ocaml/typing/env.ml

1606 lines
51 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Environment handling *)
open Cmi_format
open Config
open Misc
open Asttypes
open Longident
open Path
open Types
open Btype
let add_delayed_check_forward = ref (fun _ -> assert false)
let value_declarations : ((string * Location.t), (unit -> unit)) Hashtbl.t =
Hashtbl.create 16
(* This table is used to usage of value declarations. A declaration is
identified with its name and location. The callback attached to a
declaration is called whenever the value is used explicitly
(lookup_value) or implicitly (inclusion test between signatures,
cf Includemod.value_descriptions). *)
let type_declarations = Hashtbl.create 16
type constructor_usage = Positive | Pattern | Privatize
type constructor_usages =
{
mutable cu_positive: bool;
mutable cu_pattern: bool;
mutable cu_privatize: bool;
}
let add_constructor_usage cu = function
| Positive -> cu.cu_positive <- true
| Pattern -> cu.cu_pattern <- true
| Privatize -> cu.cu_privatize <- true
let constructor_usages () =
{cu_positive = false; cu_pattern = false; cu_privatize = false}
let used_constructors :
(string * Location.t * string, (constructor_usage -> unit)) Hashtbl.t
= Hashtbl.create 16
let prefixed_sg = Hashtbl.create 113
type error =
| Illegal_renaming of string * string * string
| Inconsistent_import of string * string * string
| Need_recursive_types of string * string
exception Error of error
module EnvLazy : sig
type ('a,'b) t
val force : ('a -> 'b) -> ('a,'b) t -> 'b
val create : 'a -> ('a,'b) t
val is_val : ('a,'b) t -> bool
end = struct
type ('a,'b) t = ('a,'b) eval ref
and ('a,'b) eval =
Done of 'b
| Raise of exn
| Thunk of 'a
let force f x =
match !x with
Done x -> x
| Raise e -> raise e
| Thunk e ->
try
let y = f e in
x := Done y;
y
with e ->
x := Raise e;
raise e
let is_val x =
match !x with Done _ -> true | _ -> false
let create x =
let x = ref (Thunk x) in
x
end
type summary =
Env_empty
| Env_value of summary * Ident.t * value_description
| Env_type of summary * Ident.t * type_declaration
| Env_exception of summary * Ident.t * exception_declaration
| Env_module of summary * Ident.t * module_type
| Env_modtype of summary * Ident.t * modtype_declaration
| Env_class of summary * Ident.t * class_declaration
| Env_cltype of summary * Ident.t * class_type_declaration
| Env_open of summary * Path.t
module EnvTbl =
struct
(* A table indexed by identifier, with an extra slot to record usage. *)
type 'a t = ('a * (unit -> unit)) Ident.tbl
let empty = Ident.empty
let nothing = fun () -> ()
let already_defined s tbl =
try ignore (Ident.find_name s tbl); true
with Not_found -> false
let add kind slot id x tbl ref_tbl =
let slot =
match slot with
| None -> nothing
| Some f ->
(fun () ->
let s = Ident.name id in
f kind s (already_defined s ref_tbl)
)
in
Ident.add id (x, slot) tbl
let add_dont_track id x tbl =
Ident.add id (x, nothing) tbl
let find_same_not_using id tbl =
fst (Ident.find_same id tbl)
let find_same id tbl =
let (x, slot) = Ident.find_same id tbl in
slot ();
x
let find_name s tbl =
let (x, slot) = Ident.find_name s tbl in
slot ();
x
let find_all s tbl =
Ident.find_all s tbl
let fold_name f = Ident.fold_name (fun k (d,_) -> f k d)
let keys tbl = Ident.fold_all (fun k _ accu -> k::accu) tbl []
end
type type_descriptions =
constructor_description list * label_description list
type t = {
values: (Path.t * value_description) EnvTbl.t;
constrs: constructor_description EnvTbl.t;
labels: label_description EnvTbl.t;
types: (Path.t * (type_declaration * type_descriptions)) EnvTbl.t;
modules: (Path.t * module_type) EnvTbl.t;
modtypes: (Path.t * modtype_declaration) EnvTbl.t;
components: (Path.t * module_components) EnvTbl.t;
classes: (Path.t * class_declaration) EnvTbl.t;
cltypes: (Path.t * class_type_declaration) EnvTbl.t;
summary: summary;
local_constraints: bool;
gadt_instances: (int * TypeSet.t ref) list;
in_signature: bool;
}
and module_components =
(t * Subst.t * Path.t * Types.module_type, module_components_repr) EnvLazy.t
and module_components_repr =
Structure_comps of structure_components
| Functor_comps of functor_components
and structure_components = {
mutable comp_values: (string, (value_description * int)) Tbl.t;
mutable comp_constrs: (string, (constructor_description * int) list) Tbl.t;
mutable comp_labels: (string, (label_description * int) list) Tbl.t;
mutable comp_types:
(string, ((type_declaration * type_descriptions) * int)) Tbl.t;
mutable comp_modules:
(string, ((Subst.t * Types.module_type,module_type) EnvLazy.t * int)) Tbl.t;
mutable comp_modtypes: (string, (modtype_declaration * int)) Tbl.t;
mutable comp_components: (string, (module_components * int)) Tbl.t;
mutable comp_classes: (string, (class_declaration * int)) Tbl.t;
mutable comp_cltypes: (string, (class_type_declaration * int)) Tbl.t
}
and functor_components = {
fcomp_param: Ident.t; (* Formal parameter *)
fcomp_arg: module_type; (* Argument signature *)
fcomp_res: module_type; (* Result signature *)
fcomp_env: t; (* Environment in which the result signature makes sense *)
fcomp_subst: Subst.t; (* Prefixing substitution for the result signature *)
fcomp_cache: (Path.t, module_components) Hashtbl.t (* For memoization *)
}
let subst_modtype_maker (subst, mty) = Subst.modtype subst mty
let empty = {
values = EnvTbl.empty; constrs = EnvTbl.empty;
labels = EnvTbl.empty; types = EnvTbl.empty;
modules = EnvTbl.empty; modtypes = EnvTbl.empty;
components = EnvTbl.empty; classes = EnvTbl.empty;
cltypes = EnvTbl.empty;
summary = Env_empty; local_constraints = false; gadt_instances = [];
in_signature = false;
}
let in_signature env = {env with in_signature = true}
let diff_keys is_local tbl1 tbl2 =
let keys2 = EnvTbl.keys tbl2 in
List.filter
(fun id ->
is_local (EnvTbl.find_same_not_using id tbl2) &&
try ignore (EnvTbl.find_same_not_using id tbl1); false
with Not_found -> true)
keys2
let is_ident = function
Pident _ -> true
| Pdot _ | Papply _ -> false
let is_local (p, _) = is_ident p
let is_local_exn = function
| {cstr_tag = Cstr_exception (p, _)} -> is_ident p
| _ -> false
let diff env1 env2 =
diff_keys is_local env1.values env2.values @
diff_keys is_local_exn env1.constrs env2.constrs @
diff_keys is_local env1.modules env2.modules @
diff_keys is_local env1.classes env2.classes
(* Forward declarations *)
let components_of_module' =
ref ((fun env sub path mty -> assert false) :
t -> Subst.t -> Path.t -> module_type -> module_components)
let components_of_module_maker' =
ref ((fun (env, sub, path, mty) -> assert false) :
t * Subst.t * Path.t * module_type -> module_components_repr)
let components_of_functor_appl' =
ref ((fun f p1 p2 -> assert false) :
functor_components -> Path.t -> Path.t -> module_components)
let check_modtype_inclusion =
(* to be filled with Includemod.check_modtype_inclusion *)
ref ((fun env mty1 path1 mty2 -> assert false) :
t -> module_type -> Path.t -> module_type -> unit)
(* The name of the compilation unit currently compiled.
"" if outside a compilation unit. *)
let current_unit = ref ""
(* Persistent structure descriptions *)
type pers_struct =
{ ps_name: string;
ps_sig: signature;
ps_comps: module_components;
ps_crcs: (string * Digest.t) list;
ps_filename: string;
ps_flags: pers_flags list }
let persistent_structures =
(Hashtbl.create 17 : (string, pers_struct option) Hashtbl.t)
(* Consistency between persistent structures *)
let crc_units = Consistbl.create()
let check_consistency filename crcs =
try
List.iter
(fun (name, crc) -> Consistbl.check crc_units name crc filename)
crcs
with Consistbl.Inconsistency(name, source, auth) ->
raise(Error(Inconsistent_import(name, auth, source)))
(* Reading persistent structures from .cmi files *)
let read_pers_struct modname filename = (
let cmi = read_cmi filename in
let name = cmi.cmi_name in
let sign = cmi.cmi_sign in
let crcs = cmi.cmi_crcs in
let flags = cmi.cmi_flags in
let comps =
!components_of_module' empty Subst.identity
(Pident(Ident.create_persistent name))
(Mty_signature sign) in
let ps = { ps_name = name;
ps_sig = sign;
ps_comps = comps;
ps_crcs = crcs;
ps_filename = filename;
ps_flags = flags } in
if ps.ps_name <> modname then
raise(Error(Illegal_renaming(modname, ps.ps_name, filename)));
check_consistency filename ps.ps_crcs;
List.iter
(function Rectypes ->
if not !Clflags.recursive_types then
raise(Error(Need_recursive_types(ps.ps_name, !current_unit))))
ps.ps_flags;
Hashtbl.add persistent_structures modname (Some ps);
ps
)
let find_pers_struct name =
if name = "*predef*" then raise Not_found;
let r =
try Some (Hashtbl.find persistent_structures name)
with Not_found -> None
in
match r with
| Some None -> raise Not_found
| Some (Some sg) -> sg
| None ->
let filename =
try find_in_path_uncap !load_path (name ^ ".cmi")
with Not_found ->
Hashtbl.add persistent_structures name None;
raise Not_found
in
read_pers_struct name filename
let reset_cache () =
current_unit := "";
Hashtbl.clear persistent_structures;
Consistbl.clear crc_units;
Hashtbl.clear value_declarations;
Hashtbl.clear type_declarations;
Hashtbl.clear used_constructors;
Hashtbl.clear prefixed_sg
let reset_cache_toplevel () =
(* Delete 'missing cmi' entries from the cache. *)
let l =
Hashtbl.fold
(fun name r acc -> if r = None then name :: acc else acc)
persistent_structures []
in
List.iter (Hashtbl.remove persistent_structures) l;
Hashtbl.clear value_declarations;
Hashtbl.clear type_declarations;
Hashtbl.clear used_constructors;
Hashtbl.clear prefixed_sg
let set_unit_name name =
current_unit := name
(* Lookup by identifier *)
let rec find_module_descr path env =
match path with
Pident id ->
begin try
let (p, desc) = EnvTbl.find_same id env.components
in desc
with Not_found ->
if Ident.persistent id
then (find_pers_struct (Ident.name id)).ps_comps
else raise Not_found
end
| Pdot(p, s, pos) ->
begin match
EnvLazy.force !components_of_module_maker' (find_module_descr p env)
with
Structure_comps c ->
let (descr, pos) = Tbl.find s c.comp_components in
descr
| Functor_comps f ->
raise Not_found
end
| Papply(p1, p2) ->
begin match
EnvLazy.force !components_of_module_maker' (find_module_descr p1 env)
with
Functor_comps f ->
!components_of_functor_appl' f p1 p2
| Structure_comps c ->
raise Not_found
end
let find proj1 proj2 path env =
match path with
Pident id ->
let (p, data) = EnvTbl.find_same id (proj1 env)
in data
| Pdot(p, s, pos) ->
begin match
EnvLazy.force !components_of_module_maker' (find_module_descr p env)
with
Structure_comps c ->
let (data, pos) = Tbl.find s (proj2 c) in data
| Functor_comps f ->
raise Not_found
end
| Papply(p1, p2) ->
raise Not_found
let find_value =
find (fun env -> env.values) (fun sc -> sc.comp_values)
and find_type_full =
find (fun env -> env.types) (fun sc -> sc.comp_types)
and find_modtype =
find (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes)
and find_class =
find (fun env -> env.classes) (fun sc -> sc.comp_classes)
and find_cltype =
find (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes)
let find_type p env =
fst (find_type_full p env)
let find_type_descrs p env =
snd (find_type_full p env)
(* Find the manifest type associated to a type when appropriate:
- the type should be public or should have a private row,
- the type should have an associated manifest type. *)
let find_type_expansion ?level path env =
let decl = find_type path env in
match decl.type_manifest with
| Some body when decl.type_private = Public
|| decl.type_kind <> Type_abstract
|| Btype.has_constr_row body ->
(decl.type_params, body, may_map snd decl.type_newtype_level)
(* The manifest type of Private abstract data types without
private row are still considered unknown to the type system.
Hence, this case is caught by the following clause that also handles
purely abstract data types without manifest type definition. *)
| _ -> raise Not_found
(* Find the manifest type information associated to a type, i.e.
the necessary information for the compiler's type-based optimisations.
In particular, the manifest type associated to a private abstract type
is revealed for the sake of compiler's type-based optimisations. *)
let find_type_expansion_opt path env =
let decl = find_type path env in
match decl.type_manifest with
(* The manifest type of Private abstract data types can still get
an approximation using their manifest type. *)
| Some body -> (decl.type_params, body, may_map snd decl.type_newtype_level)
| _ -> raise Not_found
let find_modtype_expansion path env =
match find_modtype path env with
Modtype_abstract -> raise Not_found
| Modtype_manifest mty -> mty
let find_module path env =
match path with
Pident id ->
begin try
let (p, data) = EnvTbl.find_same id env.modules
in data
with Not_found ->
if Ident.persistent id then
let ps = find_pers_struct (Ident.name id) in
Mty_signature(ps.ps_sig)
else raise Not_found
end
| Pdot(p, s, pos) ->
begin match
EnvLazy.force !components_of_module_maker' (find_module_descr p env)
with
Structure_comps c ->
let (data, pos) = Tbl.find s c.comp_modules in
EnvLazy.force subst_modtype_maker data
| Functor_comps f ->
raise Not_found
end
| Papply(p1, p2) ->
raise Not_found (* not right *)
(* Lookup by name *)
exception Recmodule
let rec lookup_module_descr lid env =
match lid with
Lident s ->
begin try
EnvTbl.find_name s env.components
with Not_found ->
if s = !current_unit then raise Not_found;
let ps = find_pers_struct s in
(Pident(Ident.create_persistent s), ps.ps_comps)
end
| Ldot(l, s) ->
let (p, descr) = lookup_module_descr l env in
begin match EnvLazy.force !components_of_module_maker' descr with
Structure_comps c ->
let (descr, pos) = Tbl.find s c.comp_components in
(Pdot(p, s, pos), descr)
| Functor_comps f ->
raise Not_found
end
| Lapply(l1, l2) ->
let (p1, desc1) = lookup_module_descr l1 env in
let (p2, mty2) = lookup_module l2 env in
begin match EnvLazy.force !components_of_module_maker' desc1 with
Functor_comps f ->
!check_modtype_inclusion env mty2 p2 f.fcomp_arg;
(Papply(p1, p2), !components_of_functor_appl' f p1 p2)
| Structure_comps c ->
raise Not_found
end
and lookup_module lid env =
match lid with
Lident s ->
begin try
let (_, ty) as r = EnvTbl.find_name s env.modules in
begin match ty with
| Mty_ident (Path.Pident id) when Ident.name id = "#recmod#" ->
(* see #5965 *)
raise Recmodule
| _ -> ()
end;
r
with Not_found ->
if s = !current_unit then raise Not_found;
let ps = find_pers_struct s in
(Pident(Ident.create_persistent s), Mty_signature ps.ps_sig)
end
| Ldot(l, s) ->
let (p, descr) = lookup_module_descr l env in
begin match EnvLazy.force !components_of_module_maker' descr with
Structure_comps c ->
let (data, pos) = Tbl.find s c.comp_modules in
(Pdot(p, s, pos), EnvLazy.force subst_modtype_maker data)
| Functor_comps f ->
raise Not_found
end
| Lapply(l1, l2) ->
let (p1, desc1) = lookup_module_descr l1 env in
let (p2, mty2) = lookup_module l2 env in
let p = Papply(p1, p2) in
begin match EnvLazy.force !components_of_module_maker' desc1 with
Functor_comps f ->
!check_modtype_inclusion env mty2 p2 f.fcomp_arg;
(p, Subst.modtype (Subst.add_module f.fcomp_param p2 f.fcomp_subst)
f.fcomp_res)
| Structure_comps c ->
raise Not_found
end
let lookup proj1 proj2 lid env =
match lid with
Lident s ->
EnvTbl.find_name s (proj1 env)
| Ldot(l, s) ->
let (p, desc) = lookup_module_descr l env in
begin match EnvLazy.force !components_of_module_maker' desc with
Structure_comps c ->
let (data, pos) = Tbl.find s (proj2 c) in
(Pdot(p, s, pos), data)
| Functor_comps f ->
raise Not_found
end
| Lapply(l1, l2) ->
raise Not_found
let lookup_simple proj1 proj2 lid env =
match lid with
Lident s ->
EnvTbl.find_name s (proj1 env)
| Ldot(l, s) ->
let (p, desc) = lookup_module_descr l env in
begin match EnvLazy.force !components_of_module_maker' desc with
Structure_comps c ->
let (data, pos) = Tbl.find s (proj2 c) in
data
| Functor_comps f ->
raise Not_found
end
| Lapply(l1, l2) ->
raise Not_found
let lookup_all_simple proj1 proj2 shadow lid env =
match lid with
Lident s ->
let xl = EnvTbl.find_all s (proj1 env) in
let rec do_shadow =
function
| [] -> []
| ((x, f) :: xs) ->
(x, f) ::
(do_shadow (List.filter (fun (y, g) -> not (shadow x y)) xs))
in
do_shadow xl
| Ldot(l, s) ->
let (p, desc) = lookup_module_descr l env in
begin match EnvLazy.force !components_of_module_maker' desc with
Structure_comps c ->
let comps =
try Tbl.find s (proj2 c) with Not_found -> []
in
List.map
(fun (data, pos) -> (data, (fun () -> ())))
comps
| Functor_comps f ->
raise Not_found
end
| Lapply(l1, l2) ->
raise Not_found
let has_local_constraints env = env.local_constraints
let cstr_shadow cstr1 cstr2 =
match cstr1.cstr_tag, cstr2.cstr_tag with
Cstr_exception _, Cstr_exception _ -> true
| _ -> false
let lbl_shadow lbl1 lbl2 = false
let lookup_value =
lookup (fun env -> env.values) (fun sc -> sc.comp_values)
and lookup_all_constructors =
lookup_all_simple (fun env -> env.constrs) (fun sc -> sc.comp_constrs)
cstr_shadow
and lookup_all_labels =
lookup_all_simple (fun env -> env.labels) (fun sc -> sc.comp_labels)
lbl_shadow
and lookup_type =
lookup (fun env -> env.types) (fun sc -> sc.comp_types)
and lookup_modtype =
lookup (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes)
and lookup_class =
lookup (fun env -> env.classes) (fun sc -> sc.comp_classes)
and lookup_cltype =
lookup (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes)
let mark_value_used name vd =
try Hashtbl.find value_declarations (name, vd.val_loc) ()
with Not_found -> ()
let mark_type_used name vd =
try Hashtbl.find type_declarations (name, vd.type_loc) ()
with Not_found -> ()
let mark_constructor_used usage name vd constr =
try Hashtbl.find used_constructors (name, vd.type_loc, constr) usage
with Not_found -> ()
let mark_exception_used usage ed constr =
try Hashtbl.find used_constructors ("exn", ed.exn_loc, constr) usage
with Not_found -> ()
let set_value_used_callback name vd callback =
let key = (name, vd.val_loc) in
try
let old = Hashtbl.find value_declarations key in
Hashtbl.replace value_declarations key (fun () -> old (); callback ())
(* this is to support cases like:
let x = let x = 1 in x in x
where the two declarations have the same location
(e.g. resulting from Camlp4 expansion of grammar entries) *)
with Not_found ->
Hashtbl.add value_declarations key callback
let set_type_used_callback name td callback =
let loc = td.type_loc in
if loc.Location.loc_ghost then ()
else let key = (name, loc) in
let old =
try Hashtbl.find type_declarations key
with Not_found -> assert false
in
Hashtbl.replace type_declarations key (fun () -> callback old)
let lookup_value lid env =
let (_, desc) as r = lookup_value lid env in
mark_value_used (Longident.last lid) desc;
r
let lookup_type lid env =
let (path, (decl, _)) = lookup_type lid env in
mark_type_used (Longident.last lid) decl;
(path, decl)
(* [path] must be the path to a type, not to a module ! *)
let path_subst_last path id =
match path with
Pident _ -> Pident id
| Pdot (p, name, pos) -> Pdot(p, Ident.name id, pos)
| Papply (p1, p2) -> assert false
let mark_type_path env path =
try
let decl = find_type path env in
mark_type_used (Path.last path) decl
with Not_found -> ()
let ty_path t =
match repr t with
| {desc=Tconstr(path, _, _)} -> path
| _ -> assert false
let lookup_constructor lid env =
match lookup_all_constructors lid env with
[] -> raise Not_found
| (desc, use) :: _ ->
mark_type_path env (ty_path desc.cstr_res);
use ();
desc
let is_lident = function
Lident _ -> true
| _ -> false
let lookup_all_constructors lid env =
try
let cstrs = lookup_all_constructors lid env in
let wrap_use desc use () =
mark_type_path env (ty_path desc.cstr_res);
use ()
in
List.map (fun (cstr, use) -> (cstr, wrap_use cstr use)) cstrs
with
Not_found when is_lident lid -> []
let mark_constructor usage env name desc =
match desc.cstr_tag with
| Cstr_exception (_, loc) ->
begin
try Hashtbl.find used_constructors ("exn", loc, name) usage
with Not_found -> ()
end
| _ ->
let ty_path = ty_path desc.cstr_res in
let ty_decl = try find_type ty_path env with Not_found -> assert false in
let ty_name = Path.last ty_path in
mark_constructor_used usage ty_name ty_decl name
let lookup_label lid env =
match lookup_all_labels lid env with
[] -> raise Not_found
| (desc, use) :: _ ->
mark_type_path env (ty_path desc.lbl_res);
use ();
desc
let lookup_all_labels lid env =
try
let lbls = lookup_all_labels lid env in
let wrap_use desc use () =
mark_type_path env (ty_path desc.lbl_res);
use ()
in
List.map (fun (lbl, use) -> (lbl, wrap_use lbl use)) lbls
with
Not_found when is_lident lid -> []
let lookup_class lid env =
let (_, desc) as r = lookup_class lid env in
(* special support for Typeclass.unbound_class *)
if Path.name desc.cty_path = "" then ignore (lookup_type lid env)
else mark_type_path env desc.cty_path;
r
let lookup_cltype lid env =
let (_, desc) as r = lookup_cltype lid env in
if Path.name desc.clty_path = "" then ignore (lookup_type lid env)
else mark_type_path env desc.clty_path;
mark_type_path env desc.clty_path;
r
(* Iter on an environment (ignoring the body of functors and
not yet evaluated structures) *)
let iter_env proj1 proj2 f env =
Ident.iter (fun id (x,_) -> f (Pident id) x) (proj1 env);
let rec iter_components path path' mcomps =
(* if EnvLazy.is_val mcomps then *)
match EnvLazy.force !components_of_module_maker' mcomps with
Structure_comps comps ->
Tbl.iter
(fun s (d, n) -> f (Pdot (path, s, n)) (Pdot (path', s, n), d))
(proj2 comps);
Tbl.iter
(fun s (c, n) ->
iter_components (Pdot (path, s, n)) (Pdot (path', s, n)) c)
comps.comp_components
| Functor_comps _ -> ()
in
Hashtbl.iter
(fun s pso ->
match pso with None -> ()
| Some ps ->
let id = Pident (Ident.create_persistent s) in
iter_components id id ps.ps_comps)
persistent_structures;
Ident.iter
(fun id ((path, comps), _) -> iter_components (Pident id) path comps)
env.components
let iter_types f = iter_env (fun env -> env.types) (fun sc -> sc.comp_types) f
let same_types env1 env2 =
env1.types == env2.types && env1.components == env2.components
let used_persistent () =
let r = ref Concr.empty in
Hashtbl.iter (fun s pso -> if pso != None then r := Concr.add s !r)
persistent_structures;
!r
let find_all_comps proj s (p,mcomps) =
match EnvLazy.force !components_of_module_maker' mcomps with
Functor_comps _ -> []
| Structure_comps comps ->
try let (c,n) = Tbl.find s (proj comps) in [Pdot(p,s,n), c]
with Not_found -> []
let rec find_shadowed_comps path env =
match path with
Pident id ->
List.map fst (Ident.find_all (Ident.name id) env.components)
| Pdot (p, s, _) ->
let l = find_shadowed_comps p env in
let l' =
List.map (find_all_comps (fun comps -> comps.comp_components) s) l in
List.flatten l'
| Papply _ -> []
let find_shadowed proj1 proj2 path env =
match path with
Pident id ->
List.map fst (Ident.find_all (Ident.name id) (proj1 env))
| Pdot (p, s, _) ->
let l = find_shadowed_comps p env in
let l' = List.map (find_all_comps proj2 s) l in
List.flatten l'
| Papply _ -> []
let find_shadowed_types path env =
let l =
find_shadowed
(fun env -> env.types) (fun comps -> comps.comp_types) path env
in
List.map fst l
(* GADT instance tracking *)
let add_gadt_instance_level lv env =
{env with
gadt_instances = (lv, ref TypeSet.empty) :: env.gadt_instances}
let is_Tlink = function {desc = Tlink _} -> true | _ -> false
let gadt_instance_level env t =
let rec find_instance = function
[] -> None
| (lv, r) :: rem ->
if TypeSet.exists is_Tlink !r then
(* Should we use set_typeset ? *)
r := TypeSet.fold (fun ty -> TypeSet.add (repr ty)) !r TypeSet.empty;
if TypeSet.mem t !r then Some lv else find_instance rem
in find_instance env.gadt_instances
let add_gadt_instances env lv tl =
let r =
try List.assoc lv env.gadt_instances with Not_found -> assert false in
(* Format.eprintf "Added";
List.iter (fun ty -> Format.eprintf "@ %a" !Btype.print_raw ty) tl;
Format.eprintf "@."; *)
set_typeset r (List.fold_right TypeSet.add tl !r)
(* Only use this after expand_head! *)
let add_gadt_instance_chain env lv t =
let r =
try List.assoc lv env.gadt_instances with Not_found -> assert false in
let rec add_instance t =
let t = repr t in
if not (TypeSet.mem t !r) then begin
(* Format.eprintf "@ %a" !Btype.print_raw t; *)
set_typeset r (TypeSet.add t !r);
match t.desc with
Tconstr (p, _, memo) ->
may add_instance (find_expans Private p !memo)
| _ -> ()
end
in
(* Format.eprintf "Added chain"; *)
add_instance t
(* Format.eprintf "@." *)
(* Expand manifest module type names at the top of the given module type *)
let rec scrape_modtype mty env =
match mty with
Mty_ident path ->
begin try
scrape_modtype (find_modtype_expansion path env) env
with Not_found ->
mty
end
| _ -> mty
(* Compute constructor descriptions *)
let constructors_of_type ty_path decl =
let handle_variants cstrs =
Datarepr.constructor_descrs
(newgenty (Tconstr(ty_path, decl.type_params, ref Mnil)))
cstrs decl.type_private
in
match decl.type_kind with
| Type_variant cstrs -> handle_variants cstrs
| Type_record _ | Type_abstract -> []
(* Compute label descriptions *)
let labels_of_type ty_path decl =
match decl.type_kind with
Type_record(labels, rep) ->
Datarepr.label_descrs
(newgenty (Tconstr(ty_path, decl.type_params, ref Mnil)))
labels rep decl.type_private
| Type_variant _ | Type_abstract -> []
(* Given a signature and a root path, prefix all idents in the signature
by the root path and build the corresponding substitution. *)
let rec prefix_idents root pos sub = function
[] -> ([], sub)
| Sig_value(id, decl) :: rem ->
let p = Pdot(root, Ident.name id, pos) in
let nextpos = match decl.val_kind with Val_prim _ -> pos | _ -> pos+1 in
let (pl, final_sub) = prefix_idents root nextpos sub rem in
(p::pl, final_sub)
| Sig_type(id, decl, _) :: rem ->
let p = Pdot(root, Ident.name id, nopos) in
let (pl, final_sub) =
prefix_idents root pos (Subst.add_type id p sub) rem in
(p::pl, final_sub)
| Sig_exception(id, decl) :: rem ->
let p = Pdot(root, Ident.name id, pos) in
let (pl, final_sub) = prefix_idents root (pos+1) sub rem in
(p::pl, final_sub)
| Sig_module(id, mty, _) :: rem ->
let p = Pdot(root, Ident.name id, pos) in
let (pl, final_sub) =
prefix_idents root (pos+1) (Subst.add_module id p sub) rem in
(p::pl, final_sub)
| Sig_modtype(id, decl) :: rem ->
let p = Pdot(root, Ident.name id, nopos) in
let (pl, final_sub) =
prefix_idents root pos
(Subst.add_modtype id (Mty_ident p) sub) rem in
(p::pl, final_sub)
| Sig_class(id, decl, _) :: rem ->
let p = Pdot(root, Ident.name id, pos) in
let (pl, final_sub) = prefix_idents root (pos + 1) sub rem in
(p::pl, final_sub)
| Sig_class_type(id, decl, _) :: rem ->
let p = Pdot(root, Ident.name id, nopos) in
let (pl, final_sub) = prefix_idents root pos sub rem in
(p::pl, final_sub)
let subst_signature sub sg =
List.map
(fun item ->
match item with
| Sig_value(id, decl) ->
Sig_value (id, Subst.value_description sub decl)
| Sig_type(id, decl, x) ->
Sig_type(id, Subst.type_declaration sub decl, x)
| Sig_exception(id, decl) ->
Sig_exception (id, Subst.exception_declaration sub decl)
| Sig_module(id, mty, x) ->
Sig_module(id, Subst.modtype sub mty,x)
| Sig_modtype(id, decl) ->
Sig_modtype(id, Subst.modtype_declaration sub decl)
| Sig_class(id, decl, x) ->
Sig_class(id, Subst.class_declaration sub decl, x)
| Sig_class_type(id, decl, x) ->
Sig_class_type(id, Subst.cltype_declaration sub decl, x)
)
sg
let prefix_idents_and_subst root sub sg =
let (pl, sub) = prefix_idents root 0 sub sg in
pl, sub, lazy (subst_signature sub sg)
let prefix_idents_and_subst root sub sg =
if sub = Subst.identity then
let sgs =
try
Hashtbl.find prefixed_sg root
with Not_found ->
let sgs = ref [] in
Hashtbl.add prefixed_sg root sgs;
sgs
in
try
List.assq sg !sgs
with Not_found ->
let r = prefix_idents_and_subst root sub sg in
sgs := (sg, r) :: !sgs;
r
else
prefix_idents_and_subst root sub sg
(* Compute structure descriptions *)
let add_to_tbl id decl tbl =
let decls =
try Tbl.find id tbl with Not_found -> [] in
Tbl.add id (decl :: decls) tbl
let rec components_of_module env sub path mty =
EnvLazy.create (env, sub, path, mty)
and components_of_module_maker (env, sub, path, mty) =
(match scrape_modtype mty env with
Mty_signature sg ->
let c =
{ comp_values = Tbl.empty;
comp_constrs = Tbl.empty;
comp_labels = Tbl.empty; comp_types = Tbl.empty;
comp_modules = Tbl.empty; comp_modtypes = Tbl.empty;
comp_components = Tbl.empty; comp_classes = Tbl.empty;
comp_cltypes = Tbl.empty } in
let pl, sub, _ = prefix_idents_and_subst path sub sg in
let env = ref env in
let pos = ref 0 in
List.iter2 (fun item path ->
match item with
Sig_value(id, decl) ->
let decl' = Subst.value_description sub decl in
c.comp_values <-
Tbl.add (Ident.name id) (decl', !pos) c.comp_values;
begin match decl.val_kind with
Val_prim _ -> () | _ -> incr pos
end
| Sig_type(id, decl, _) ->
let decl' = Subst.type_declaration sub decl in
let constructors = List.map snd (constructors_of_type path decl') in
let labels = List.map snd (labels_of_type path decl') in
c.comp_types <-
Tbl.add (Ident.name id)
((decl', (constructors, labels)), nopos)
c.comp_types;
List.iter
(fun descr ->
c.comp_constrs <-
add_to_tbl descr.cstr_name (descr, nopos) c.comp_constrs)
constructors;
List.iter
(fun descr ->
c.comp_labels <-
add_to_tbl descr.lbl_name (descr, nopos) c.comp_labels)
labels;
env := store_type_infos None id path decl !env !env
| Sig_exception(id, decl) ->
let decl' = Subst.exception_declaration sub decl in
let cstr = Datarepr.exception_descr path decl' in
let s = Ident.name id in
c.comp_constrs <-
add_to_tbl s (cstr, !pos) c.comp_constrs;
incr pos
| Sig_module(id, mty, _) ->
let mty' = EnvLazy.create (sub, mty) in
c.comp_modules <-
Tbl.add (Ident.name id) (mty', !pos) c.comp_modules;
let comps = components_of_module !env sub path mty in
c.comp_components <-
Tbl.add (Ident.name id) (comps, !pos) c.comp_components;
env := store_module None id path mty !env !env;
incr pos
| Sig_modtype(id, decl) ->
let decl' = Subst.modtype_declaration sub decl in
c.comp_modtypes <-
Tbl.add (Ident.name id) (decl', nopos) c.comp_modtypes;
env := store_modtype None id path decl !env !env
| Sig_class(id, decl, _) ->
let decl' = Subst.class_declaration sub decl in
c.comp_classes <-
Tbl.add (Ident.name id) (decl', !pos) c.comp_classes;
incr pos
| Sig_class_type(id, decl, _) ->
let decl' = Subst.cltype_declaration sub decl in
c.comp_cltypes <-
Tbl.add (Ident.name id) (decl', !pos) c.comp_cltypes)
sg pl;
Structure_comps c
| Mty_functor(param, ty_arg, ty_res) ->
Functor_comps {
fcomp_param = param;
(* fcomp_arg must be prefixed eagerly, because it is interpreted
in the outer environment, not in env *)
fcomp_arg = Subst.modtype sub ty_arg;
(* fcomp_res is prefixed lazily, because it is interpreted in env *)
fcomp_res = ty_res;
fcomp_env = env;
fcomp_subst = sub;
fcomp_cache = Hashtbl.create 17 }
| Mty_ident p ->
Structure_comps {
comp_values = Tbl.empty;
comp_constrs = Tbl.empty;
comp_labels = Tbl.empty;
comp_types = Tbl.empty;
comp_modules = Tbl.empty; comp_modtypes = Tbl.empty;
comp_components = Tbl.empty; comp_classes = Tbl.empty;
comp_cltypes = Tbl.empty })
(* Insertion of bindings by identifier + path *)
and check_usage loc id warn tbl =
if not loc.Location.loc_ghost && Warnings.is_active (warn "") then begin
let name = Ident.name id in
let key = (name, loc) in
if Hashtbl.mem tbl key then ()
else let used = ref false in
Hashtbl.add tbl key (fun () -> used := true);
if not (name = "" || name.[0] = '_' || name.[0] = '#')
then
!add_delayed_check_forward
(fun () -> if not !used then Location.prerr_warning loc (warn name))
end;
and store_value ?check slot id path decl env renv =
may (fun f -> check_usage decl.val_loc id f value_declarations) check;
{ env with
values = EnvTbl.add "value" slot id (path, decl) env.values renv.values;
summary = Env_value(env.summary, id, decl) }
and store_type slot id path info env renv =
let loc = info.type_loc in
check_usage loc id (fun s -> Warnings.Unused_type_declaration s)
type_declarations;
let constructors = constructors_of_type path info in
let labels = labels_of_type path info in
let descrs = (List.map snd constructors, List.map snd labels) in
if not loc.Location.loc_ghost &&
Warnings.is_active (Warnings.Unused_constructor ("", false, false))
then begin
let ty = Ident.name id in
List.iter
begin fun (_, {cstr_name = c; _}) ->
let k = (ty, loc, c) in
if not (Hashtbl.mem used_constructors k) then
let used = constructor_usages () in
Hashtbl.add used_constructors k (add_constructor_usage used);
if not (ty = "" || ty.[0] = '_')
then !add_delayed_check_forward
(fun () ->
if not env.in_signature && not used.cu_positive then
Location.prerr_warning loc
(Warnings.Unused_constructor
(c, used.cu_pattern, used.cu_privatize)))
end
constructors
end;
{ env with
constrs =
List.fold_right
(fun (id, descr) constrs ->
EnvTbl.add "constructor" slot id descr constrs renv.constrs)
constructors
env.constrs;
labels =
List.fold_right
(fun (id, descr) labels ->
EnvTbl.add "label" slot id descr labels renv.labels)
labels
env.labels;
types = EnvTbl.add "type" slot id (path, (info, descrs)) env.types
renv.types;
summary = Env_type(env.summary, id, info) }
and store_type_infos slot id path info env renv =
(* Simplified version of store_type that doesn't compute and store
constructor and label infos, but simply record the arity and
manifest-ness of the type. Used in components_of_module to
keep track of type abbreviations (e.g. type t = float) in the
computation of label representations. *)
{ env with
types = EnvTbl.add "type" slot id (path, (info,([],[]))) env.types
renv.types;
summary = Env_type(env.summary, id, info) }
and store_exception slot id path decl env renv =
let loc = decl.exn_loc in
if not loc.Location.loc_ghost &&
Warnings.is_active (Warnings.Unused_exception ("", false))
then begin
let ty = "exn" in
let c = Ident.name id in
let k = (ty, loc, c) in
if not (Hashtbl.mem used_constructors k) then begin
let used = constructor_usages () in
Hashtbl.add used_constructors k (add_constructor_usage used);
!add_delayed_check_forward
(fun () ->
if not env.in_signature && not used.cu_positive then
Location.prerr_warning loc
(Warnings.Unused_exception
(c, used.cu_pattern)
)
)
end;
end;
{ env with
constrs = EnvTbl.add "constructor" slot id
(Datarepr.exception_descr path decl) env.constrs
renv.constrs;
summary = Env_exception(env.summary, id, decl) }
and store_module slot id path mty env renv =
{ env with
modules = EnvTbl.add "module" slot id (path, mty) env.modules renv.modules;
components =
EnvTbl.add "module" slot id
(path, components_of_module env Subst.identity path mty)
env.components renv.components;
summary = Env_module(env.summary, id, mty) }
and store_modtype slot id path info env renv =
{ env with
modtypes = EnvTbl.add "module type" slot id (path, info) env.modtypes
renv.modtypes;
summary = Env_modtype(env.summary, id, info) }
and store_class slot id path desc env renv =
{ env with
classes = EnvTbl.add "class" slot id (path, desc) env.classes renv.classes;
summary = Env_class(env.summary, id, desc) }
and store_cltype slot id path desc env renv =
{ env with
cltypes = EnvTbl.add "class type" slot id (path, desc) env.cltypes
renv.cltypes;
summary = Env_cltype(env.summary, id, desc) }
(* Compute the components of a functor application in a path. *)
let components_of_functor_appl f p1 p2 =
try
Hashtbl.find f.fcomp_cache p2
with Not_found ->
let p = Papply(p1, p2) in
let mty =
Subst.modtype (Subst.add_module f.fcomp_param p2 Subst.identity)
f.fcomp_res in
let comps = components_of_module f.fcomp_env f.fcomp_subst p mty in
Hashtbl.add f.fcomp_cache p2 comps;
comps
(* Define forward functions *)
let _ =
components_of_module' := components_of_module;
components_of_functor_appl' := components_of_functor_appl;
components_of_module_maker' := components_of_module_maker
(* Insertion of bindings by identifier *)
let add_value ?check id desc env =
store_value None ?check id (Pident id) desc env env
let add_type id info env =
store_type None id (Pident id) info env env
and add_exception id decl env =
store_exception None id (Pident id) decl env env
and add_module id mty env =
store_module None id (Pident id) mty env env
and add_modtype id info env =
store_modtype None id (Pident id) info env env
and add_class id ty env =
store_class None id (Pident id) ty env env
and add_cltype id ty env =
store_cltype None id (Pident id) ty env env
let add_local_constraint id info elv env =
match info with
{type_manifest = Some ty; type_newtype_level = Some (lv, _)} ->
(* elv is the expansion level, lv is the definition level *)
let env =
add_type id {info with type_newtype_level = Some (lv, elv)} env in
{ env with local_constraints = true }
| _ -> assert false
(* Insertion of bindings by name *)
let enter store_fun name data env =
let id = Ident.create name in (id, store_fun None id (Pident id) data env env)
let enter_value ?check = enter (store_value ?check)
and enter_type = enter store_type
and enter_exception = enter store_exception
and enter_module = enter store_module
and enter_modtype = enter store_modtype
and enter_class = enter store_class
and enter_cltype = enter store_cltype
(* Insertion of all components of a signature *)
let add_item comp env =
match comp with
Sig_value(id, decl) -> add_value id decl env
| Sig_type(id, decl, _) -> add_type id decl env
| Sig_exception(id, decl) -> add_exception id decl env
| Sig_module(id, mty, _) -> add_module id mty env
| Sig_modtype(id, decl) -> add_modtype id decl env
| Sig_class(id, decl, _) -> add_class id decl env
| Sig_class_type(id, decl, _) -> add_cltype id decl env
let rec add_signature sg env =
match sg with
[] -> env
| comp :: rem -> add_signature rem (add_item comp env)
(* Open a signature path *)
let open_signature slot root sg env0 =
(* First build the paths and substitution *)
let (pl, sub, sg) = prefix_idents_and_subst root Subst.identity sg in
let sg = Lazy.force sg in
(* Then enter the components in the environment after substitution *)
let newenv =
List.fold_left2
(fun env item p ->
match item with
Sig_value(id, decl) ->
store_value slot (Ident.hide id) p decl env env0
| Sig_type(id, decl, _) ->
store_type slot (Ident.hide id) p decl env env0
| Sig_exception(id, decl) ->
store_exception slot (Ident.hide id) p decl env env0
| Sig_module(id, mty, _) ->
store_module slot (Ident.hide id) p mty env env0
| Sig_modtype(id, decl) ->
store_modtype slot (Ident.hide id) p decl env env0
| Sig_class(id, decl, _) ->
store_class slot (Ident.hide id) p decl env env0
| Sig_class_type(id, decl, _) ->
store_cltype slot (Ident.hide id) p decl env env0
)
env0 sg pl in
{ newenv with summary = Env_open(env0.summary, root) }
(* Open a signature from a file *)
let open_pers_signature name env =
let ps = find_pers_struct name in
open_signature None (Pident(Ident.create_persistent name)) ps.ps_sig env
let open_signature ?(loc = Location.none) ?(toplevel = false) ovf root sg env =
if not toplevel && ovf = Asttypes.Fresh && not loc.Location.loc_ghost
&& (Warnings.is_active (Warnings.Unused_open "")
|| Warnings.is_active (Warnings.Open_shadow_identifier ("", ""))
|| Warnings.is_active (Warnings.Open_shadow_label_constructor ("","")))
then begin
let used = ref false in
!add_delayed_check_forward
(fun () ->
if not !used then
Location.prerr_warning loc (Warnings.Unused_open (Path.name root))
);
let shadowed = ref [] in
let slot kind s b =
if b && not (List.mem (kind, s) !shadowed) then begin
shadowed := (kind, s) :: !shadowed;
let w =
match kind with
| "label" | "constructor" ->
Warnings.Open_shadow_label_constructor (kind, s)
| _ -> Warnings.Open_shadow_identifier (kind, s)
in
Location.prerr_warning loc w
end;
used := true
in
open_signature (Some slot) root sg env
end
else open_signature None root sg env
(* Read a signature from a file *)
let read_signature modname filename =
let ps = read_pers_struct modname filename in ps.ps_sig
(* Return the CRC of the interface of the given compilation unit *)
let crc_of_unit name =
let ps = find_pers_struct name in
try
List.assoc name ps.ps_crcs
with Not_found ->
assert false
(* Return the list of imported interfaces with their CRCs *)
let imported_units() =
Consistbl.extract crc_units
(* Save a signature to a file *)
let save_signature_with_imports sg modname filename imports =
Btype.cleanup_abbrev ();
Subst.reset_for_saving ();
let sg = Subst.signature (Subst.for_saving Subst.identity) sg in
let oc = open_out_bin filename in
try
let cmi = {
cmi_name = modname;
cmi_sign = sg;
cmi_crcs = imports;
cmi_flags = if !Clflags.recursive_types then [Rectypes] else [];
} in
let crc = output_cmi filename oc cmi in
close_out oc;
(* Enter signature in persistent table so that imported_unit()
will also return its crc *)
let comps =
components_of_module empty Subst.identity
(Pident(Ident.create_persistent modname)) (Mty_signature sg) in
let ps =
{ ps_name = modname;
ps_sig = sg;
ps_comps = comps;
ps_crcs = (cmi.cmi_name, crc) :: imports;
ps_filename = filename;
ps_flags = cmi.cmi_flags } in
Hashtbl.add persistent_structures modname (Some ps);
Consistbl.set crc_units modname crc filename;
sg
with exn ->
close_out oc;
remove_file filename;
raise exn
let save_signature sg modname filename =
save_signature_with_imports sg modname filename (imported_units())
(* Folding on environments *)
let find_all proj1 proj2 f lid env acc =
match lid with
| None ->
EnvTbl.fold_name
(fun id (p, data) acc -> f (Ident.name id) p data acc)
(proj1 env) acc
| Some l ->
let p, desc = lookup_module_descr l env in
begin match EnvLazy.force components_of_module_maker desc with
Structure_comps c ->
Tbl.fold
(fun s (data, pos) acc -> f s (Pdot (p, s, pos)) data acc)
(proj2 c) acc
| Functor_comps _ ->
acc
end
let find_all_simple_list proj1 proj2 f lid env acc =
match lid with
| None ->
EnvTbl.fold_name
(fun id data acc -> f data acc)
(proj1 env) acc
| Some l ->
let p, desc = lookup_module_descr l env in
begin match EnvLazy.force components_of_module_maker desc with
Structure_comps c ->
Tbl.fold
(fun s comps acc ->
match comps with
[] -> acc
| (data, pos) :: _ ->
f data acc)
(proj2 c) acc
| Functor_comps _ ->
acc
end
let fold_modules f lid env acc =
match lid with
| None ->
let acc =
EnvTbl.fold_name
(fun id (p, data) acc -> f (Ident.name id) p data acc)
env.modules
acc
in
Hashtbl.fold
(fun name ps acc ->
match ps with
None -> acc
| Some ps ->
f name (Pident(Ident.create_persistent name))
(Mty_signature ps.ps_sig) acc)
persistent_structures
acc
| Some l ->
let p, desc = lookup_module_descr l env in
begin match EnvLazy.force components_of_module_maker desc with
Structure_comps c ->
Tbl.fold
(fun s (data, pos) acc ->
f s (Pdot (p, s, pos))
(EnvLazy.force subst_modtype_maker data) acc)
c.comp_modules
acc
| Functor_comps _ ->
acc
end
let fold_values f =
find_all (fun env -> env.values) (fun sc -> sc.comp_values) f
and fold_constructors f =
find_all_simple_list (fun env -> env.constrs) (fun sc -> sc.comp_constrs) f
and fold_labels f =
find_all_simple_list (fun env -> env.labels) (fun sc -> sc.comp_labels) f
and fold_types f =
find_all (fun env -> env.types) (fun sc -> sc.comp_types) f
and fold_modtypes f =
find_all (fun env -> env.modtypes) (fun sc -> sc.comp_modtypes) f
and fold_classs f =
find_all (fun env -> env.classes) (fun sc -> sc.comp_classes) f
and fold_cltypes f =
find_all (fun env -> env.cltypes) (fun sc -> sc.comp_cltypes) f
(* Make the initial environment *)
let initial = Predef.build_initial_env add_type add_exception empty
(* Return the environment summary *)
let summary env = env.summary
let last_env = ref empty
let last_reduced_env = ref empty
let keep_only_summary env =
if !last_env == env then !last_reduced_env
else begin
let new_env =
{
empty with
summary = env.summary;
local_constraints = env.local_constraints;
in_signature = env.in_signature;
}
in
last_env := env;
last_reduced_env := new_env;
new_env
end
let env_of_only_summary env_from_summary env =
let new_env = env_from_summary env.summary Subst.identity in
{ new_env with
local_constraints = env.local_constraints;
in_signature = env.in_signature;
}
(* Error report *)
open Format
let report_error ppf = function
| Illegal_renaming(name, modname, filename) -> fprintf ppf
"Wrong file naming: %a@ contains the compiled interface for @ %s when %s was expected"
Location.print_filename filename name modname
| Inconsistent_import(name, source1, source2) -> fprintf ppf
"@[<hov>The files %a@ and %a@ \
make inconsistent assumptions@ over interface %s@]"
Location.print_filename source1 Location.print_filename source2 name
| Need_recursive_types(import, export) ->
fprintf ppf
"@[<hov>Unit %s imports from %s, which uses recursive types.@ %s@]"
export import "The compilation flag -rectypes is required"