| Clabel_address lbl ->
` QWORD {emit_data_label lbl}\n`
| Cstring s ->
emit_bytes_directive " BYTE " s
| Cskip n ->
if n > 0 then ` BYTE {emit_int n} DUP (?)\n`
| Calign n ->
emit_align n
let data l =
` .DATA\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
float_constants := [];
` EXTRN caml_young_ptr: QWORD\n`;
` EXTRN caml_young_limit: QWORD\n`;
` EXTRN caml_exception_pointer: QWORD\n`;
` EXTRN caml_absf_mask: QWORD\n`;
` EXTRN caml_negf_mask: QWORD\n`;
` EXTRN caml_call_gc: NEAR\n`;
` EXTRN caml_c_call: NEAR\n`;
` EXTRN caml_allocN: NEAR\n`;
` EXTRN caml_alloc1: NEAR\n`;
` EXTRN caml_alloc2: NEAR\n`;
` EXTRN caml_alloc3: NEAR\n`;
` EXTRN caml_ml_array_bound_error: NEAR\n`;
` EXTRN caml_raise_exn: NEAR\n`;
` EXTRN caml_reraise_exn: NEAR\n`;
let lbl_begin = Compilenv.make_symbol (Some "data_begin") in
add_def_symbol lbl_begin;
` .DATA\n`;
` PUBLIC {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin} LABEL QWORD\n`;
let lbl_begin = Compilenv.make_symbol (Some "code_begin") in
add_def_symbol lbl_begin;
` .CODE\n`;
` PUBLIC {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin} LABEL QWORD\n`
let end_assembly() =
if !float_constants <> [] then begin
` .DATA\n`;
List.iter emit_float_constant !float_constants
end;
let lbl_end = Compilenv.make_symbol (Some "code_end") in
add_def_symbol lbl_end;
` .CODE\n`;
` PUBLIC {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end} LABEL QWORD\n`;
` .DATA\n`;
let lbl_end = Compilenv.make_symbol (Some "data_end") in
add_def_symbol lbl_end;
` PUBLIC {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end} LABEL QWORD\n`;
` QWORD 0\n`;
let lbl = Compilenv.make_symbol (Some "frametable") in
add_def_symbol lbl;
` PUBLIC {emit_symbol lbl}\n`;
`{emit_symbol lbl} LABEL QWORD\n`;
emit_frames
{ efa_label = (fun l -> ` QWORD {emit_label l}\n`);
efa_16 = (fun n -> ` WORD {emit_int n}\n`);
efa_32 = (fun n -> ` DWORD {emit_int32 n}\n`);
efa_word = (fun n -> ` QWORD {emit_int n}\n`);
efa_align = emit_align;
efa_label_rel = (fun lbl ofs ->
` DWORD {emit_label lbl} - THIS BYTE + {emit_int32 ofs}\n`);
efa_def_label = (fun l -> `{emit_label l} LABEL QWORD\n`);
efa_string = (fun s -> emit_bytes_directive " BYTE " (s ^ "\000")) };
`\n;External functions\n\n`;
StringSet.iter
(fun s ->
if not (StringSet.mem s !symbols_defined) then
` EXTRN {emit_symbol s}: NEAR\n`)
!symbols_used;
symbols_used := StringSet.empty;
symbols_defined := StringSet.empty;
`END\n`

View File

@ -1,893 +0,0 @@
(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Emission of Intel 386 assembly code, MASM syntax. *)
module StringSet =
Set.Make(struct type t = string let compare (x:t) y = compare x y end)
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
(* Layout of the stack frame *)
let stack_offset = ref 0
let frame_size () = (* includes return address *)
!stack_offset + 4 * num_stack_slots.(0) + 8 * num_stack_slots.(1) + 4
let slot_offset loc cl =
match loc with
Incoming n ->
assert (n >= 0);
frame_size() + n
| Local n ->
if cl = 0
then !stack_offset + n * 4
else !stack_offset + num_stack_slots.(0) * 4 + n * 8
| Outgoing n ->
assert (n >= 0);
n
(* Record symbols used and defined - at the end generate extern for those
used but not defined *)
let symbols_defined = ref StringSet.empty
let symbols_used = ref StringSet.empty
let add_def_symbol s =
symbols_defined := StringSet.add s !symbols_defined
let add_used_symbol s =
symbols_used := StringSet.add s !symbols_used
let emit_symbol s =
emit_string "_"; Emitaux.emit_symbol '$' s
(* Output a 32 or 64 bit integer in hex *)
let emit_int32 n = emit_printf "0%lxh" n
let emit_int64 n = emit_printf "0%Lxh" n
(* Output a label *)
let emit_label lbl =
emit_string "L"; emit_int lbl
let emit_data_label lbl =
emit_string "Ld"; emit_int lbl
(* Output an align directive. *)
let emit_align n = ` ALIGN {emit_int n}\n`
(* Output a pseudo-register *)
let emit_reg = function
{ loc = Reg r } ->
emit_string (register_name r)
| { loc = Stack(Incoming n | Outgoing n) } when n < 0 ->
`{emit_symbol "caml_extra_params"} + {emit_int (n + 64)}`
| { loc = Stack s; typ = Float } as r ->
let ofs = slot_offset s (register_class r) in
`REAL8 PTR {emit_int ofs}[esp]`
| { loc = Stack s } as r ->
let ofs = slot_offset s (register_class r) in
`DWORD PTR {emit_int ofs}[esp]`
| { loc = Unknown } ->
fatal_error "Emit.emit_reg"
(* Output a reference to the lower 8 bits or lower 16 bits of a register *)
let reg_low_byte_name = [| "al"; "bl"; "cl"; "dl" |]
let reg_low_half_name = [| "ax"; "bx"; "cx"; "dx"; "si"; "di"; "bp" |]
let emit_reg8 r =
match r.loc with
Reg r when r < 4 -> emit_string (reg_low_byte_name.(r))
| _ -> fatal_error "Emit.emit_reg8"
let emit_reg16 r =
match r.loc with
Reg r when r < 7 -> emit_string (reg_low_half_name.(r))
| _ -> fatal_error "Emit.emit_reg16"
(* Check if the given register overlaps (same location) with the given
array of registers *)
let register_overlap reg arr =
try
for i = 0 to Array.length arr - 1 do
if reg.loc = arr.(i).loc then raise Exit
done;
false
with Exit ->
true
(* Output an addressing mode *)
let emit_signed_int d =
if d > 0 then emit_char '+';
if d <> 0 then emit_int d
let emit_addressing addr r n =
match addr with
Ibased(s, d) ->
add_used_symbol s;
`{emit_symbol s}{emit_signed_int d}`
| Iindexed d ->
`[{emit_reg r.(n)}{emit_signed_int d}]`
| Iindexed2 d ->
`[{emit_reg r.(n)}+{emit_reg r.(n+1)}{emit_signed_int d}]`
| Iscaled(2, d) ->
`[{emit_reg r.(n)}+{emit_reg r.(n)}{emit_signed_int d}]`
| Iscaled(scale, d) ->
`[{emit_reg r.(n)}*{emit_int scale}{emit_signed_int d}]`
| Iindexed2scaled(scale, d) ->
`[{emit_reg r.(n)}+{emit_reg r.(n+1)}*{emit_int scale}{emit_signed_int d}]`
(* Record live pointers at call points *)
let record_frame_label live dbg =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := ((r lsl 1) + 1) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset;
fd_debuginfo = dbg } :: !frame_descriptors;
lbl
let record_frame live dbg =
let lbl = record_frame_label live dbg in `{emit_label lbl}:\n`
(* Record calls to the GC -- we've moved them out of the way *)
type gc_call =
{ gc_lbl: label; (* Entry label *)
gc_return_lbl: label; (* Where to branch after GC *)
gc_frame: label } (* Label of frame descriptor *)
let call_gc_sites = ref ([] : gc_call list)
let emit_call_gc gc =
`{emit_label gc.gc_lbl}: call _caml_call_gc\n`;
`{emit_label gc.gc_frame}: jmp {emit_label gc.gc_return_lbl}\n`
(* Record calls to caml_ml_array_bound_error.
In -g mode, we maintain one call to caml_ml_array_bound_error
per bound check site. Without -g, we can share a single call. *)
type bound_error_call =
{ bd_lbl: label; (* Entry label *)
bd_frame: label } (* Label of frame descriptor *)
let bound_error_sites = ref ([] : bound_error_call list)
let bound_error_call = ref 0
let bound_error_label dbg =
if !Clflags.debug then begin
let lbl_bound_error = new_label() in
let lbl_frame = record_frame_label Reg.Set.empty dbg in
bound_error_sites :=
{ bd_lbl = lbl_bound_error; bd_frame = lbl_frame } :: !bound_error_sites;
lbl_bound_error
end else begin
if !bound_error_call = 0 then bound_error_call := new_label();
!bound_error_call
end
let emit_call_bound_error bd =
`{emit_label bd.bd_lbl}: call _caml_ml_array_bound_error\n`;
`{emit_label bd.bd_frame}:\n`
let emit_call_bound_errors () =
List.iter emit_call_bound_error !bound_error_sites;
if !bound_error_call > 0 then
`{emit_label !bound_error_call}: call _caml_ml_array_bound_error\n`
(* Names for instructions *)
let instr_for_intop = function
Iadd -> "add"
| Isub -> "sub"
| Imul -> "imul"
| Iand -> "and"
| Ior -> "or"
| Ixor -> "xor"
| Ilsl -> "sal"
| Ilsr -> "shr"
| Iasr -> "sar"
| _ -> fatal_error "Emit: instr_for_intop"
let instr_for_floatop = function
Inegf -> "fchs"
| Iabsf -> "fabs"
| Iaddf -> "fadd"
| Isubf -> "fsub"
| Imulf -> "fmul"
| Idivf -> "fdiv"
| Ispecific Isubfrev -> "fsubr"
| Ispecific Idivfrev -> "fdivr"
| _ -> fatal_error "Emit: instr_for_floatop"
let instr_for_floatop_reversed = function
Iaddf -> "fadd"
| Isubf -> "fsubr"
| Imulf -> "fmul"
| Idivf -> "fdivr"
| Ispecific Isubfrev -> "fsub"
| Ispecific Idivfrev -> "fdiv"
| _ -> fatal_error "Emit: instr_for_floatop_reversed"
let instr_for_floatarithmem = function
Ifloatadd -> "fadd"
| Ifloatsub -> "fsub"
| Ifloatsubrev -> "fsubr"
| Ifloatmul -> "fmul"
| Ifloatdiv -> "fdiv"
| Ifloatdivrev -> "fdivr"
let name_for_cond_branch = function
Isigned Ceq -> "e" | Isigned Cne -> "ne"
| Isigned Cle -> "le" | Isigned Cgt -> "g"
| Isigned Clt -> "l" | Isigned Cge -> "ge"
| Iunsigned Ceq -> "e" | Iunsigned Cne -> "ne"
| Iunsigned Cle -> "be" | Iunsigned Cgt -> "a"
| Iunsigned Clt -> "b" | Iunsigned Cge -> "ae"
(* Output an = 0 or <> 0 test. *)
let output_test_zero arg =
match arg.loc with
Reg r -> ` test {emit_reg arg}, {emit_reg arg}\n`
| _ -> ` cmp {emit_reg arg}, 0\n`
(* Deallocate the stack frame before a return or tail call *)
let output_epilogue () =
let n = frame_size() - 4 in
if n > 0 then ` add esp, {emit_int n}\n`
(* Determine if the given register is the top of the floating-point stack *)
let is_tos = function { loc = Reg _; typ = Float } -> true | _ -> false
(* Emit the code for a floating-point comparison *)
let emit_float_test cmp neg arg lbl =
let actual_cmp =
match (is_tos arg.(0), is_tos arg.(1)) with
(true, true) ->
(* both args on top of FP stack *)
` fcompp\n`;
cmp
| (true, false) ->
(* first arg on top of FP stack *)
` fcomp {emit_reg arg.(1)}\n`;
cmp
| (false, true) ->
(* second arg on top of FP stack *)
` fcomp {emit_reg arg.(0)}\n`;
Cmm.swap_comparison cmp
| (false, false) ->
` fld {emit_reg arg.(0)}\n`;
` fcomp {emit_reg arg.(1)}\n`;
cmp
in
` fnstsw ax\n`;
begin match actual_cmp with
Ceq ->
if neg then begin
` and ah, 68\n`;
` xor ah, 64\n`;
` jne `
end else begin
` and ah, 69\n`;
` cmp ah, 64\n`;
` je `
end
| Cne ->
if neg then begin
` and ah, 69\n`;
` cmp ah, 64\n`;
` je `
end else begin
` and ah, 68\n`;
` xor ah, 64\n`;
` jne `
end
| Cle ->
` and ah, 69\n`;
` dec ah\n`;
` cmp ah, 64\n`;
if neg
then ` jae `
else ` jb `
| Cge ->
` and ah, 5\n`;
if neg
then ` jne `
else ` je `
| Clt ->
` and ah, 69\n`;
` cmp ah, 1\n`;
if neg
then ` jne `
else ` je `
| Cgt ->
` and ah, 69\n`;
if neg
then ` jne `
else ` je `
end;
`{emit_label lbl}\n`
(* Emit a Ifloatspecial instruction *)
let emit_floatspecial = function
"atan" -> ` fld1\n\tfpatan\n`
| "atan2" -> ` fpatan\n`
| "cos" -> ` fcos\n`
| "log" -> ` fldln2\n\tfxch\n\tfyl2x\n`
| "log10" -> ` fldlg2\n\tfxch\n\tfyl2x\n`
| "sin" -> ` fsin\n`
| "sqrt" -> ` fsqrt\n`
| "tan" -> ` fptan\n\tfstp st(0)\n`
| _ -> assert false
(* Floating-point constants *)
let float_constants = ref ([] : (int64 * int) list)
let add_float_constant cst =
let repr = Int64.bits_of_float cst in
try
List.assoc repr !float_constants
with
Not_found ->
let lbl = new_label() in
float_constants := (repr, lbl) :: !float_constants;
lbl
let emit_float_constant (cst, lbl) =
`{emit_label lbl} QWORD {emit_int64 cst}\n`
(* Output the assembly code for an instruction *)
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Label of trap for out-of-range accesses *)
let range_check_trap = ref 0
let emit_instr i =
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then begin
if src.typ = Float then
if is_tos src then
` fstp {emit_reg dst}\n`
else if is_tos dst then
` fld {emit_reg src}\n`
else begin
` fld {emit_reg src}\n`;
` fstp {emit_reg dst}\n`
end
else
` mov {emit_reg dst}, {emit_reg src}\n`
end
| Lop(Iconst_int n | Iconst_blockheader n) ->
if n = 0n then begin
match i.res.(0).loc with
Reg n -> ` xor {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| _ -> ` mov {emit_reg i.res.(0)}, 0\n`
end else
` mov {emit_reg i.res.(0)}, {emit_nativeint n}\n`
| Lop(Iconst_float f) ->
begin match Int64.bits_of_float f with
| 0x0000_0000_0000_0000L -> (* +0.0 *)
` fldz\n`
| 0x8000_0000_0000_0000L -> (* -0.0 *)
` fldz\n fchs\n`
| 0x3FF0_0000_0000_0000L -> (* 1.0 *)
` fld1\n`
| 0xBFF0_0000_0000_0000L -> (* -1.0 *)
` fld1\n fchs\n`
| _ ->
let lbl = add_float_constant f in
` fld {emit_label lbl}\n`
end
| Lop(Iconst_symbol s) ->
add_used_symbol s;
` mov {emit_reg i.res.(0)}, OFFSET {emit_symbol s}\n`
| Lop(Icall_ind) ->
` call {emit_reg i.arg.(0)}\n`;
record_frame i.live i.dbg
| Lop(Icall_imm s) ->
add_used_symbol s;
` call {emit_symbol s}\n`;
record_frame i.live i.dbg
| Lop(Itailcall_ind) ->
output_epilogue();
` jmp {emit_reg i.arg.(0)}\n`
| Lop(Itailcall_imm s) ->
if s = !function_name then
` jmp {emit_label !tailrec_entry_point}\n`
else begin
output_epilogue();
add_used_symbol s;
` jmp {emit_symbol s}\n`
end
| Lop(Iextcall(s, alloc)) ->
add_used_symbol s ;
if alloc then begin
` mov eax, OFFSET {emit_symbol s}\n`;
` call _caml_c_call\n`;
record_frame i.live i.dbg
end else begin
` call {emit_symbol s}\n`
end
| Lop(Istackoffset n) ->
if n >= 0
then ` sub esp, {emit_int n}\n`
else ` add esp, {emit_int(-n)}\n`;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let dest = i.res.(0) in
begin match chunk with
| Word | Thirtytwo_signed | Thirtytwo_unsigned ->
` mov {emit_reg dest}, DWORD PTR {emit_addressing addr i.arg 0}\n`
| Byte_unsigned ->
` movzx {emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n`
| Byte_signed ->
` movsx {emit_reg dest}, BYTE PTR {emit_addressing addr i.arg 0}\n`
| Sixteen_unsigned ->
` movzx {emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n`
| Sixteen_signed ->
` movsx {emit_reg dest}, WORD PTR {emit_addressing addr i.arg 0}\n`
| Single ->
` fld REAL4 PTR {emit_addressing addr i.arg 0}\n`
| Double | Double_u ->
` fld REAL8 PTR {emit_addressing addr i.arg 0}\n`
end
| Lop(Istore(chunk, addr, _)) ->
begin match chunk with
| Word | Thirtytwo_signed | Thirtytwo_unsigned ->
` mov DWORD PTR {emit_addressing addr i.arg 1}, {emit_reg i.arg.(0)}\n`
| Byte_unsigned | Byte_signed ->
` mov BYTE PTR {emit_addressing addr i.arg 1}, {emit_reg8 i.arg.(0)}\n`
| Sixteen_unsigned | Sixteen_signed ->
` mov WORD PTR {emit_addressing addr i.arg 1}, {emit_reg16 i.arg.(0)}\n`
| Single ->
if is_tos i.arg.(0) then
` fstp REAL4 PTR {emit_addressing addr i.arg 1}\n`
else begin
` fld {emit_reg i.arg.(0)}\n`;
` fstp REAL4 PTR {emit_addressing addr i.arg 1}\n`
end
| Double | Double_u ->
if is_tos i.arg.(0) then
` fstp REAL8 PTR {emit_addressing addr i.arg 1}\n`
else begin
` fld {emit_reg i.arg.(0)}\n`;
` fstp REAL8 PTR {emit_addressing addr i.arg 1}\n`
end
end
| Lop(Ialloc n) ->
if !fastcode_flag then begin
let lbl_redo = new_label() in
`{emit_label lbl_redo}: mov eax, _caml_young_ptr\n`;
` sub eax, {emit_int n}\n`;
` mov _caml_young_ptr, eax\n`;
` cmp eax, _caml_young_limit\n`;
let lbl_call_gc = new_label() in
let lbl_frame = record_frame_label i.live Debuginfo.none in
` jb {emit_label lbl_call_gc}\n`;
` lea {emit_reg i.res.(0)}, [eax+4]\n`;
call_gc_sites :=
{ gc_lbl = lbl_call_gc;
gc_return_lbl = lbl_redo;
gc_frame = lbl_frame } :: !call_gc_sites
end else begin
begin match n with
8 -> ` call _caml_alloc1\n`
| 12 -> ` call _caml_alloc2\n`
| 16 -> ` call _caml_alloc3\n`
| _ -> ` mov eax, {emit_int n}\n`;
` call _caml_allocN\n`
end;
`{record_frame i.live Debuginfo.none} lea {emit_reg i.res.(0)}, [eax+4]\n`
end
| Lop(Iintop(Icomp cmp)) ->
` cmp {emit_reg i.arg.(0)},{emit_reg i.arg.(1)}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} al\n`;
` movzx {emit_reg i.res.(0)}, al\n`
| Lop(Iintop_imm(Icomp cmp, n)) ->
` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} al\n`;
` movzx {emit_reg i.res.(0)}, al\n`
| Lop(Iintop Icheckbound) ->
let lbl = bound_error_label i.dbg in
` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` jbe {emit_label lbl}\n`
| Lop(Iintop_imm(Icheckbound, n)) ->
let lbl = bound_error_label i.dbg in
` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`;
` jbe {emit_label lbl}\n`
| Lop(Iintop(Idiv | Imod)) ->
` cdq\n`;
` idiv {emit_reg i.arg.(1)}\n`
| Lop(Iintop(Ilsl | Ilsr | Iasr as op)) ->
(* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %ecx *)
` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, cl\n`
| Lop(Iintop Imulh) ->
` imul {emit_reg i.arg.(1)}\n`
| Lop(Iintop op) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, {emit_reg i.arg.(1)}\n`
| Lop(Iintop_imm(Iadd, n)) when i.arg.(0).loc <> i.res.(0).loc ->
` lea {emit_reg i.res.(0)}, [{emit_reg i.arg.(0)}+{emit_int n}]\n`
| Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) ->
` inc {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) ->
` dec {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(op, n)) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} {emit_reg i.res.(0)}, {emit_int n}\n`
| Lop(Inegf | Iabsf as floatop) ->
if not (is_tos i.arg.(0)) then
` fld {emit_reg i.arg.(0)}\n`;
` {emit_string(instr_for_floatop floatop)}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf | Ispecific(Isubfrev | Idivfrev)
as floatop) ->
begin match (is_tos i.arg.(0), is_tos i.arg.(1)) with
(true, true) ->
(* both operands on top of FP stack *)
` {emit_string(instr_for_floatop_reversed floatop)}\n`
| (true, false) ->
(* first operand on stack *)
` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(1)}\n`
| (false, true) ->
(* second operand on stack *)
` {emit_string(instr_for_floatop_reversed floatop)} {emit_reg i.arg.(0)}\n`
| (false, false) ->
(* both operands in memory *)
` fld {emit_reg i.arg.(0)}\n`;
` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(1)}\n`
end
| Lop(Ifloatofint) ->
begin match i.arg.(0).loc with
Stack s ->
` fild {emit_reg i.arg.(0)}\n`
| _ ->
` push {emit_reg i.arg.(0)}\n`;
` fild DWORD PTR [esp]\n`;
` add esp, 4\n`
end
| Lop(Iintoffloat) ->
if not (is_tos i.arg.(0)) then
` fld {emit_reg i.arg.(0)}\n`;
stack_offset := !stack_offset - 8;
` sub esp, 8\n`;
` fnstcw [esp+4]\n`;
` mov ax, [esp+4]\n`;
` mov ah, 12\n`;
` mov [esp], ax\n`;
` fldcw [esp]\n`;
begin match i.res.(0).loc with
Stack s ->
` fistp {emit_reg i.res.(0)}\n`
| _ ->
` fistp DWORD PTR [esp]\n`;
` mov {emit_reg i.res.(0)}, [esp]\n`
end;
` fldcw [esp+4]\n`;
` add esp, 8\n`;
stack_offset := !stack_offset + 8
| Lop(Ispecific(Ilea addr)) ->
` lea {emit_reg i.res.(0)}, DWORD PTR {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Istore_int(n, addr, _))) ->
` mov DWORD PTR {emit_addressing addr i.arg 0},{emit_nativeint n}\n`
| Lop(Ispecific(Istore_symbol(s, addr, _))) ->
add_used_symbol s ;
` mov DWORD PTR {emit_addressing addr i.arg 0},OFFSET {emit_symbol s}\n`
| Lop(Ispecific(Ioffset_loc(n, addr))) ->
` add DWORD PTR {emit_addressing addr i.arg 0},{emit_int n}\n`
| Lop(Ispecific(Ipush)) ->
(* Push arguments in reverse order *)
for n = Array.length i.arg - 1 downto 0 do
let r = i.arg.(n) in
match r with
{loc = Reg rn; typ = Float} ->
` sub esp, 8\n`;
` fstp REAL8 PTR 0[esp]\n`;
stack_offset := !stack_offset + 8
| {loc = Stack sl; typ = Float} ->
let ofs = slot_offset sl 1 in
` push DWORD PTR {emit_int (ofs + 4)}[esp]\n`;
` push DWORD PTR {emit_int (ofs + 4)}[esp]\n`;
stack_offset := !stack_offset + 8
| _ ->
` push {emit_reg r}\n`;
stack_offset := !stack_offset + 4
done
| Lop(Ispecific(Ipush_int n)) ->
` push {emit_nativeint n}\n`;
stack_offset := !stack_offset + 4
| Lop(Ispecific(Ipush_symbol s)) ->
add_used_symbol s;
` push OFFSET {emit_symbol s}\n`;
stack_offset := !stack_offset + 4
| Lop(Ispecific(Ipush_load addr)) ->
` push DWORD PTR {emit_addressing addr i.arg 0}\n`;
stack_offset := !stack_offset + 4
| Lop(Ispecific(Ipush_load_float addr)) ->
` push DWORD PTR {emit_addressing (offset_addressing addr 4) i.arg 0}\n`;
` push DWORD PTR {emit_addressing addr i.arg 0}\n`;
stack_offset := !stack_offset + 8
| Lop(Ispecific(Ifloatarithmem(double, op, addr))) ->
if not (is_tos i.arg.(0)) then
` fld {emit_reg i.arg.(0)}\n`;
let size = if double then "REAL8" else "REAL4" in
` {emit_string(instr_for_floatarithmem op)} {emit_string size} PTR {emit_addressing addr i.arg 1}\n`
| Lop(Ispecific(Ifloatspecial s)) ->
(* Push args on float stack if necessary *)
for k = 0 to Array.length i.arg - 1 do
if not (is_tos i.arg.(k)) then ` fld {emit_reg i.arg.(k)}\n`
done;
(* Fix-up for binary instrs whose args were swapped *)
if Array.length i.arg = 2 && is_tos i.arg.(1) then
` fxch st(1)\n`;
emit_floatspecial s
| Lreloadretaddr ->
()
| Lreturn ->
output_epilogue();
` ret\n`
| Llabel lbl ->
`{emit_label lbl}:\n`
| Lbranch lbl ->
` jmp {emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
output_test_zero i.arg.(0);
` jne {emit_label lbl}\n`
| Ifalsetest ->
output_test_zero i.arg.(0);
` je {emit_label lbl}\n`
| Iinttest cmp ->
` cmp {emit_reg i.arg.(0)},{emit_reg i.arg.(1)}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm((Isigned Ceq | Isigned Cne |
Iunsigned Ceq | Iunsigned Cne) as cmp, 0) ->
output_test_zero i.arg.(0);
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
` cmp {emit_reg i.arg.(0)}, {emit_int n}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Ifloattest(cmp, neg) ->
emit_float_test cmp neg i.arg lbl
| Ioddtest ->
` test {emit_reg i.arg.(0)}, 1\n`;
` jne {emit_label lbl}\n`
| Ieventest ->
` test {emit_reg i.arg.(0)}, 1\n`;
` je {emit_label lbl}\n`
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` cmp {emit_reg i.arg.(0)}, 1\n`;
begin match lbl0 with
None -> ()
| Some lbl -> ` jb {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` je {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` jg {emit_label lbl}\n`
end
| Lswitch jumptbl ->
let lbl = new_label() in
` jmp [{emit_reg i.arg.(0)} * 4 + {emit_label lbl}]\n`;
` .DATA\n`;
`{emit_label lbl}`;
for i = 0 to Array.length jumptbl - 1 do
` DWORD {emit_label jumptbl.(i)}\n`
done;
` .CODE\n`
| Lsetuptrap lbl ->
` call {emit_label lbl}\n`
| Lpushtrap ->
` push _caml_exception_pointer\n`;
` mov _caml_exception_pointer, esp\n`;
stack_offset := !stack_offset + 8
| Lpoptrap ->
` pop _caml_exception_pointer\n`;
` add esp, 4\n`;
stack_offset := !stack_offset - 8
| Lraise k ->
begin match !Clflags.debug, k with
| true, Lambda.Raise_regular ->
` call _caml_raise_exn\n`;
record_frame Reg.Set.empty i.dbg
| true, Lambda.Raise_reraise ->
` call _caml_reraise_exn\n`;
record_frame Reg.Set.empty i.dbg
| false, _
| true, Lambda.Raise_notrace ->
` mov esp, _caml_exception_pointer\n`;
` pop _caml_exception_pointer\n`;
` ret\n`
end
let rec emit_all i =
match i.desc with Lend -> () | _ -> emit_instr i; emit_all i.next
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
tailrec_entry_point := new_label();
stack_offset := 0;
call_gc_sites := [];
bound_error_sites := [];
bound_error_call := 0;
` .CODE\n`;
add_def_symbol fundecl.fun_name;
emit_align 4;
` PUBLIC {emit_symbol fundecl.fun_name}\n`;
`{emit_symbol fundecl.fun_name}:\n`;
let n = frame_size() - 4 in
if n > 0 then
` sub esp, {emit_int n}\n`;
`{emit_label !tailrec_entry_point}:\n`;
emit_all fundecl.fun_body;
List.iter emit_call_gc !call_gc_sites;
emit_call_bound_errors ()
(* Emission of data *)
let emit_item = function
Cglobal_symbol s ->
` PUBLIC {emit_symbol s}\n`;
| Cdefine_symbol s ->
add_def_symbol s ;
`{emit_symbol s} LABEL DWORD\n`
| Cdefine_label lbl ->
`{emit_data_label lbl} LABEL DWORD\n`
| Cint8 n ->
` BYTE {emit_int n}\n`
| Cint16 n ->
` WORD {emit_int n}\n`
| Cint n ->
` DWORD {emit_nativeint n}\n`
| Cint32 n ->
` DWORD {emit_nativeint n}\n`
| Csingle f ->
` DWORD {emit_int32 (Int32.bits_of_float f)}\n`
| Cdouble f ->
` QWORD {emit_int64 (Int64.bits_of_float f)}\n`
| Csymbol_address s ->
add_used_symbol s ;
` DWORD {emit_symbol s}\n`
| Clabel_address lbl ->
` DWORD {emit_data_label lbl}\n`
| Cstring s ->
emit_bytes_directive " BYTE " s
| Cskip n ->
if n > 0 then ` BYTE {emit_int n} DUP (?)\n`
| Calign n ->
emit_align n
let data l =
` .DATA\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
float_constants := [];
`.386\n`;
` .MODEL FLAT\n\n`;
` EXTERN _caml_young_ptr: DWORD\n`;
` EXTERN _caml_young_limit: DWORD\n`;
` EXTERN _caml_exception_pointer: DWORD\n`;
` EXTERN _caml_extra_params: DWORD\n`;
` EXTERN _caml_call_gc: PROC\n`;
` EXTERN _caml_c_call: PROC\n`;
` EXTERN _caml_allocN: PROC\n`;
` EXTERN _caml_alloc1: PROC\n`;
` EXTERN _caml_alloc2: PROC\n`;
` EXTERN _caml_alloc3: PROC\n`;
` EXTERN _caml_ml_array_bound_error: PROC\n`;
` EXTERN _caml_raise_exn: PROC\n`;
` EXTERN _caml_reraise_exn: PROC\n`;
` .DATA\n`;
let lbl_begin = Compilenv.make_symbol (Some "data_begin") in
add_def_symbol lbl_begin;
` PUBLIC {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin} LABEL DWORD\n`;
` .CODE\n`;
let lbl_begin = Compilenv.make_symbol (Some "code_begin") in
add_def_symbol lbl_begin;
` PUBLIC {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin} LABEL DWORD\n`
let end_assembly() =
if !float_constants <> [] then begin
` .DATA\n`;
List.iter emit_float_constant !float_constants;
end;
` .CODE\n`;
let lbl_end = Compilenv.make_symbol (Some "code_end") in
add_def_symbol lbl_end;
` PUBLIC {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end} LABEL DWORD\n`;
` .DATA\n`;
let lbl_end = Compilenv.make_symbol (Some "data_end") in
add_def_symbol lbl_end;
` PUBLIC {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end} LABEL DWORD\n`;
` DWORD 0\n`;
let lbl = Compilenv.make_symbol (Some "frametable") in
add_def_symbol lbl;
` PUBLIC {emit_symbol lbl}\n`;
`{emit_symbol lbl}`;
emit_frames
{ efa_label = (fun l -> ` DWORD {emit_label l}\n`);
efa_16 = (fun n -> ` WORD {emit_int n}\n`);
efa_32 = (fun n -> ` DWORD {emit_int32 n}\n`);
efa_word = (fun n -> ` DWORD {emit_int n}\n`);
efa_align = emit_align;
efa_label_rel = (fun lbl ofs ->
` DWORD {emit_label lbl} - THIS BYTE + {emit_int32 ofs}\n`);
efa_def_label = (fun l -> `{emit_label l} LABEL DWORD\n`);
efa_string = (fun s -> emit_bytes_directive " BYTE " (s ^ "\000")) };
`\n;External functions\n\n`;
StringSet.iter
(fun s ->
if not (StringSet.mem s !symbols_defined) then
` EXTERN {emit_symbol s}: PROC\n`)
!symbols_used;
symbols_used := StringSet.empty;
symbols_defined := StringSet.empty;
`END\n`