ocaml/stdlib/set.ml

281 lines
8.6 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Sets over ordered types *)
module type OrderedType =
sig
type t
val compare: t -> t -> int
end
module type S =
sig
type elt
type t
val empty: t
val is_empty: t -> bool
val mem: elt -> t -> bool
val add: elt -> t -> t
val singleton: elt -> t
val remove: elt -> t -> t
val union: t -> t -> t
val inter: t -> t -> t
val diff: t -> t -> t
val compare: t -> t -> int
val equal: t -> t -> bool
val subset: t -> t -> bool
val iter: (elt -> unit) -> t -> unit
val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
val cardinal: t -> int
val elements: t -> elt list
val min_elt: t -> elt
val max_elt: t -> elt
val choose: t -> elt
end
module Make(Ord: OrderedType) =
struct
type elt = Ord.t
type t = Empty | Node of t * elt * t * int
(* Sets are represented by balanced binary trees (the heights of the
children differ by at most 2 *)
let height = function
Empty -> 0
| Node(_, _, _, h) -> h
(* Creates a new node with left son l, value x and right son r.
l and r must be balanced and | height l - height r | <= 2.
Inline expansion of height for better speed. *)
let create l x r =
let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
(* Same as create, but performs one step of rebalancing if necessary.
Assumes l and r balanced.
Inline expansion of create for better speed in the most frequent case
where no rebalancing is required. *)
let bal l x r =
let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
if hl > hr + 2 then begin
match l with
Empty -> invalid_arg "Set.bal"
| Node(ll, lv, lr, _) ->
if height ll >= height lr then
create ll lv (create lr x r)
else begin
match lr with
Empty -> invalid_arg "Set.bal"
| Node(lrl, lrv, lrr, _)->
create (create ll lv lrl) lrv (create lrr x r)
end
end else if hr > hl + 2 then begin
match r with
Empty -> invalid_arg "Set.bal"
| Node(rl, rv, rr, _) ->
if height rr >= height rl then
create (create l x rl) rv rr
else begin
match rl with
Empty -> invalid_arg "Set.bal"
| Node(rll, rlv, rlr, _) ->
create (create l x rll) rlv (create rlr rv rr)
end
end else
Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
(* Same as bal, but repeat rebalancing until the final result
is balanced. *)
let rec join l x r =
match bal l x r with
Empty -> invalid_arg "Set.join"
| Node(l', x', r', _) as t' ->
let d = height l' - height r' in
if d < -2 or d > 2 then join l' x' r' else t'
(* Merge two trees l and r into one.
All elements of l must precede the elements of r.
Assumes | height l - height r | <= 2. *)
let rec merge t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
bal l1 v1 (bal (merge r1 l2) v2 r2)
(* Same as merge, but does not assume anything about l and r. *)
let rec concat t1 t2 =
match (t1, t2) with
(Empty, t) -> t
| (t, Empty) -> t
| (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
join l1 v1 (join (concat r1 l2) v2 r2)
(* Splitting *)
let rec split x = function
Empty ->
(Empty, None, Empty)
| Node(l, v, r, _) ->
let c = Ord.compare x v in
if c = 0 then (l, Some v, r)
else if c < 0 then
let (ll, vl, rl) = split x l in (ll, vl, join rl v r)
else
let (lr, vr, rr) = split x r in (join l v lr, vr, rr)
(* Implementation of the set operations *)
let empty = Empty
let is_empty = function Empty -> true | _ -> false
let rec mem x = function
Empty -> false
| Node(l, v, r, _) ->
let c = Ord.compare x v in
c = 0 || mem x (if c < 0 then l else r)
let rec add x = function
Empty -> Node(Empty, x, Empty, 1)
| Node(l, v, r, _) as t ->
let c = Ord.compare x v in
if c = 0 then t else
if c < 0 then bal (add x l) v r else bal l v (add x r)
let singleton x = Node(Empty, x, Empty, 1)
let rec remove x = function
Empty -> Empty
| Node(l, v, r, _) ->
let c = Ord.compare x v in
if c = 0 then merge l r else
if c < 0 then bal (remove x l) v r else bal l v (remove x r)
let rec union s1 s2 =
match (s1, s2) with
(Empty, t2) -> t2
| (t1, Empty) -> t1
| (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
if h1 >= h2 then
if h2 = 1 then add v2 s1 else begin
let (l2, _, r2) = split v1 s2 in
join (union l1 l2) v1 (union r1 r2)
end
else
if h1 = 1 then add v1 s2 else begin
let (l1, _, r1) = split v2 s1 in
join (union l1 l2) v2 (union r1 r2)
end
let rec inter s1 s2 =
match (s1, s2) with
(Empty, t2) -> Empty
| (t1, Empty) -> Empty
| (Node(l1, v1, r1, _), t2) ->
match split v1 t2 with
(l2, None, r2) ->
concat (inter l1 l2) (inter r1 r2)
| (l2, Some _, r2) ->
join (inter l1 l2) v1 (inter r1 r2)
let rec diff s1 s2 =
match (s1, s2) with
(Empty, t2) -> Empty
| (t1, Empty) -> t1
| (Node(l1, v1, r1, _), t2) ->
match split v1 t2 with
(l2, None, r2) ->
join (diff l1 l2) v1 (diff r1 r2)
| (l2, Some _, r2) ->
concat (diff l1 l2) (diff r1 r2)
let rec compare_aux l1 l2 =
match (l1, l2) with
([], []) -> 0
| ([], _) -> -1
| (_, []) -> 1
| (Empty :: t1, Empty :: t2) ->
compare_aux t1 t2
| (Node(Empty, v1, r1, _) :: t1, Node(Empty, v2, r2, _) :: t2) ->
let c = Ord.compare v1 v2 in
if c <> 0 then c else compare_aux (r1::t1) (r2::t2)
| (Node(l1, v1, r1, _) :: t1, t2) ->
compare_aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2
| (t1, Node(l2, v2, r2, _) :: t2) ->
compare_aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2)
let compare s1 s2 =
compare_aux [s1] [s2]
let equal s1 s2 =
compare s1 s2 = 0
let rec subset s1 s2 =
match (s1, s2) with
Empty, _ ->
true
| _, Empty ->
false
| Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
let c = Ord.compare v1 v2 in
if c = 0 then
subset l1 l2 && subset r1 r2
else if c < 0 then
subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2
else
subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2
let rec iter f = function
Empty -> ()
| Node(l, v, r, _) -> iter f l; f v; iter f r
let rec fold f s accu =
match s with
Empty -> accu
| Node(l, v, r, _) -> fold f l (f v (fold f r accu))
let rec cardinal = function
Empty -> 0
| Node(l, v, r, _) -> cardinal l + 1 + cardinal r
let rec elements_aux accu = function
Empty -> accu
| Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l
let elements s =
elements_aux [] s
let rec min_elt = function
Empty -> raise Not_found
| Node(Empty, v, r, _) -> v
| Node(l, v, r, _) -> min_elt l
let rec max_elt = function
Empty -> raise Not_found
| Node(l, v, Empty, _) -> v
| Node(l, v, r, _) -> max_elt r
let choose = min_elt
end