ocaml/otherlibs/num/big_int.mli

142 lines
6.3 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Valerie Menissier-Morain, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Module [Big_int]: operations on arbitrary-precision integers *)
(* Big integers (type [big_int]) are signed integers of arbitrary size. *)
open Nat
type big_int
(* The type of big integers. *)
val zero_big_int : big_int
(* The big integer [0]. *)
val unit_big_int : big_int
(* The big integer [1]. *)
(*** Arithmetic operations *)
val minus_big_int : big_int -> big_int
(* Unary negation. *)
val abs_big_int : big_int -> big_int
(* Absolute value. *)
val add_big_int : big_int -> big_int -> big_int
(* Addition. *)
val succ_big_int : big_int -> big_int
(* Successor (add 1). *)
val add_int_big_int : int -> big_int -> big_int
(* Addition of a small integer to a big integer. *)
val sub_big_int : big_int -> big_int -> big_int
(* Subtraction. *)
val pred_big_int : big_int -> big_int
(* Predecessor (subtract 1). *)
val mult_big_int : big_int -> big_int -> big_int
(* Multiplication of two big integers. *)
val mult_int_big_int : int -> big_int -> big_int
(* Multiplication of a big integer by a small integer *)
val square_big_int: big_int -> big_int
(* Return the square of the given big integer *)
val sqrt_big_int: big_int -> big_int
(* [sqrt_big_int a] returns the integer square root of [a],
that is, the largest big integer [r] such that [r * r <= a].
Raise [Invalid_argument] if [a] is negative. *)
val quomod_big_int : big_int -> big_int -> big_int * big_int
(* Euclidean division of two big integers.
The first part of the result is the quotient,
the second part is the remainder.
Writing [(q,r) = quomod_big_int a b], we have
[a = q * b + r] and [0 <= r < |b|].
Raise [Division_by_zero] if the divisor is zero. *)
val div_big_int : big_int -> big_int -> big_int
(* Euclidean quotient of two big integers.
This is the first result [q] of [quomod_big_int] (see above). *)
val mod_big_int : big_int -> big_int -> big_int
(* Euclidean modulus of two big integers.
This is the second result [r] of [quomod_big_int] (see above). *)
val gcd_big_int : big_int -> big_int -> big_int
(* Greatest common divisor of two big integers. *)
val power_int_positive_int: int -> int -> big_int
val power_big_int_positive_int: big_int -> int -> big_int
val power_int_positive_big_int: int -> big_int -> big_int
val power_big_int_positive_big_int: big_int -> big_int -> big_int
(* Exponentiation functions. Return the big integer
representing the first argument [a] raised to the power [b]
(the second argument). Depending
on the function, [a] and [b] can be either small integers
or big integers. Raise [Invalid_argument] if [b] is negative. *)
(*** Comparisons and tests *)
val sign_big_int : big_int -> int
(* Return [0] if the given big integer is zero,
[1] if it is positive, and [-1] if it is negative. *)
val compare_big_int : big_int -> big_int -> int
(* [compare_big_int a b] returns [0] if [a] and [b] are equal,
[1] if [a] is greater than [b], and [-1] if [a] is smaller
than [b]. *)
val eq_big_int : big_int -> big_int -> bool
val le_big_int : big_int -> big_int -> bool
val ge_big_int : big_int -> big_int -> bool
val lt_big_int : big_int -> big_int -> bool
val gt_big_int : big_int -> big_int -> bool
(* Usual boolean comparisons between two big integers. *)
val max_big_int : big_int -> big_int -> big_int
(* Return the greater of its two arguments. *)
val min_big_int : big_int -> big_int -> big_int
(* Return the smaller of its two arguments. *)
val num_digits_big_int : big_int -> int
(* Return the number of machine words used to store the
given big integer. *)
(*** Conversions to and from strings *)
val string_of_big_int : big_int -> string
(* Return the string representation of the given big integer,
in decimal (base 10). *)
val big_int_of_string : string -> big_int
(* Convert a string to a big integer, in decimal.
The string consists of an optional [-] or [+] sign,
followed by one or several decimal digits. *)
(*** Conversions to and from other numerical types *)
val big_int_of_int : int -> big_int
(* Convert a small integer to a big integer. *)
val is_int_big_int : big_int -> bool
(* Test whether the given big integer is small enough to
be representable as a small integer (type [int])
without loss of precision. On a 32-bit platform,
[is_int_big_int a] returns [true] if and only if
[a] is between $-2^{30}$ and $2^{30}-1$. On a 64-bit platform,
[is_int_big_int a] returns [true] if and only if
[a] is between $-2^{62}$ and $2^{62}-1$. *)
val int_of_big_int : big_int -> int
(* Convert a big integer to a small integer (type [int]).
Raises [Failure "int_of_big_int"] if the big integer
is not representable as a small integer. *)
val float_of_big_int : big_int -> float
(* Returns a floating-point number approximating the
given big integer. *)
(*--*)
(*** For internal use *)
val nat_of_big_int : big_int -> nat
val big_int_of_nat : nat -> big_int
val base_power_big_int: int -> int -> big_int -> big_int
val sys_big_int_of_string: string -> int -> int -> big_int
val round_futur_last_digit : string -> int -> int -> bool
val approx_big_int: int -> big_int -> string