ocaml/lex/lexgen.ml

204 lines
5.6 KiB
OCaml
Raw Normal View History

(* Compiling a lexer definition *)
open Syntax
(* Deep abstract syntax for regular expressions *)
type regexp =
Empty
| Chars of int
| Action of int
| Seq of regexp * regexp
| Alt of regexp * regexp
| Star of regexp
(* From shallow to deep syntax *)
let chars = ref ([] : char list list)
let chars_count = ref 0
let actions = ref ([] : (int * location) list)
let actions_count = ref 0
let rec encode_regexp = function
Epsilon -> Empty
| Characters cl ->
let n = !chars_count in
chars := cl :: !chars;
incr chars_count;
Chars(n)
| Sequence(r1,r2) ->
Seq(encode_regexp r1, encode_regexp r2)
| Alternative(r1,r2) ->
Alt(encode_regexp r1, encode_regexp r2)
| Repetition r ->
Star (encode_regexp r)
let encode_casedef =
List.fold_left
(fun reg (expr,act) ->
let act_num = !actions_count in
incr actions_count;
actions := (act_num, act) :: !actions;
Alt(reg, Seq(encode_regexp expr, Action act_num)))
Empty
let encode_lexdef (Lexdef(_, ld)) =
chars := [];
chars_count := 0;
actions := [];
actions_count := 0;
let name_regexp_list =
List.map (fun (name, casedef) -> (name, encode_casedef casedef)) ld in
let chr = Array.of_list (List.rev !chars)
and act = !actions in
chars := [];
actions := [];
(chr, name_regexp_list, act)
(* To generate directly a NFA from a regular expression.
Confer Aho-Sethi-Ullman, dragon book, chap. 3 *)
type transition =
OnChars of int
| ToAction of int
let rec merge_trans s1 s2 =
match (s1, s2) with
([], _) -> s2
| (_, []) -> s1
| ((OnChars n1 as t1) :: r1, (OnChars n2 as t2) :: r2) ->
if n1 == n2 then t1 :: merge_trans r1 r2 else
if n1 < n2 then t1 :: merge_trans r1 s2 else
t2 :: merge_trans s1 r2
| ((ToAction n1 as t1) :: r1, (ToAction n2 as t2) :: r2) ->
if n1 == n2 then t1 :: merge_trans r1 r2 else
if n1 < n2 then t1 :: merge_trans r1 s2 else
t2 :: merge_trans s1 r2
| ((OnChars n1 as t1) :: r1, (ToAction n2 as t2) :: r2) ->
t1 :: merge_trans r1 s2
| ((ToAction n1 as t1) :: r1, (OnChars n2 as t2) :: r2) ->
t2 :: merge_trans s1 r2
let rec nullable = function
Empty -> true
| Chars _ -> false
| Action _ -> false
| Seq(r1,r2) -> nullable r1 & nullable r2
| Alt(r1,r2) -> nullable r1 or nullable r2
| Star r -> true
let rec firstpos = function
Empty -> []
| Chars pos -> [OnChars pos]
| Action act -> [ToAction act]
| Seq(r1,r2) -> if nullable r1
then merge_trans (firstpos r1) (firstpos r2)
else firstpos r1
| Alt(r1,r2) -> merge_trans (firstpos r1) (firstpos r2)
| Star r -> firstpos r
let rec lastpos = function
Empty -> []
| Chars pos -> [OnChars pos]
| Action act -> [ToAction act]
| Seq(r1,r2) -> if nullable r2
then merge_trans (lastpos r1) (lastpos r2)
else lastpos r2
| Alt(r1,r2) -> merge_trans (lastpos r1) (lastpos r2)
| Star r -> lastpos r
let followpos size name_regexp_list =
let v = Array.new size [] in
let fill_pos first = function
OnChars pos -> v.(pos) <- merge_trans first v.(pos); ()
| ToAction _ -> () in
let rec fill = function
Seq(r1,r2) ->
fill r1; fill r2;
List.iter (fill_pos (firstpos r2)) (lastpos r1)
| Alt(r1,r2) ->
fill r1; fill r2
| Star r ->
fill r;
List.iter (fill_pos (firstpos r)) (lastpos r)
| _ -> () in
List.iter (fun (name, regexp) -> fill regexp) name_regexp_list;
v
let no_action = 32767
let split_trans_set = List.fold_left
(fun (act, pos_set as act_pos_set) ->
function OnChars pos -> (act, pos :: pos_set)
| ToAction act1 -> if act1 < act then (act1, pos_set)
else act_pos_set)
(no_action, [])
let memory = (Hashtbl.new 131 : (transition list, int) Hashtbl.t)
and todo = ref ([] : (transition list * int) list)
and next = ref 0
let reset_state_mem () =
Hashtbl.clear memory; todo := []; next := 0; ()
let get_state st =
try
Hashtbl.find memory st
with Not_found ->
let nbr = !next in
incr next;
Hashtbl.add memory st nbr;
todo := (st, nbr) :: !todo;
nbr
let rec map_on_states f =
match !todo with
[] -> []
| (st,i)::r -> todo := r; let res = f st in (res,i) :: map_on_states f
let number_of_states () =
!next
let goto_state = function
[] -> Backtrack
| ps -> Goto (get_state ps)
let transition_from chars follow pos_set =
let tr = Array.new 256 []
and shift = Array.new 256 Backtrack in
List.iter
(fun pos ->
List.iter
(fun c ->
tr.(Char.code c) <-
merge_trans tr.(Char.code c) follow.(pos))
chars.(pos))
pos_set;
for i = 0 to 255 do
shift.(i) <- goto_state tr.(i)
done;
shift
let translate_state chars follow state =
match split_trans_set state with
n, [] -> Perform n
| n, ps -> Shift( (if n == no_action then No_remember else Remember n),
transition_from chars follow ps)
let make_dfa lexdef =
let (chars, name_regexp_list, actions) =
encode_lexdef lexdef in
let follow =
followpos (Array.length chars) name_regexp_list in
reset_state_mem();
let initial_states =
List.map (fun (name, regexp) -> (name, get_state(firstpos regexp)))
name_regexp_list in
let states =
map_on_states (translate_state chars follow) in
let v =
Array.new (number_of_states()) (Perform 0) in
List.iter (fun (auto, i) -> v.(i) <- auto) states;
reset_state_mem();
(initial_states, v, actions)