ocaml/bytecomp/translmod.ml

943 lines
35 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Translation from typed abstract syntax to lambda terms,
for the module language *)
open Misc
open Asttypes
open Longident
open Path
open Types
open Typedtree
open Lambda
open Translobj
open Translcore
open Translclass
type error =
Circular_dependency of Ident.t
exception Error of Location.t * error
(* Keep track of the root path (from the root of the namespace to the
currently compiled module expression). Useful for naming extensions. *)
let global_path glob = Some(Pident glob)
let functor_path path param =
match path with
None -> None
| Some p -> Some(Papply(p, Pident param))
let field_path path field =
match path with
None -> None
| Some p -> Some(Pdot(p, Ident.name field, Path.nopos))
(* Compile type extensions *)
let prim_set_oo_id =
Pccall {Primitive.prim_name = "caml_set_oo_id"; prim_arity = 1;
prim_alloc = false; prim_native_name = "";
prim_native_float = false}
let transl_extension_constructor env path ext =
let name =
match path with
None -> Ident.name ext.ext_id
| Some p -> Path.name p
in
match ext.ext_kind with
Text_decl(args, ret) ->
Lprim(prim_set_oo_id,
[Lprim(Pmakeblock(Obj.object_tag, Mutable),
[Lconst(Const_base(Const_string (name,None)));
Lconst(Const_base(Const_int 0))])])
| Text_rebind(path, lid) ->
transl_path ~loc:ext.ext_loc env path
let transl_type_extension env rootpath tyext body =
List.fold_right
(fun ext body ->
let lam =
transl_extension_constructor env (field_path rootpath ext.ext_id) ext
in
Llet(Strict, ext.ext_id, lam, body))
tyext.tyext_constructors
body
(* Compile a coercion *)
let rec apply_coercion strict restr arg =
match restr with
Tcoerce_none ->
arg
| Tcoerce_structure(pos_cc_list, id_pos_list) ->
name_lambda strict arg (fun id ->
let lam =
Lprim(Pmakeblock(0, Immutable),
List.map (apply_coercion_field id) pos_cc_list) in
let fv = free_variables lam in
let (lam,s) =
List.fold_left (fun (lam,s) (id',pos,c) ->
if IdentSet.mem id' fv then
let id'' = Ident.create (Ident.name id') in
(Llet(Alias,id'',
apply_coercion Alias c (Lprim(Pfield pos,[Lvar id])),lam),
Ident.add id' (Lvar id'') s)
else (lam,s))
(lam, Ident.empty) id_pos_list
in
if s == Ident.empty then lam else subst_lambda s lam)
| Tcoerce_functor(cc_arg, cc_res) ->
let param = Ident.create "funarg" in
name_lambda strict arg (fun id ->
Lfunction(Curried, [param],
apply_coercion Strict cc_res
(Lapply(Lvar id, [apply_coercion Alias cc_arg (Lvar param)],
Location.none))))
| Tcoerce_primitive p ->
transl_primitive Location.none p
| Tcoerce_alias (path, cc) ->
name_lambda strict arg
(fun id -> apply_coercion Alias cc (transl_normal_path path))
and apply_coercion_field id (pos, cc) =
apply_coercion Alias cc (Lprim(Pfield pos, [Lvar id]))
(* Compose two coercions
apply_coercion c1 (apply_coercion c2 e) behaves like
apply_coercion (compose_coercions c1 c2) e. *)
let rec compose_coercions c1 c2 =
match (c1, c2) with
(Tcoerce_none, c2) -> c2
| (c1, Tcoerce_none) -> c1
| (Tcoerce_structure (pc1, ids1), Tcoerce_structure (pc2, ids2)) ->
let v2 = Array.of_list pc2 in
let ids1 =
List.map (fun (id,pos1,c1) ->
let (pos2,c2) = v2.(pos1) in (id, pos2, compose_coercions c1 c2))
ids1
in
Tcoerce_structure
(List.map
(function (p1, Tcoerce_primitive p) ->
(p1, Tcoerce_primitive p)
| (p1, c1) ->
let (p2, c2) = v2.(p1) in (p2, compose_coercions c1 c2))
pc1,
ids1 @ ids2)
| (Tcoerce_functor(arg1, res1), Tcoerce_functor(arg2, res2)) ->
Tcoerce_functor(compose_coercions arg2 arg1,
compose_coercions res1 res2)
| (c1, Tcoerce_alias (path, c2)) ->
Tcoerce_alias (path, compose_coercions c1 c2)
| (_, _) ->
fatal_error "Translmod.compose_coercions"
(* Record the primitive declarations occuring in the module compiled *)
let primitive_declarations = ref ([] : Primitive.description list)
let record_primitive = function
| {val_kind=Val_prim p} ->
primitive_declarations := p :: !primitive_declarations
| _ -> ()
(* Utilities for compiling "module rec" definitions *)
let mod_prim name =
try
transl_normal_path
(fst (Env.lookup_value (Ldot (Lident "CamlinternalMod", name))
Env.empty))
with Not_found ->
fatal_error ("Primitive " ^ name ^ " not found.")
let undefined_location loc =
let (fname, line, char) = Location.get_pos_info loc.Location.loc_start in
Lconst(Const_block(0,
[Const_base(Const_string (fname, None));
Const_base(Const_int line);
Const_base(Const_int char)]))
let init_shape modl =
let rec init_shape_mod env mty =
match Mtype.scrape env mty with
Mty_ident _ ->
raise Not_found
| Mty_alias _ ->
Const_block (1, [Const_pointer 0])
| Mty_signature sg ->
Const_block(0, [Const_block(0, init_shape_struct env sg)])
| Mty_functor(id, arg, res) ->
raise Not_found (* can we do better? *)
and init_shape_struct env sg =
match sg with
[] -> []
| Sig_value(id, vdesc) :: rem ->
let init_v =
match Ctype.expand_head env vdesc.val_type with
{desc = Tarrow(_,_,_,_)} ->
Const_pointer 0 (* camlinternalMod.Function *)
| {desc = Tconstr(p, _, _)} when Path.same p Predef.path_lazy_t ->
Const_pointer 1 (* camlinternalMod.Lazy *)
| _ -> raise Not_found in
init_v :: init_shape_struct env rem
| Sig_type(id, tdecl, _) :: rem ->
init_shape_struct (Env.add_type ~check:false id tdecl env) rem
| Sig_typext(id, ext, _) :: rem ->
raise Not_found
| Sig_module(id, md, _) :: rem ->
init_shape_mod env md.md_type ::
init_shape_struct (Env.add_module_declaration id md env) rem
| Sig_modtype(id, minfo) :: rem ->
init_shape_struct (Env.add_modtype id minfo env) rem
| Sig_class(id, cdecl, _) :: rem ->
Const_pointer 2 (* camlinternalMod.Class *)
:: init_shape_struct env rem
| Sig_class_type(id, ctyp, _) :: rem ->
init_shape_struct env rem
in
try
Some(undefined_location modl.mod_loc,
Lconst(init_shape_mod modl.mod_env modl.mod_type))
with Not_found ->
None
(* Reorder bindings to honor dependencies. *)
type binding_status = Undefined | Inprogress | Defined
let reorder_rec_bindings bindings =
let id = Array.of_list (List.map (fun (id,_,_,_) -> id) bindings)
and loc = Array.of_list (List.map (fun (_,loc,_,_) -> loc) bindings)
and init = Array.of_list (List.map (fun (_,_,init,_) -> init) bindings)
and rhs = Array.of_list (List.map (fun (_,_,_,rhs) -> rhs) bindings) in
let fv = Array.map Lambda.free_variables rhs in
let num_bindings = Array.length id in
let status = Array.create num_bindings Undefined in
let res = ref [] in
let rec emit_binding i =
match status.(i) with
Defined -> ()
| Inprogress -> raise(Error(loc.(i), Circular_dependency id.(i)))
| Undefined ->
if init.(i) = None then begin
status.(i) <- Inprogress;
for j = 0 to num_bindings - 1 do
if IdentSet.mem id.(j) fv.(i) then emit_binding j
done
end;
res := (id.(i), init.(i), rhs.(i)) :: !res;
status.(i) <- Defined in
for i = 0 to num_bindings - 1 do
match status.(i) with
Undefined -> emit_binding i
| Inprogress -> assert false
| Defined -> ()
done;
List.rev !res
(* Generate lambda-code for a reordered list of bindings *)
let eval_rec_bindings bindings cont =
let rec bind_inits = function
[] ->
bind_strict bindings
| (id, None, rhs) :: rem ->
bind_inits rem
| (id, Some(loc, shape), rhs) :: rem ->
Llet(Strict, id, Lapply(mod_prim "init_mod", [loc; shape], Location.none),
bind_inits rem)
and bind_strict = function
[] ->
patch_forwards bindings
| (id, None, rhs) :: rem ->
Llet(Strict, id, rhs, bind_strict rem)
| (id, Some(loc, shape), rhs) :: rem ->
bind_strict rem
and patch_forwards = function
[] ->
cont
| (id, None, rhs) :: rem ->
patch_forwards rem
| (id, Some(loc, shape), rhs) :: rem ->
Lsequence(Lapply(mod_prim "update_mod", [shape; Lvar id; rhs],
Location.none),
patch_forwards rem)
in
bind_inits bindings
let compile_recmodule compile_rhs bindings cont =
eval_rec_bindings
(reorder_rec_bindings
(List.map
(fun {mb_id=id; mb_expr=modl; _} ->
(id, modl.mod_loc, init_shape modl, compile_rhs id modl))
bindings))
cont
(* Extract the list of "value" identifiers bound by a signature.
"Value" identifiers are identifiers for signature components that
correspond to a run-time value: values, extensions, modules, classes.
Note: manifest primitives do not correspond to a run-time value! *)
let rec bound_value_identifiers = function
[] -> []
| Sig_value(id, {val_kind = Val_reg}) :: rem ->
id :: bound_value_identifiers rem
| Sig_typext(id, ext, _) :: rem -> id :: bound_value_identifiers rem
| Sig_module(id, mty, _) :: rem -> id :: bound_value_identifiers rem
| Sig_class(id, decl, _) :: rem -> id :: bound_value_identifiers rem
| _ :: rem -> bound_value_identifiers rem
(* Compile a module expression *)
let rec transl_module cc rootpath mexp =
match mexp.mod_type with
Mty_alias _ -> apply_coercion Alias cc lambda_unit
| _ ->
match mexp.mod_desc with
Tmod_ident (path,_) ->
apply_coercion StrictOpt cc
(transl_path ~loc:mexp.mod_loc mexp.mod_env path)
| Tmod_structure str ->
transl_struct [] cc rootpath str
| Tmod_functor( param, _, mty, body) ->
let bodypath = functor_path rootpath param in
oo_wrap mexp.mod_env true
(function
| Tcoerce_none ->
Lfunction(Curried, [param],
transl_module Tcoerce_none bodypath body)
| Tcoerce_functor(ccarg, ccres) ->
let param' = Ident.create "funarg" in
Lfunction(Curried, [param'],
Llet(Alias, param,
apply_coercion Alias ccarg (Lvar param'),
transl_module ccres bodypath body))
| _ ->
fatal_error "Translmod.transl_module")
cc
| Tmod_apply(funct, arg, ccarg) ->
oo_wrap mexp.mod_env true
(apply_coercion Strict cc)
(Lapply(transl_module Tcoerce_none None funct,
[transl_module ccarg None arg], mexp.mod_loc))
| Tmod_constraint(arg, mty, _, ccarg) ->
transl_module (compose_coercions cc ccarg) rootpath arg
| Tmod_unpack(arg, _) ->
apply_coercion Strict cc (Translcore.transl_exp arg)
and transl_struct fields cc rootpath str =
transl_structure fields cc rootpath str.str_items
and transl_structure fields cc rootpath = function
[] ->
begin match cc with
Tcoerce_none ->
Lprim(Pmakeblock(0, Immutable),
List.map (fun id -> Lvar id) (List.rev fields))
| Tcoerce_structure(pos_cc_list, id_pos_list) ->
(* ignore id_pos_list as the ids are already bound *)
let v = Array.of_list (List.rev fields) in
(*List.fold_left
(fun lam (id, pos) -> Llet(Alias, id, Lvar v.(pos), lam))*)
(Lprim(Pmakeblock(0, Immutable),
List.map
(fun (pos, cc) ->
match cc with
Tcoerce_primitive p -> transl_primitive Location.none p
| _ -> apply_coercion Strict cc (Lvar v.(pos)))
pos_cc_list))
(*id_pos_list*)
| _ ->
fatal_error "Translmod.transl_structure"
end
| item :: rem ->
match item.str_desc with
| Tstr_eval (expr, _) ->
Lsequence(transl_exp expr, transl_structure fields cc rootpath rem)
| Tstr_value(rec_flag, pat_expr_list) ->
let ext_fields = rev_let_bound_idents pat_expr_list @ fields in
transl_let rec_flag pat_expr_list
(transl_structure ext_fields cc rootpath rem)
| Tstr_primitive descr ->
record_primitive descr.val_val;
transl_structure fields cc rootpath rem
| Tstr_type(decls) ->
transl_structure fields cc rootpath rem
| Tstr_typext(tyext) ->
let ids = List.map (fun ext -> ext.ext_id) tyext.tyext_constructors in
transl_type_extension item.str_env rootpath tyext
(transl_structure (List.rev_append ids fields) cc rootpath rem)
| Tstr_exception ext ->
let id = ext.ext_id in
let path = field_path rootpath id in
Llet(Strict, id, transl_extension_constructor item.str_env path ext,
transl_structure (id :: fields) cc rootpath rem)
| Tstr_module mb ->
let id = mb.mb_id in
Llet(pure_module mb.mb_expr, id,
transl_module Tcoerce_none (field_path rootpath id) mb.mb_expr,
transl_structure (id :: fields) cc rootpath rem)
| Tstr_recmodule bindings ->
let ext_fields =
List.rev_append (List.map (fun mb -> mb.mb_id) bindings) fields
in
compile_recmodule
(fun id modl ->
transl_module Tcoerce_none (field_path rootpath id) modl)
bindings
(transl_structure ext_fields cc rootpath rem)
| Tstr_class cl_list ->
let ids = List.map (fun (ci,_,_) -> ci.ci_id_class) cl_list in
Lletrec(List.map
(fun (ci, meths, vf) ->
let id = ci.ci_id_class in
let cl = ci.ci_expr in
(id, transl_class ids id meths cl vf ))
cl_list,
transl_structure (List.rev_append ids fields) cc rootpath rem)
| Tstr_include incl ->
let ids = bound_value_identifiers incl.incl_type in
let modl = incl.incl_mod in
let mid = Ident.create "include" in
let rec rebind_idents pos newfields = function
[] ->
transl_structure newfields cc rootpath rem
| id :: ids ->
Llet(Alias, id, Lprim(Pfield pos, [Lvar mid]),
rebind_idents (pos + 1) (id :: newfields) ids) in
Llet(pure_module modl, mid, transl_module Tcoerce_none None modl,
rebind_idents 0 fields ids)
| Tstr_modtype _
| Tstr_open _
| Tstr_class_type _
| Tstr_attribute _ ->
transl_structure fields cc rootpath rem
and pure_module m =
match m.mod_desc with
Tmod_ident _ -> Alias
| Tmod_constraint (m,_,_,_) -> pure_module m
| _ -> Strict
(* Update forward declaration in Translcore *)
let _ =
Translcore.transl_module := transl_module
(* Compile an implementation *)
let transl_implementation module_name (str, cc) =
reset_labels ();
primitive_declarations := [];
let module_id = Ident.create_persistent module_name in
Lprim(Psetglobal module_id,
[transl_label_init
(transl_struct [] cc (global_path module_id) str)])
(* Build the list of value identifiers defined by a toplevel structure
(excluding primitive declarations). *)
let rec defined_idents = function
[] -> []
| item :: rem ->
match item.str_desc with
| Tstr_eval (expr, _) -> defined_idents rem
| Tstr_value(rec_flag, pat_expr_list) ->
let_bound_idents pat_expr_list @ defined_idents rem
| Tstr_primitive desc -> defined_idents rem
| Tstr_type decls -> defined_idents rem
| Tstr_typext tyext ->
List.map (fun ext -> ext.ext_id) tyext.tyext_constructors
@ defined_idents rem
| Tstr_exception ext -> ext.ext_id :: defined_idents rem
| Tstr_module mb -> mb.mb_id :: defined_idents rem
| Tstr_recmodule decls ->
List.map (fun mb -> mb.mb_id) decls @ defined_idents rem
| Tstr_modtype _ -> defined_idents rem
| Tstr_open _ -> defined_idents rem
| Tstr_class cl_list ->
List.map (fun (ci, _, _) -> ci.ci_id_class) cl_list @ defined_idents rem
| Tstr_class_type cl_list -> defined_idents rem
| Tstr_include incl ->
bound_value_identifiers incl.incl_type @ defined_idents rem
| Tstr_attribute _ -> defined_idents rem
(* second level idents (module M = struct ... let id = ... end),
and all sub-levels idents *)
let rec more_idents = function
[] -> []
| item :: rem ->
match item.str_desc with
| Tstr_eval (expr, _attrs) -> more_idents rem
| Tstr_value(rec_flag, pat_expr_list) -> more_idents rem
| Tstr_primitive _ -> more_idents rem
| Tstr_type decls -> more_idents rem
| Tstr_typext tyext -> more_idents rem
| Tstr_exception _ -> more_idents rem
| Tstr_recmodule decls -> more_idents rem
| Tstr_modtype _ -> more_idents rem
| Tstr_open _ -> more_idents rem
| Tstr_class cl_list -> more_idents rem
| Tstr_class_type cl_list -> more_idents rem
| Tstr_include _ -> more_idents rem
| Tstr_module {mb_expr={mod_desc = Tmod_structure str}} ->
all_idents str.str_items @ more_idents rem
| Tstr_module _ -> more_idents rem
| Tstr_attribute _ -> more_idents rem
and all_idents = function
[] -> []
| item :: rem ->
match item.str_desc with
| Tstr_eval (expr, _attrs) -> all_idents rem
| Tstr_value(rec_flag, pat_expr_list) ->
let_bound_idents pat_expr_list @ all_idents rem
| Tstr_primitive _ -> all_idents rem
| Tstr_type decls -> all_idents rem
| Tstr_typext tyext ->
List.map (fun ext -> ext.ext_id) tyext.tyext_constructors
@ all_idents rem
| Tstr_exception ext -> ext.ext_id :: all_idents rem
| Tstr_recmodule decls ->
List.map (fun mb -> mb.mb_id) decls @ all_idents rem
| Tstr_modtype _ -> all_idents rem
| Tstr_open _ -> all_idents rem
| Tstr_class cl_list ->
List.map (fun (ci, _, _) -> ci.ci_id_class) cl_list @ all_idents rem
| Tstr_class_type cl_list -> all_idents rem
| Tstr_include incl ->
bound_value_identifiers incl.incl_type @ all_idents rem
| Tstr_module {mb_id;mb_expr={mod_desc = Tmod_structure str}} ->
mb_id :: all_idents str.str_items @ all_idents rem
| Tstr_module mb -> mb.mb_id :: all_idents rem
| Tstr_attribute _ -> all_idents rem
(* A variant of transl_structure used to compile toplevel structure definitions
for the native-code compiler. Store the defined values in the fields
of the global as soon as they are defined, in order to reduce register
pressure. Also rewrites the defining expressions so that they
refer to earlier fields of the structure through the fields of
the global, not by their names.
"map" is a table from defined idents to (pos in global block, coercion).
"prim" is a list of (pos in global block, primitive declaration). *)
let transl_store_subst = ref Ident.empty
(** In the native toplevel, this reference is threaded through successive
calls of transl_store_structure *)
let nat_toplevel_name id =
try match Ident.find_same id !transl_store_subst with
| Lprim(Pfield pos, [Lprim(Pgetglobal glob, [])]) -> (glob,pos)
| _ -> raise Not_found
with Not_found ->
fatal_error("Translmod.nat_toplevel_name: " ^ Ident.unique_name id)
let transl_store_structure glob map prims str =
let rec transl_store rootpath subst = function
[] ->
transl_store_subst := subst;
lambda_unit
| item :: rem ->
match item.str_desc with
| Tstr_eval (expr, _attrs) ->
Lsequence(subst_lambda subst (transl_exp expr),
transl_store rootpath subst rem)
| Tstr_value(rec_flag, pat_expr_list) ->
let ids = let_bound_idents pat_expr_list in
let lam = transl_let rec_flag pat_expr_list (store_idents ids) in
Lsequence(subst_lambda subst lam,
transl_store rootpath (add_idents false ids subst) rem)
| Tstr_primitive descr ->
record_primitive descr.val_val;
transl_store rootpath subst rem
| Tstr_type(decls) ->
transl_store rootpath subst rem
| Tstr_typext(tyext) ->
let ids = List.map (fun ext -> ext.ext_id) tyext.tyext_constructors in
let lam =
transl_type_extension item.str_env rootpath tyext (store_idents ids)
in
Lsequence(subst_lambda subst lam,
transl_store rootpath (add_idents false ids subst) rem)
| Tstr_exception ext ->
let id = ext.ext_id in
let path = field_path rootpath id in
let lam = transl_extension_constructor item.str_env path ext in
Lsequence(Llet(Strict, id, subst_lambda subst lam, store_ident id),
transl_store rootpath (add_ident false id subst) rem)
| Tstr_module{mb_id=id; mb_expr={mod_desc = Tmod_structure str}} ->
let lam = transl_store (field_path rootpath id) subst str.str_items in
(* Careful: see next case *)
let subst = !transl_store_subst in
Lsequence(lam,
Llet(Strict, id,
subst_lambda subst
(Lprim(Pmakeblock(0, Immutable),
List.map (fun id -> Lvar id)
(defined_idents str.str_items))),
Lsequence(store_ident id,
transl_store rootpath (add_ident true id subst)
rem)))
| Tstr_module{mb_id=id; mb_expr=modl} ->
let lam = transl_module Tcoerce_none (field_path rootpath id) modl in
(* Careful: the module value stored in the global may be different
from the local module value, in case a coercion is applied.
If so, keep using the local module value (id) in the remainder of
the compilation unit (add_ident true returns subst unchanged).
If not, we can use the value from the global
(add_ident true adds id -> Pgetglobal... to subst). *)
Llet(Strict, id, subst_lambda subst lam,
Lsequence(store_ident id,
transl_store rootpath (add_ident true id subst) rem))
| Tstr_recmodule bindings ->
let ids = List.map (fun mb -> mb.mb_id) bindings in
compile_recmodule
(fun id modl ->
subst_lambda subst
(transl_module Tcoerce_none
(field_path rootpath id) modl))
bindings
(Lsequence(store_idents ids,
transl_store rootpath (add_idents true ids subst) rem))
| Tstr_class cl_list ->
let ids = List.map (fun (ci, _, _) -> ci.ci_id_class) cl_list in
let lam =
Lletrec(List.map
(fun (ci, meths, vf) ->
let id = ci.ci_id_class in
let cl = ci.ci_expr in
(id, transl_class ids id meths cl vf))
cl_list,
store_idents ids) in
Lsequence(subst_lambda subst lam,
transl_store rootpath (add_idents false ids subst) rem)
| Tstr_include incl ->
let ids = bound_value_identifiers incl.incl_type in
let modl = incl.incl_mod in
let mid = Ident.create "include" in
let rec store_idents pos = function
[] -> transl_store rootpath (add_idents true ids subst) rem
| id :: idl ->
Llet(Alias, id, Lprim(Pfield pos, [Lvar mid]),
Lsequence(store_ident id, store_idents (pos + 1) idl)) in
Llet(Strict, mid,
subst_lambda subst (transl_module Tcoerce_none None modl),
store_idents 0 ids)
| Tstr_modtype _
| Tstr_open _
| Tstr_class_type _
| Tstr_attribute _ ->
transl_store rootpath subst rem
and store_ident id =
try
let (pos, cc) = Ident.find_same id map in
let init_val = apply_coercion Alias cc (Lvar id) in
Lprim(Psetfield(pos, false), [Lprim(Pgetglobal glob, []); init_val])
with Not_found ->
fatal_error("Translmod.store_ident: " ^ Ident.unique_name id)
and store_idents idlist =
make_sequence store_ident idlist
and add_ident may_coerce id subst =
try
let (pos, cc) = Ident.find_same id map in
match cc with
Tcoerce_none ->
Ident.add id (Lprim(Pfield pos, [Lprim(Pgetglobal glob, [])])) subst
| _ ->
if may_coerce then subst else assert false
with Not_found ->
assert false
and add_idents may_coerce idlist subst =
List.fold_right (add_ident may_coerce) idlist subst
and store_primitive (pos, prim) cont =
Lsequence(Lprim(Psetfield(pos, false),
[Lprim(Pgetglobal glob, []);
transl_primitive Location.none prim]),
cont)
in List.fold_right store_primitive prims
(transl_store (global_path glob) !transl_store_subst str)
(* Transform a coercion and the list of value identifiers defined by
a toplevel structure into a table [id -> (pos, coercion)],
with [pos] being the position in the global block where the value of
[id] must be stored, and [coercion] the coercion to be applied to it.
A given identifier may appear several times
in the coercion (if it occurs several times in the signature); remember
to assign it the position of its last occurrence.
Identifiers that are not exported are assigned positions at the
end of the block (beyond the positions of all exported idents).
Also compute the total size of the global block,
and the list of all primitives exported as values. *)
let build_ident_map restr idlist more_ids =
let rec natural_map pos map prims = function
[] ->
(map, prims, pos)
| id :: rem ->
natural_map (pos+1) (Ident.add id (pos, Tcoerce_none) map) prims rem in
let (map, prims, pos) =
match restr with
Tcoerce_none ->
natural_map 0 Ident.empty [] idlist
| Tcoerce_structure (pos_cc_list, _id_pos_list) ->
(* ignore _id_pos_list as the ids are already bound *)
let idarray = Array.of_list idlist in
let rec export_map pos map prims undef = function
[] ->
natural_map pos map prims undef
| (source_pos, Tcoerce_primitive p) :: rem ->
export_map (pos + 1) map ((pos, p) :: prims) undef rem
| (source_pos, cc) :: rem ->
let id = idarray.(source_pos) in
export_map (pos + 1) (Ident.add id (pos, cc) map)
prims (list_remove id undef) rem
in export_map 0 Ident.empty [] idlist pos_cc_list
| _ ->
fatal_error "Translmod.build_ident_map"
in
natural_map pos map prims more_ids
(* Compile an implementation using transl_store_structure
(for the native-code compiler). *)
let transl_store_gen module_name ({ str_items = str }, restr) topl =
reset_labels ();
primitive_declarations := [];
let module_id = Ident.create_persistent module_name in
let (map, prims, size) =
build_ident_map restr (defined_idents str) (more_idents str) in
let f = function
| [ { str_desc = Tstr_eval (expr, _attrs) } ] when topl ->
assert (size = 0);
subst_lambda !transl_store_subst (transl_exp expr)
| str -> transl_store_structure module_id map prims str in
transl_store_label_init module_id size f str
(*size, transl_label_init (transl_store_structure module_id map prims str)*)
let transl_store_phrases module_name str =
transl_store_gen module_name (str,Tcoerce_none) true
let transl_store_implementation module_name (str, restr) =
let s = !transl_store_subst in
transl_store_subst := Ident.empty;
let r = transl_store_gen module_name (str, restr) false in
transl_store_subst := s;
r
(* Compile a toplevel phrase *)
let toploop_ident = Ident.create_persistent "Toploop"
let toploop_getvalue_pos = 0 (* position of getvalue in module Toploop *)
let toploop_setvalue_pos = 1 (* position of setvalue in module Toploop *)
let aliased_idents = ref Ident.empty
let set_toplevel_unique_name id =
aliased_idents :=
Ident.add id (Ident.unique_toplevel_name id) !aliased_idents
let toplevel_name id =
try Ident.find_same id !aliased_idents
with Not_found -> Ident.name id
let toploop_getvalue id =
Lapply(Lprim(Pfield toploop_getvalue_pos,
[Lprim(Pgetglobal toploop_ident, [])]),
[Lconst(Const_base(Const_string (toplevel_name id, None)))],
Location.none)
let toploop_setvalue id lam =
Lapply(Lprim(Pfield toploop_setvalue_pos,
[Lprim(Pgetglobal toploop_ident, [])]),
[Lconst(Const_base(Const_string (toplevel_name id, None))); lam],
Location.none)
let toploop_setvalue_id id = toploop_setvalue id (Lvar id)
let close_toplevel_term lam =
IdentSet.fold (fun id l -> Llet(Strict, id, toploop_getvalue id, l))
(free_variables lam) lam
let transl_toplevel_item item =
match item.str_desc with
Tstr_eval (expr, _attrs) ->
transl_exp expr
| Tstr_value(rec_flag, pat_expr_list) ->
let idents = let_bound_idents pat_expr_list in
transl_let rec_flag pat_expr_list
(make_sequence toploop_setvalue_id idents)
| Tstr_typext(tyext) ->
let idents =
List.map (fun ext -> ext.ext_id) tyext.tyext_constructors
in
transl_type_extension item.str_env None tyext
(make_sequence toploop_setvalue_id idents)
| Tstr_exception ext ->
toploop_setvalue ext.ext_id
(transl_extension_constructor item.str_env None ext)
| Tstr_module {mb_id=id; mb_expr=modl} ->
(* we need to use the unique name for the module because of issues
with "open" (PR#1672) *)
set_toplevel_unique_name id;
let lam = transl_module Tcoerce_none (Some(Pident id)) modl in
toploop_setvalue id lam
| Tstr_recmodule bindings ->
let idents = List.map (fun mb -> mb.mb_id) bindings in
compile_recmodule
(fun id modl -> transl_module Tcoerce_none (Some(Pident id)) modl)
bindings
(make_sequence toploop_setvalue_id idents)
| Tstr_class cl_list ->
(* we need to use unique names for the classes because there might
be a value named identically *)
let ids = List.map (fun (ci, _, _) -> ci.ci_id_class) cl_list in
List.iter set_toplevel_unique_name ids;
Lletrec(List.map
(fun (ci, meths, vf) ->
let id = ci.ci_id_class in
let cl = ci.ci_expr in
(id, transl_class ids id meths cl vf))
cl_list,
make_sequence
(fun (ci, _, _) -> toploop_setvalue_id ci.ci_id_class)
cl_list)
| Tstr_include incl ->
let ids = bound_value_identifiers incl.incl_type in
let modl = incl.incl_mod in
let mid = Ident.create "include" in
let rec set_idents pos = function
[] ->
lambda_unit
| id :: ids ->
Lsequence(toploop_setvalue id (Lprim(Pfield pos, [Lvar mid])),
set_idents (pos + 1) ids) in
Llet(Strict, mid, transl_module Tcoerce_none None modl, set_idents 0 ids)
| Tstr_modtype _
| Tstr_open _
| Tstr_primitive _
| Tstr_type _
| Tstr_class_type _
| Tstr_attribute _ ->
lambda_unit
let transl_toplevel_item_and_close itm =
close_toplevel_term (transl_label_init (transl_toplevel_item itm))
let transl_toplevel_definition str =
reset_labels ();
make_sequence transl_toplevel_item_and_close str.str_items
(* Compile the initialization code for a packed library *)
let get_component = function
None -> Lconst const_unit
| Some id -> Lprim(Pgetglobal id, [])
let transl_package component_names target_name coercion =
let components =
Lprim(Pmakeblock(0, Immutable), List.map get_component component_names) in
Lprim(Psetglobal target_name, [apply_coercion Strict coercion components])
(*
let components =
match coercion with
Tcoerce_none ->
List.map get_component component_names
| Tcoerce_structure (pos_cc_list, id_pos_list) ->
(* ignore id_pos_list as the ids are already bound *)
let g = Array.of_list component_names in
List.map
(fun (pos, cc) -> apply_coercion Strict cc (get_component g.(pos)))
pos_cc_list
| _ ->
assert false in
Lprim(Psetglobal target_name, [Lprim(Pmakeblock(0, Immutable), components)])
*)
let transl_store_package component_names target_name coercion =
let rec make_sequence fn pos arg =
match arg with
[] -> lambda_unit
| hd :: tl -> Lsequence(fn pos hd, make_sequence fn (pos + 1) tl) in
match coercion with
Tcoerce_none ->
(List.length component_names,
make_sequence
(fun pos id ->
Lprim(Psetfield(pos, false),
[Lprim(Pgetglobal target_name, []);
get_component id]))
0 component_names)
| Tcoerce_structure (pos_cc_list, id_pos_list) ->
let components =
Lprim(Pmakeblock(0, Immutable), List.map get_component component_names)
in
let blk = Ident.create "block" in
(List.length pos_cc_list,
Llet (Strict, blk, apply_coercion Strict coercion components,
make_sequence
(fun pos id ->
Lprim(Psetfield(pos, false),
[Lprim(Pgetglobal target_name, []);
Lprim(Pfield pos, [Lvar blk])]))
0 pos_cc_list))
(*
(* ignore id_pos_list as the ids are already bound *)
let id = Array.of_list component_names in
(List.length pos_cc_list,
make_sequence
(fun dst (src, cc) ->
Lprim(Psetfield(dst, false),
[Lprim(Pgetglobal target_name, []);
apply_coercion Strict cc (get_component id.(src))]))
0 pos_cc_list)
*)
| _ -> assert false
(* Error report *)
open Format
let report_error ppf = function
Circular_dependency id ->
fprintf ppf
"@[Cannot safely evaluate the definition@ \
of the recursively-defined module %a@]"
Printtyp.ident id
let () =
Location.register_error_of_exn
(function
| Error (loc, err) ->
Some (Location.error_of_printer loc report_error err)
| _ ->
None
)
let reset () =
primitive_declarations := [];
transl_store_subst := Ident.empty;
toploop_ident.Ident.flags <- 0;
aliased_idents := Ident.empty