ocaml/stdlib/int32.mli

119 lines
5.8 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Module [Int32]: 32-bit integers *)
(* This module provides operations on the type [int32]
of signed 32-bit integers. Unlike the built-in [int] type,
the type [int32] is guaranteed to be exactly 32-bit wide on all
platforms. All arithmetic operations over [int32] are taken
modulo $2^{32}$.
Performance notice: values of type [int32] occupy more memory
space than values of type [int], and arithmetic operations on
[int32] are generally slower than those on [int]. Use [int32]
only when the application requires exact 32-bit arithmetic. *)
val zero : int32
val one : int32
val minus_one : int32
(* The 32-bit integers 0, 1, -1. *)
external neg : int32 -> int32 = "%int32_neg"
(* Unary negation. *)
external add : int32 -> int32 -> int32 = "%int32_add"
(* Addition. *)
external sub : int32 -> int32 -> int32 = "%int32_sub"
(* Subtraction. *)
external mul : int32 -> int32 -> int32 = "%int32_mul"
(* Multiplication. *)
external div : int32 -> int32 -> int32 = "%int32_div"
(* Integer division. Raise [Division_by_zero] if the second
argument is zero. *)
external rem : int32 -> int32 -> int32 = "%int32_mod"
(* Integer remainder. If [x >= 0] and [y > 0], the result
of [Int32.rem x y] satisfies the following properties:
[0 <= Int32.rem x y < y] and
[x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y)].
If [y = 0], [Int32.rem x y] raises [Division_by_zero].
If [x < 0] or [y < 0], the result of [Int32.rem x y] is
not specified and depends on the platform. *)
val succ : int32 -> int32
(* Successor. [Int32.succ x] is [Int32.add x Int32.one]. *)
val pred : int32 -> int32
(* Predecessor. [Int32.pred x] is [Int32.sub x Int32.one]. *)
val abs : int32 -> int32
(* Return the absolute value of its argument. *)
val max_int : int32
(* The greatest representable 32-bit integer, $2^{31} - 1$. *)
val min_int : int32
(* The smallest representable 32-bit integer, $-2^{31}$. *)
external logand : int32 -> int32 -> int32 = "%int32_and"
(* Bitwise logical and. *)
external logor : int32 -> int32 -> int32 = "%int32_or"
(* Bitwise logical or. *)
external logxor : int32 -> int32 -> int32 = "%int32_xor"
(* Bitwise logical exclusive or. *)
val lognot : int32 -> int32
(* Bitwise logical negation *)
external shift_left : int32 -> int -> int32 = "%int32_lsl"
(* [Int32.shift_left x y] shifts [x] to the left by [y] bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right : int32 -> int -> int32 = "%int32_asr"
(* [Int32.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right_logical : int32 -> int -> int32 = "%int32_lsr"
(* [Int32.shift_right_logical x y] shifts [x] to the right by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x].
The result is unspecified if [y < 0] or [y >= 32]. *)
external of_int : int -> int32 = "%int32_of_int"
(* Convert the given integer (type [int]) to a 32-bit integer
(type [int32]). *)
external to_int : int32 -> int = "%int32_to_int"
(* Convert the given 32-bit integer (type [int32]) to an
integer (type [int]). On 32-bit platforms, the 32-bit integer
is taken modulo $2^{31}$, i.e. the high-order bit is lost
during the conversion. On 64-bit platforms, the conversion
is exact. *)
external of_float : float -> int32 = "int32_of_float"
(* Convert the given floating-point number to a 32-bit integer,
discarding the fractional part (truncate towards 0).
The result of the conversion is undefined if, after truncation,
the number is outside the range [Int32.min_int, Int32.max_int]. *)
external to_float : int32 -> float = "int32_to_float"
(* Convert the given 32-bit integer to a floating-point number. *)
external of_string : string -> int32 = "int32_of_string"
(* Convert the given string to a 32-bit integer.
The string is read in decimal (by default) or in hexadecimal,
octal or binary if the string begins with [0x], [0o] or [0b]
respectively.
Raise [Failure "int_of_string"] if the given string is not
a valid representation of an integer. *)
val to_string : int32 -> string
(* Return the string representation of its argument,
in signed decimal. *)
external format : string -> int32 -> string = "int32_format"
(* [Int32.format fmt n] return the string representation of the
32-bit integer [n] in the format specified by [fmt].
[fmt] is a [Printf]-style format containing exactly
one [%d], [%i], [%u], [%x], [%X] or [%o] conversion specification.
See the documentation of the [Printf] module for more information, *)