ocaml/typing/typedecl.ml

1280 lines
45 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(**** Typing of type definitions ****)
open Misc
open Asttypes
open Parsetree
open Primitive
open Types
open Typetexp
type error =
Repeated_parameter
| Duplicate_constructor of string
| Too_many_constructors
| Duplicate_label of string
| Recursive_abbrev of string
| Definition_mismatch of type_expr * Includecore.type_mismatch list
| Constraint_failed of type_expr * type_expr
| Inconsistent_constraint of Env.t * (type_expr * type_expr) list
| Type_clash of Env.t * (type_expr * type_expr) list
| Parameters_differ of Path.t * type_expr * type_expr
| Null_arity_external
| Missing_native_external
| Unbound_type_var of type_expr * type_declaration
| Unbound_exception of Longident.t
| Not_an_exception of Longident.t
| Bad_variance of int * (bool * bool * bool) * (bool * bool * bool)
| Unavailable_type_constructor of Path.t
| Bad_fixed_type of string
| Unbound_type_var_exc of type_expr * type_expr
| Varying_anonymous
open Typedtree
exception Error of Location.t * error
(* Enter all declared types in the environment as abstract types *)
let enter_type env (name, sdecl) id =
let decl =
{ type_params =
List.map (fun _ -> Btype.newgenvar ()) sdecl.ptype_params;
type_arity = List.length sdecl.ptype_params;
type_kind = Type_abstract;
type_private = sdecl.ptype_private;
type_manifest =
begin match sdecl.ptype_manifest with None -> None
| Some _ -> Some(Ctype.newvar ()) end;
type_variance = List.map (fun _ -> Variance.full) sdecl.ptype_params;
type_newtype_level = None;
type_loc = sdecl.ptype_loc;
}
in
Env.add_type id decl env
let update_type temp_env env id loc =
let path = Path.Pident id in
let decl = Env.find_type path temp_env in
match decl.type_manifest with None -> ()
| Some ty ->
let params = List.map (fun _ -> Ctype.newvar ()) decl.type_params in
try Ctype.unify env (Ctype.newconstr path params) ty
with Ctype.Unify trace ->
raise (Error(loc, Type_clash (env, trace)))
(* Determine if a type is (an abbreviation for) the type "float" *)
(* We use the Ctype.expand_head_opt version of expand_head to get access
to the manifest type of private abbreviations. *)
let is_float env ty =
match Ctype.repr (Ctype.expand_head_opt env ty) with
{desc = Tconstr(p, _, _)} -> Path.same p Predef.path_float
| _ -> false
(* Determine if a type definition defines a fixed type. (PW) *)
let is_fixed_type sd =
(match sd.ptype_manifest with
| Some { ptyp_desc =
(Ptyp_variant _|Ptyp_object _|Ptyp_class _|Ptyp_alias
({ptyp_desc = Ptyp_variant _|Ptyp_object _|Ptyp_class _},_)) } -> true
| _ -> false) &&
sd.ptype_kind = Ptype_abstract &&
sd.ptype_private = Private
(* Set the row variable in a fixed type *)
let set_fixed_row env loc p decl =
let tm =
match decl.type_manifest with
None -> assert false
| Some t -> Ctype.expand_head env t
in
let rv =
match tm.desc with
Tvariant row ->
let row = Btype.row_repr row in
tm.desc <- Tvariant {row with row_fixed = true};
if Btype.static_row row then Btype.newgenty Tnil
else row.row_more
| Tobject (ty, _) ->
snd (Ctype.flatten_fields ty)
| _ ->
raise (Error (loc, Bad_fixed_type "is not an object or variant"))
in
if not (Btype.is_Tvar rv) then
raise (Error (loc, Bad_fixed_type "has no row variable"));
rv.desc <- Tconstr (p, decl.type_params, ref Mnil)
(* Translate one type declaration *)
module StringSet =
Set.Make(struct
type t = string
let compare (x:t) y = compare x y
end)
let make_params sdecl =
try
List.map
(function
None -> Ctype.new_global_var ~name:"_" ()
| Some x -> enter_type_variable true sdecl.ptype_loc x.txt)
sdecl.ptype_params
with Already_bound ->
raise(Error(sdecl.ptype_loc, Repeated_parameter))
let transl_declaration env (name, sdecl) id =
(* Bind type parameters *)
reset_type_variables();
Ctype.begin_def ();
let params = make_params sdecl in
let cstrs = List.map
(fun (sty, sty', loc) ->
transl_simple_type env false sty,
transl_simple_type env false sty', loc)
sdecl.ptype_cstrs
in
let (tkind, kind) =
match sdecl.ptype_kind with
Ptype_abstract -> Ttype_abstract, Type_abstract
| Ptype_variant cstrs ->
let all_constrs = ref StringSet.empty in
List.iter
(fun ({ txt = name}, _, _, loc) ->
if StringSet.mem name !all_constrs then
raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
all_constrs := StringSet.add name !all_constrs)
cstrs;
if List.length
(List.filter (fun (_, args, _, _) -> args <> []) cstrs)
> (Config.max_tag + 1) then
raise(Error(sdecl.ptype_loc, Too_many_constructors));
let make_cstr (lid, args, ret_type, loc) =
let name = Ident.create lid.txt in
match ret_type with
| None ->
(name, lid, List.map (transl_simple_type env true) args,
None, loc)
| Some sty ->
(* if it's a generalized constructor we must first narrow and
then widen so as to not introduce any new constraints *)
let z = narrow () in
reset_type_variables ();
let args = List.map (transl_simple_type env false) args in
let ret_type =
let cty = transl_simple_type env false sty in
let ty = cty.ctyp_type in
let p = Path.Pident id in
match (Ctype.repr ty).desc with
Tconstr (p', _, _) when Path.same p p' -> ty
| _ ->
raise (Error (sty.ptyp_loc, Constraint_failed
(ty, Ctype.newconstr p params)))
in
widen z;
(name, lid, args, Some ret_type, loc)
in
let cstrs = List.map make_cstr cstrs in
Ttype_variant (List.map (fun (name, lid, ctys, _, loc) ->
name, lid, ctys, loc
) cstrs),
Type_variant (List.map (fun (name, name_loc, ctys, option, loc) ->
name, List.map (fun cty -> cty.ctyp_type) ctys, option) cstrs)
| Ptype_record lbls ->
let all_labels = ref StringSet.empty in
List.iter
(fun ({ txt = name }, mut, arg, loc) ->
if StringSet.mem name !all_labels then
raise(Error(sdecl.ptype_loc, Duplicate_label name));
all_labels := StringSet.add name !all_labels)
lbls;
let lbls = List.map (fun (name, mut, arg, loc) ->
let cty = transl_simple_type env true arg in
(Ident.create name.txt, name, mut, cty, loc)
) lbls in
let lbls' =
List.map
(fun (name, name_loc, mut, cty, loc) ->
let ty = cty.ctyp_type in
name, mut, match ty.desc with Tpoly(t,[]) -> t | _ -> ty)
lbls in
let rep =
if List.for_all (fun (name, mut, arg) -> is_float env arg) lbls'
then Record_float
else Record_regular in
Ttype_record lbls, Type_record(lbls', rep)
in
let (tman, man) = match sdecl.ptype_manifest with
None -> None, None
| Some sty ->
let no_row = not (is_fixed_type sdecl) in
let cty = transl_simple_type env no_row sty in
Some cty, Some cty.ctyp_type
in
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind = kind;
type_private = sdecl.ptype_private;
type_manifest = man;
type_variance = List.map (fun _ -> Variance.full) params;
type_newtype_level = None;
type_loc = sdecl.ptype_loc;
} in
(* Check constraints *)
List.iter
(fun (cty, cty', loc) ->
let ty = cty.ctyp_type in
let ty' = cty'.ctyp_type in
try Ctype.unify env ty ty' with Ctype.Unify tr ->
raise(Error(loc, Inconsistent_constraint (env, tr))))
cstrs;
Ctype.end_def ();
(* Add abstract row *)
if is_fixed_type sdecl then begin
let (p, _) =
try Env.lookup_type (Longident.Lident(Ident.name id ^ "#row")) env
with Not_found -> assert false in
set_fixed_row env sdecl.ptype_loc p decl
end;
(* Check for cyclic abbreviations *)
begin match decl.type_manifest with None -> ()
| Some ty ->
if Ctype.cyclic_abbrev env id ty then
raise(Error(sdecl.ptype_loc, Recursive_abbrev name.txt));
end;
let tdecl = {
typ_params = sdecl.ptype_params;
typ_type = decl;
typ_cstrs = cstrs;
typ_loc = sdecl.ptype_loc;
typ_manifest = tman;
typ_kind = tkind;
typ_variance = sdecl.ptype_variance;
typ_private = sdecl.ptype_private;
} in
(id, name, tdecl)
(* Generalize a type declaration *)
let generalize_decl decl =
List.iter Ctype.generalize decl.type_params;
begin match decl.type_kind with
Type_abstract ->
()
| Type_variant v ->
List.iter
(fun (_, tyl, ret_type) ->
List.iter Ctype.generalize tyl;
may Ctype.generalize ret_type)
v
| Type_record(r, rep) ->
List.iter (fun (_, _, ty) -> Ctype.generalize ty) r
end;
begin match decl.type_manifest with
| None -> ()
| Some ty -> Ctype.generalize ty
end
(* Check that all constraints are enforced *)
module TypeSet = Btype.TypeSet
let rec check_constraints_rec env loc visited ty =
let ty = Ctype.repr ty in
if TypeSet.mem ty !visited then () else begin
visited := TypeSet.add ty !visited;
match ty.desc with
| Tconstr (path, args, _) ->
let args' = List.map (fun _ -> Ctype.newvar ()) args in
let ty' = Ctype.newconstr path args' in
begin try Ctype.enforce_constraints env ty'
with Ctype.Unify _ -> assert false
| Not_found -> raise (Error(loc, Unavailable_type_constructor path))
end;
if not (Ctype.matches env ty ty') then
raise (Error(loc, Constraint_failed (ty, ty')));
List.iter (check_constraints_rec env loc visited) args
| Tpoly (ty, tl) ->
let _, ty = Ctype.instance_poly false tl ty in
check_constraints_rec env loc visited ty
| _ ->
Btype.iter_type_expr (check_constraints_rec env loc visited) ty
end
module SMap = Map.Make(String)
let check_constraints env (_, sdecl) (_, decl) =
let visited = ref TypeSet.empty in
begin match decl.type_kind with
| Type_abstract -> ()
| Type_variant l ->
let find_pl = function
Ptype_variant pl -> pl
| Ptype_record _ | Ptype_abstract -> assert false
in
let pl = find_pl sdecl.ptype_kind in
let pl_index =
let foldf acc (name, styl, sret_type, _) =
SMap.add name.txt (styl, sret_type) acc
in
List.fold_left foldf SMap.empty pl
in
List.iter
(fun (name, tyl, ret_type) ->
let (styl, sret_type) =
try SMap.find (Ident.name name) pl_index
with Not_found -> assert false in
List.iter2
(fun sty ty ->
check_constraints_rec env sty.ptyp_loc visited ty)
styl tyl;
match sret_type, ret_type with
| Some sr, Some r ->
check_constraints_rec env sr.ptyp_loc visited r
| _ ->
() )
l
| Type_record (l, _) ->
let find_pl = function
Ptype_record pl -> pl
| Ptype_variant _ | Ptype_abstract -> assert false
in
let pl = find_pl sdecl.ptype_kind in
let rec get_loc name = function
[] -> assert false
| (name', _, sty, _) :: tl ->
if name = name'.txt then sty.ptyp_loc else get_loc name tl
in
List.iter
(fun (name, _, ty) ->
check_constraints_rec env (get_loc (Ident.name name) pl) visited ty)
l
end;
begin match decl.type_manifest with
| None -> ()
| Some ty ->
let sty =
match sdecl.ptype_manifest with Some sty -> sty | _ -> assert false
in
check_constraints_rec env sty.ptyp_loc visited ty
end
(*
If both a variant/record definition and a type equation are given,
need to check that the equation refers to a type of the same kind
with the same constructors and labels.
*)
let check_coherence env loc id decl =
match decl with
{type_kind = (Type_variant _ | Type_record _); type_manifest = Some ty} ->
begin match (Ctype.repr ty).desc with
Tconstr(path, args, _) ->
begin try
let decl' = Env.find_type path env in
let err =
if List.length args <> List.length decl.type_params
then [Includecore.Arity]
else if not (Ctype.equal env false args decl.type_params)
then [Includecore.Constraint]
else
Includecore.type_declarations ~equality:true env
(Path.last path)
decl'
id
(Subst.type_declaration
(Subst.add_type id path Subst.identity) decl)
in
if err <> [] then
raise(Error(loc, Definition_mismatch (ty, err)))
with Not_found ->
raise(Error(loc, Unavailable_type_constructor path))
end
| _ -> raise(Error(loc, Definition_mismatch (ty, [])))
end
| _ -> ()
let check_abbrev env (_, sdecl) (id, decl) =
check_coherence env sdecl.ptype_loc id decl
(* Check that recursion is well-founded *)
let check_well_founded env loc path decl =
Misc.may
(fun body ->
try Ctype.correct_abbrev env path decl.type_params body with
| Ctype.Recursive_abbrev ->
raise(Error(loc, Recursive_abbrev (Path.name path)))
| Ctype.Unify trace -> raise(Error(loc, Type_clash (env, trace))))
decl.type_manifest
(* Check for ill-defined abbrevs *)
let check_recursion env loc path decl to_check =
(* to_check is true for potentially mutually recursive paths.
(path, decl) is the type declaration to be checked. *)
if decl.type_params = [] then () else
let visited = ref [] in
let rec check_regular cpath args prev_exp ty =
let ty = Ctype.repr ty in
if not (List.memq ty !visited) then begin
visited := ty :: !visited;
match ty.desc with
| Tconstr(path', args', _) ->
if Path.same path path' then begin
if not (Ctype.equal env false args args') then
raise (Error(loc,
Parameters_differ(cpath, ty, Ctype.newconstr path args)))
end
(* Attempt to expand a type abbreviation if:
1- [to_check path'] holds
(otherwise the expansion cannot involve [path]);
2- we haven't expanded this type constructor before
(otherwise we could loop if [path'] is itself
a non-regular abbreviation). *)
else if to_check path' && not (List.mem path' prev_exp) then begin
try
(* Attempt expansion *)
let (params0, body0, _) = Env.find_type_expansion path' env in
let (params, body) =
Ctype.instance_parameterized_type params0 body0 in
begin
try List.iter2 (Ctype.unify env) params args'
with Ctype.Unify _ ->
raise (Error(loc, Constraint_failed
(ty, Ctype.newconstr path' params0)));
end;
check_regular path' args (path' :: prev_exp) body
with Not_found -> ()
end;
List.iter (check_regular cpath args prev_exp) args'
| Tpoly (ty, tl) ->
let (_, ty) = Ctype.instance_poly ~keep_names:true false tl ty in
check_regular cpath args prev_exp ty
| _ ->
Btype.iter_type_expr (check_regular cpath args prev_exp) ty
end in
Misc.may
(fun body ->
let (args, body) =
Ctype.instance_parameterized_type
~keep_names:true decl.type_params body in
check_regular path args [] body)
decl.type_manifest
let check_abbrev_recursion env id_loc_list (id, _, tdecl) =
let decl = tdecl.typ_type in
check_recursion env (List.assoc id id_loc_list) (Path.Pident id) decl
(function Path.Pident id -> List.mem_assoc id id_loc_list | _ -> false)
(* Compute variance *)
module TypeMap = Btype.TypeMap
let get_variance ty visited =
try TypeMap.find ty !visited with Not_found -> Variance.null
let compute_variance env visited vari ty =
let rec compute_variance_rec vari ty =
let ty = Ctype.repr ty in
let vari' = get_variance ty visited in
if Variance.subset vari vari' then () else
let vari = Variance.union vari vari' in
visited := TypeMap.add ty vari !visited;
let compute_same = compute_variance_rec vari in
match ty.desc with
Tarrow (_, ty1, ty2, _) ->
let open Variance in
let v = conjugate vari in
let v1 =
if mem May_pos v || mem May_neg v
then set May_weak true v else v
in
compute_variance_rec v1 ty1;
compute_same ty2
| Ttuple tl ->
List.iter compute_same tl
| Tconstr (path, tl, _) ->
let open Variance in
if tl = [] then () else begin
try
let decl = Env.find_type path env in
let cvari f = mem f vari in
List.iter2
(fun ty v ->
let cv f = mem f v in
let strict =
cvari Inv && cv Inj || (cvari Pos || cvari Neg) && cv Inv
in
if strict then compute_variance_rec full ty else
let p1 = inter v vari
and n1 = inter v (conjugate vari) in
let v1 =
union (inter covariant (union p1 (conjugate p1)))
(inter (conjugate covariant) (union n1 (conjugate n1)))
and weak =
cvari May_weak && (cv May_pos || cv May_neg) ||
(cvari May_pos || cvari May_neg) && cv May_weak
in
let v2 = set May_weak weak v1 in
compute_variance_rec v2 ty)
tl decl.type_variance
with Not_found ->
List.iter (compute_variance_rec may_inv) tl
end
| Tobject (ty, _) ->
compute_same ty
| Tfield (_, _, ty1, ty2) ->
compute_same ty1;
compute_same ty2
| Tsubst ty ->
compute_same ty
| Tvariant row ->
let row = Btype.row_repr row in
List.iter
(fun (_,f) ->
match Btype.row_field_repr f with
Rpresent (Some ty) ->
compute_same ty
| Reither (_, tyl, _, _) ->
List.iter compute_same tyl
| _ -> ())
row.row_fields;
compute_same row.row_more
| Tpoly (ty, _) ->
compute_same ty
| Tvar _ | Tnil | Tlink _ | Tunivar _ -> ()
| Tpackage (_, _, tyl) ->
let v =
Variance.(if mem Pos vari || mem Neg vari then full else may_inv)
in
List.iter (compute_variance_rec v) tyl
in
compute_variance_rec vari ty
let make_variance ty = (ty, ref Variance.null)
let whole_type decl =
match decl.type_kind with
Type_variant tll ->
Btype.newgenty
(Ttuple (List.map (fun (_, tl, _) -> Btype.newgenty (Ttuple tl)) tll))
| Type_record (ftl, _) ->
Btype.newgenty
(Ttuple (List.map (fun (_, _, ty) -> ty) ftl))
| Type_abstract ->
match decl.type_manifest with
Some ty -> ty
| _ -> Btype.newgenty (Ttuple [])
let make p n i =
let open Variance in
set May_pos p (set May_neg n (set May_weak n (set Inj i null)))
let compute_variance_type env check (required, loc) decl tyl =
(* Requirements *)
let required =
List.map (fun (c,n,i) -> if c || n then (c,n,i) else (true,true,i))
required
in
(* Prepare *)
let params = List.map Btype.repr decl.type_params in
let tvl = ref TypeMap.empty in
(* Compute occurences in body *)
let open Variance in
List.iter
(fun (cn,ty) ->
compute_variance env tvl (if cn then full else covariant) ty)
tyl;
if check then begin
(* Check variance of parameters *)
let pos = ref 0 in
List.iter2
(fun ty (c, n, i) ->
incr pos;
let var = get_variance ty tvl in
let (co,cn) = get_upper var and ij = mem Inj var in
if Btype.is_Tvar ty && (co && not c || cn && not n || not ij && i)
then raise (Error(loc, Bad_variance (!pos, (co,cn,ij), (c,n,i)))))
params required;
(* Check propagation from constrained parameters *)
let args = Btype.newgenty (Ttuple params) in
let fvl = if check then Ctype.free_variables args else [] in
let fvl = List.filter (fun v -> not (List.memq v params)) fvl in
(* If there are no extra variables there is nothing to do *)
if fvl = [] then () else
let tvl2 = ref TypeMap.empty in
List.iter2
(fun ty (p,n,i) ->
if Btype.is_Tvar ty then () else
let v =
if p then if n then full else covariant else conjugate covariant in
compute_variance env tvl2 v ty)
params required;
let visited = ref TypeSet.empty in
let rec check ty =
let ty = Ctype.repr ty in
if TypeSet.mem ty !visited then () else
let visited' = TypeSet.add ty !visited in
visited := visited';
let v1 = get_variance ty tvl in
let v2 =
TypeMap.fold
(fun t vt v ->
if Ctype.equal env false [ty] [t] then union vt v else v)
!tvl2 null in
let (c1,n1) = get_upper v1 and (c2,n2,_,i2) = get_lower v2 in
if c1 && not c2 || n1 && not n2 then
if List.memq ty fvl then
let code = if not i2 then -2 else if c2 || n2 then -1 else -3 in
raise (Error (loc, Bad_variance (code, (c1,n1,false), (c2,n2,false))))
else
Btype.iter_type_expr check ty
in
List.iter (fun (_,ty) -> check ty) tyl;
end;
List.map2
(fun ty (p, n, i) ->
let v = get_variance ty tvl in
let tr = decl.type_private in
(* Use required variance where relevant *)
let concr = decl.type_kind <> Type_abstract (*|| tr = Type_new*) in
let (p, n) =
if tr = Private || not (Btype.is_Tvar ty) then (p, n) (* set *)
else (false, false) (* only check *)
and i = concr || i && tr = Private in
let v = union v (make p n i) in
let v =
if not concr then v else
if mem Pos v && mem Neg v then full else
if Btype.is_Tvar ty then v else
union v
(if p then if n then full else covariant else conjugate covariant)
in
if decl.type_kind = Type_abstract && tr = Public then v else
set May_weak (mem May_neg v) v)
params required
let add_false = List.map (fun ty -> false, ty)
(* A parameter is constrained if either is is instantiated,
or it is a variable appearing in another parameter *)
let constrained env vars ty =
match ty.desc with
| Tvar _ -> List.exists (fun tl -> List.memq ty tl) vars
| _ -> true
let compute_variance_gadt env check (required, loc as rloc) decl
(_, tl, ret_type_opt) =
match ret_type_opt with
| None ->
compute_variance_type env check rloc {decl with type_private = Private}
(add_false tl)
| Some ret_type ->
match Ctype.repr ret_type with
| {desc=Tconstr (path, tyl, _)} ->
let tyl = List.map (Ctype.expand_head env) tyl in
let fvl = List.map Ctype.free_variables tyl in
let _ =
List.fold_left2
(fun (fv1,fv2) ty (c,n,i) ->
match fv2 with [] -> assert false
| fv :: fv2 ->
(* fv1 @ fv2 = free_variables of other parameters *)
if (c||n) && constrained env (fv1 @ fv2) ty then
raise (Error(loc, Varying_anonymous));
(fv :: fv1, fv2))
([], fvl) tyl required
in
compute_variance_type env check rloc
{decl with type_params = tyl; type_private = Private}
(add_false tl)
| _ -> assert false
let compute_variance_decl env check decl (required, loc as rloc) =
if decl.type_kind = Type_abstract && decl.type_manifest = None then
List.map
(fun (c, n, i) ->
make (not n) (not c) (i (*|| decl.type_transparence = Type_new*)))
required
else
let mn =
match decl.type_manifest with
None -> []
| Some ty -> [false, ty]
in
match decl.type_kind with
Type_abstract ->
compute_variance_type env check rloc decl mn
| Type_variant tll ->
if List.for_all (fun (_,_,ret) -> ret = None) tll then
compute_variance_type env check rloc decl
(mn @ add_false (List.flatten (List.map (fun (_,tyl,_) -> tyl) tll)))
else begin
let mn =
List.map (fun (_,ty) -> (Ident.create_persistent"",[ty],None)) mn in
let tll = mn @ tll in
match List.map (compute_variance_gadt env check rloc decl) tll with
| vari :: rem ->
let varl = List.fold_left (List.map2 Variance.union) vari rem in
List.map
Variance.(fun v -> if mem Pos v && mem Neg v then full else v)
varl
| _ -> assert false
end
| Type_record (ftl, _) ->
compute_variance_type env check rloc decl
(mn @ List.map (fun (_, mut, ty) -> (mut = Mutable, ty)) ftl)
let is_sharp id =
let s = Ident.name id in
String.length s > 0 && s.[0] = '#'
let rec compute_variance_fixpoint env decls required variances =
let new_decls =
List.map2
(fun (id, decl) variance -> id, {decl with type_variance = variance})
decls variances
in
let new_env =
List.fold_right (fun (id, decl) env -> Env.add_type id decl env)
new_decls env
in
let new_variances =
List.map2
(fun (id, decl) -> compute_variance_decl new_env false decl)
new_decls required
in
let new_variances =
List.map2 (List.map2 Variance.union) new_variances variances in
if new_variances <> variances then
compute_variance_fixpoint env decls required new_variances
else begin
(* List.iter (fun (id, decl) ->
Printf.eprintf "%s:" (Ident.name id);
List.iter (fun (v : Variance.t) ->
Printf.eprintf " %x" (Obj.magic v : int))
decl.type_variance;
prerr_endline "")
new_decls; *)
List.iter2
(fun (id, decl) req -> if not (is_sharp id) then
ignore (compute_variance_decl new_env true decl req))
new_decls required;
new_decls, new_env
end
let init_variance (id, decl) =
List.map (fun _ -> Variance.null) decl.type_params
let add_injectivity = List.map (fun (cn,cv) -> (cn,cv,false))
(* for typeclass.ml *)
let compute_variance_decls env cldecls =
let decls, required =
List.fold_right
(fun (obj_id, obj_abbr, cl_abbr, clty, cltydef, ci) (decls, req) ->
(obj_id, obj_abbr) :: decls,
(add_injectivity ci.ci_variance, ci.ci_loc) :: req)
cldecls ([],[])
in
let variances = List.map init_variance decls in
let (decls, _) = compute_variance_fixpoint env decls required variances in
List.map2
(fun (_,decl) (_, _, cl_abbr, clty, cltydef, _) ->
let variance = decl.type_variance in
(decl, {cl_abbr with type_variance = variance},
{clty with cty_variance = variance},
{cltydef with clty_variance = variance}))
decls cldecls
(* Check multiple declarations of labels/constructors *)
let check_duplicates name_sdecl_list =
let labels = Hashtbl.create 7 and constrs = Hashtbl.create 7 in
List.iter
(fun (name, sdecl) -> match sdecl.ptype_kind with
Ptype_variant cl ->
List.iter
(fun (cname, _, _, loc) ->
try
let name' = Hashtbl.find constrs cname.txt in
Location.prerr_warning loc
(Warnings.Duplicate_definitions
("constructor", cname.txt, name', name.txt))
with Not_found -> Hashtbl.add constrs cname.txt name.txt)
cl
| Ptype_record fl ->
List.iter
(fun (cname, _, _, loc) ->
try
let name' = Hashtbl.find labels cname.txt in
Location.prerr_warning loc
(Warnings.Duplicate_definitions
("label", cname.txt, name', name.txt))
with Not_found -> Hashtbl.add labels cname.txt name.txt)
fl
| Ptype_abstract -> ())
name_sdecl_list
(* Force recursion to go through id for private types*)
let name_recursion sdecl id decl =
match decl with
| { type_kind = Type_abstract;
type_manifest = Some ty;
type_private = Private; } when is_fixed_type sdecl ->
let ty = Ctype.repr ty in
let ty' = Btype.newty2 ty.level ty.desc in
if Ctype.deep_occur ty ty' then
let td = Tconstr(Path.Pident id, decl.type_params, ref Mnil) in
Btype.link_type ty (Btype.newty2 ty.level td);
{decl with type_manifest = Some ty'}
else decl
| _ -> decl
(* Translate a set of mutually recursive type declarations *)
let transl_type_decl env name_sdecl_list =
(* Add dummy types for fixed rows *)
let fixed_types =
List.filter (fun (_, sd) -> is_fixed_type sd) name_sdecl_list
in
let name_sdecl_list =
List.map
(fun (name, sdecl) ->
mkloc (name.txt ^"#row") name.loc,
{sdecl with ptype_kind = Ptype_abstract; ptype_manifest = None})
fixed_types
@ name_sdecl_list
in
(* Create identifiers. *)
let id_list =
List.map (fun (name, _) -> Ident.create name.txt) name_sdecl_list
in
(*
Since we've introduced fresh idents, make sure the definition
level is at least the binding time of these events. Otherwise,
passing one of the recursively-defined type constrs as argument
to an abbreviation may fail.
*)
Ctype.init_def(Ident.current_time());
Ctype.begin_def();
(* Enter types. *)
let temp_env = List.fold_left2 enter_type env name_sdecl_list id_list in
(* Translate each declaration. *)
let current_slot = ref None in
let warn_unused = Warnings.is_active (Warnings.Unused_type_declaration "") in
let id_slots id =
if not warn_unused then id, None
else
(* See typecore.ml for a description of the algorithm used
to detect unused declarations in a set of recursive definitions. *)
let slot = ref [] in
let td = Env.find_type (Path.Pident id) temp_env in
let name = Ident.name id in
Env.set_type_used_callback
name td
(fun old_callback ->
match !current_slot with
| Some slot -> slot := (name, td) :: !slot
| None ->
List.iter (fun (name, d) -> Env.mark_type_used name d)
(get_ref slot);
old_callback ()
);
id, Some slot
in
let transl_declaration name_sdecl (id, slot) =
current_slot := slot; transl_declaration temp_env name_sdecl id in
let tdecls =
List.map2 transl_declaration name_sdecl_list (List.map id_slots id_list) in
let decls =
List.map (fun (id, name_loc, tdecl) -> (id, tdecl.typ_type)) tdecls in
current_slot := None;
(* Check for duplicates *)
check_duplicates name_sdecl_list;
(* Build the final env. *)
let newenv =
List.fold_right
(fun (id, decl) env -> Env.add_type id decl env)
decls env
in
(* Update stubs *)
List.iter2
(fun id (_, sdecl) -> update_type temp_env newenv id sdecl.ptype_loc)
id_list name_sdecl_list;
(* Generalize type declarations. *)
Ctype.end_def();
List.iter (fun (_, decl) -> generalize_decl decl) decls;
(* Check for ill-formed abbrevs *)
let id_loc_list =
List.map2 (fun id (_,sdecl) -> (id, sdecl.ptype_loc))
id_list name_sdecl_list
in
List.iter (fun (id, decl) ->
check_well_founded newenv (List.assoc id id_loc_list) (Path.Pident id) decl)
decls;
List.iter (check_abbrev_recursion newenv id_loc_list) tdecls;
(* Check that all type variable are closed *)
List.iter2
(fun (_, sdecl) (id, _, tdecl) ->
let decl = tdecl.typ_type in
match Ctype.closed_type_decl decl with
Some ty -> raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl)))
| None -> ())
name_sdecl_list tdecls;
(* Check that constraints are enforced *)
List.iter2 (check_constraints newenv) name_sdecl_list decls;
(* Name recursion *)
let decls =
List.map2 (fun (_, sdecl) (id, decl) ->
id, name_recursion sdecl id decl)
name_sdecl_list decls
in
(* Add variances to the environment *)
let required =
List.map
(fun (_, sdecl) -> add_injectivity sdecl.ptype_variance, sdecl.ptype_loc)
name_sdecl_list
in
let final_decls, final_env =
compute_variance_fixpoint env decls required (List.map init_variance decls)
in
(* Check re-exportation *)
List.iter2 (check_abbrev final_env) name_sdecl_list final_decls;
(* Keep original declaration *)
let final_decls = List.map2 (fun (id, name_loc, tdecl) (id2, decl) ->
(id, name_loc, { tdecl with typ_type = decl })
) tdecls final_decls in
(* Done *)
(final_decls, final_env)
(* Translate an exception declaration *)
let transl_closed_type env sty =
let cty = transl_simple_type env true sty in
let ty = cty.ctyp_type in
let ty =
match Ctype.free_variables ty with
| [] -> ty
| tv :: _ -> raise (Error (sty.ptyp_loc, Unbound_type_var_exc (tv, ty)))
in
{ cty with ctyp_type = ty }
let transl_exception env loc excdecl =
reset_type_variables();
Ctype.begin_def();
let ttypes = List.map (transl_closed_type env) excdecl in
Ctype.end_def();
let types = List.map (fun cty -> cty.ctyp_type) ttypes in
List.iter Ctype.generalize types;
let exn_decl = { exn_args = types; Types.exn_loc = loc } in
{ exn_params = ttypes; exn_exn = exn_decl; Typedtree.exn_loc = loc }
(* Translate an exception rebinding *)
let transl_exn_rebind env loc lid =
let cdescr =
try
Env.lookup_constructor lid env
with Not_found ->
raise(Error(loc, Unbound_exception lid)) in
Env.mark_constructor Env.Positive env (Longident.last lid) cdescr;
match cdescr.cstr_tag with
Cstr_exception (path, _) ->
(path, {exn_args = cdescr.cstr_args; Types.exn_loc = loc})
| _ -> raise(Error(loc, Not_an_exception lid))
(* Translate a value declaration *)
let transl_value_decl env loc valdecl =
let cty = Typetexp.transl_type_scheme env valdecl.pval_type in
let ty = cty.ctyp_type in
let v =
match valdecl.pval_prim with
[] ->
{ val_type = ty; val_kind = Val_reg; Types.val_loc = loc }
| decl ->
let arity = Ctype.arity ty in
if arity = 0 then
raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external));
let prim = Primitive.parse_declaration arity decl in
if !Clflags.native_code
&& prim.prim_arity > 5
&& prim.prim_native_name = ""
then raise(Error(valdecl.pval_type.ptyp_loc, Missing_native_external));
{ val_type = ty; val_kind = Val_prim prim; Types.val_loc = loc }
in
{ val_desc = cty; val_val = v;
val_prim = valdecl.pval_prim;
val_loc = valdecl.pval_loc; }
(* Translate a "with" constraint -- much simplified version of
transl_type_decl. *)
let transl_with_constraint env id row_path orig_decl sdecl =
Env.mark_type_used (Ident.name id) orig_decl;
reset_type_variables();
Ctype.begin_def();
let params = make_params sdecl in
let orig_decl = Ctype.instance_declaration orig_decl in
let arity_ok = List.length params = orig_decl.type_arity in
if arity_ok then
List.iter2 (Ctype.unify_var env) params orig_decl.type_params;
let constraints = List.map
(function (ty, ty', loc) ->
try
let cty = transl_simple_type env false ty in
let cty' = transl_simple_type env false ty' in
let ty = cty.ctyp_type in
let ty' = cty'.ctyp_type in
Ctype.unify env ty ty';
(cty, cty', loc)
with Ctype.Unify tr ->
raise(Error(loc, Inconsistent_constraint (env, tr))))
sdecl.ptype_cstrs
in
let no_row = not (is_fixed_type sdecl) in
let (tman, man) = match sdecl.ptype_manifest with
None -> None, None
| Some sty ->
let cty = transl_simple_type env no_row sty in
Some cty, Some cty.ctyp_type
in
let decl =
{ type_params = params;
type_arity = List.length params;
type_kind = if arity_ok then orig_decl.type_kind else Type_abstract;
type_private = sdecl.ptype_private;
type_manifest = man;
type_variance = [];
type_newtype_level = None;
type_loc = sdecl.ptype_loc;
}
in
begin match row_path with None -> ()
| Some p -> set_fixed_row env sdecl.ptype_loc p decl
end;
begin match Ctype.closed_type_decl decl with None -> ()
| Some ty -> raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl)))
end;
let decl = name_recursion sdecl id decl in
let decl =
{decl with type_variance =
compute_variance_decl env false decl
(add_injectivity sdecl.ptype_variance, sdecl.ptype_loc)} in
Ctype.end_def();
generalize_decl decl;
{
typ_params = sdecl.ptype_params;
typ_type = decl;
typ_cstrs = constraints;
typ_loc = sdecl.ptype_loc;
typ_manifest = tman;
typ_kind = Ttype_abstract;
typ_variance = sdecl.ptype_variance;
typ_private = sdecl.ptype_private;
}
(* Approximate a type declaration: just make all types abstract *)
let abstract_type_decl arity =
let rec make_params n =
if n <= 0 then [] else Ctype.newvar() :: make_params (n-1) in
Ctype.begin_def();
let decl =
{ type_params = make_params arity;
type_arity = arity;
type_kind = Type_abstract;
type_private = Public;
type_manifest = None;
type_variance = replicate_list Variance.full arity;
type_newtype_level = None;
type_loc = Location.none;
} in
Ctype.end_def();
generalize_decl decl;
decl
let approx_type_decl env name_sdecl_list =
List.map
(fun (name, sdecl) ->
(Ident.create name.txt,
abstract_type_decl (List.length sdecl.ptype_params)))
name_sdecl_list
(* Variant of check_abbrev_recursion to check the well-formedness
conditions on type abbreviations defined within recursive modules. *)
let check_recmod_typedecl env loc recmod_ids path decl =
(* recmod_ids is the list of recursively-defined module idents.
(path, decl) is the type declaration to be checked. *)
check_well_founded env loc path decl;
check_recursion env loc path decl
(fun path -> List.exists (fun id -> Path.isfree id path) recmod_ids)
(**** Error report ****)
open Format
let explain_unbound ppf tv tl typ kwd lab =
try
let ti = List.find (fun ti -> Ctype.deep_occur tv (typ ti)) tl in
let ty0 = (* Hack to force aliasing when needed *)
Btype.newgenty (Tobject(tv, ref None)) in
Printtyp.reset_and_mark_loops_list [typ ti; ty0];
fprintf ppf
".@.@[<hov2>In %s@ %s%a@;<1 -2>the variable %a is unbound@]"
kwd (lab ti) Printtyp.type_expr (typ ti) Printtyp.type_expr tv
with Not_found -> ()
let explain_unbound_single ppf tv ty =
let trivial ty =
explain_unbound ppf tv [ty] (fun t -> t) "type" (fun _ -> "") in
match (Ctype.repr ty).desc with
Tobject(fi,_) ->
let (tl, rv) = Ctype.flatten_fields fi in
if rv == tv then trivial ty else
explain_unbound ppf tv tl (fun (_,_,t) -> t)
"method" (fun (lab,_,_) -> lab ^ ": ")
| Tvariant row ->
let row = Btype.row_repr row in
if row.row_more == tv then trivial ty else
explain_unbound ppf tv row.row_fields
(fun (l,f) -> match Btype.row_field_repr f with
Rpresent (Some t) -> t
| Reither (_,[t],_,_) -> t
| Reither (_,tl,_,_) -> Btype.newgenty (Ttuple tl)
| _ -> Btype.newgenty (Ttuple[]))
"case" (fun (lab,_) -> "`" ^ lab ^ " of ")
| _ -> trivial ty
let report_error ppf = function
| Repeated_parameter ->
fprintf ppf "A type parameter occurs several times"
| Duplicate_constructor s ->
fprintf ppf "Two constructors are named %s" s
| Too_many_constructors ->
fprintf ppf
"@[Too many non-constant constructors@ -- maximum is %i %s@]"
(Config.max_tag + 1) "non-constant constructors"
| Duplicate_label s ->
fprintf ppf "Two labels are named %s" s
| Recursive_abbrev s ->
fprintf ppf "The type abbreviation %s is cyclic" s
| Definition_mismatch (ty, errs) ->
Printtyp.reset_and_mark_loops ty;
fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%a@]%a@]"
"This variant or record definition" "does not match that of type"
Printtyp.type_expr ty
(Includecore.report_type_mismatch "the original" "this" "definition")
errs
| Constraint_failed (ty, ty') ->
Printtyp.reset_and_mark_loops ty;
Printtyp.mark_loops ty';
fprintf ppf "@[%s@ @[<hv>Type@ %a@ should be an instance of@ %a@]@]"
"Constraints are not satisfied in this type."
Printtyp.type_expr ty Printtyp.type_expr ty'
| Parameters_differ (path, ty, ty') ->
Printtyp.reset_and_mark_loops ty;
Printtyp.mark_loops ty';
fprintf ppf
"@[<hv>In the definition of %s, type@ %a@ should be@ %a@]"
(Path.name path) Printtyp.type_expr ty Printtyp.type_expr ty'
| Inconsistent_constraint (env, trace) ->
fprintf ppf "The type constraints are not consistent.@.";
Printtyp.report_unification_error ppf env trace
(fun ppf -> fprintf ppf "Type")
(fun ppf -> fprintf ppf "is not compatible with type")
| Type_clash (env, trace) ->
Printtyp.report_unification_error ppf env trace
(function ppf ->
fprintf ppf "This type constructor expands to type")
(function ppf ->
fprintf ppf "but is used here with type")
| Null_arity_external ->
fprintf ppf "External identifiers must be functions"
| Missing_native_external ->
fprintf ppf "@[<hv>An external function with more than 5 arguments \
requires a second stub function@ \
for native-code compilation@]"
| Unbound_type_var (ty, decl) ->
fprintf ppf "A type variable is unbound in this type declaration";
let ty = Ctype.repr ty in
begin match decl.type_kind, decl.type_manifest with
| Type_variant tl, _ ->
explain_unbound ppf ty tl (fun (_,tl,_) ->
Btype.newgenty (Ttuple tl))
"case" (fun (lab,_,_) -> Ident.name lab ^ " of ")
| Type_record (tl, _), _ ->
explain_unbound ppf ty tl (fun (_,_,t) -> t)
"field" (fun (lab,_,_) -> Ident.name lab ^ ": ")
| Type_abstract, Some ty' ->
explain_unbound_single ppf ty ty'
| _ -> ()
end
| Unbound_type_var_exc (tv, ty) ->
fprintf ppf "A type variable is unbound in this exception declaration";
explain_unbound_single ppf (Ctype.repr tv) ty
| Unbound_exception lid ->
fprintf ppf "Unbound exception constructor@ %a" Printtyp.longident lid
| Not_an_exception lid ->
fprintf ppf "The constructor@ %a@ is not an exception"
Printtyp.longident lid
| Bad_variance (n, v1, v2) ->
let variance (p,n,i) =
let inj = if i then "injective " else "" in
match p, n with
true, true -> inj ^ "invariant"
| true, false -> inj ^ "covariant"
| false, true -> inj ^ "contravariant"
| false, false -> if inj = "" then "unrestricted" else inj
in
let suffix n =
let teen = (n mod 100)/10 = 1 in
match n mod 10 with
| 1 when not teen -> "st"
| 2 when not teen -> "nd"
| 3 when not teen -> "rd"
| _ -> "th"
in
if n = -1 then
fprintf ppf "@[%s@ %s@ It"
"In this definition, a type variable has a variance that"
"is not reflected by its occurrence in type parameters."
else if n = -2 then
fprintf ppf "@[%s@ %s@]"
"In this definition, a type variable cannot be deduced"
"from the type parameters."
else if n = -3 then
fprintf ppf "@[%s@ %s@ It"
"In this definition, a type variable has a variance that"
"cannot be deduced from the type parameters."
else
fprintf ppf "@[%s@ %s@ The %d%s type parameter"
"In this definition, expected parameter"
"variances are not satisfied."
n (suffix n);
if n <> -2 then
fprintf ppf " was expected to be %s,@ but it is %s.@]"
(variance v2) (variance v1)
| Unavailable_type_constructor p ->
fprintf ppf "The definition of type %a@ is unavailable" Printtyp.path p
| Bad_fixed_type r ->
fprintf ppf "This fixed type %s" r
| Varying_anonymous ->
fprintf ppf "@[%s@ %s@ %s@]"
"In this GADT definition," "the variance of some parameter"
"cannot be checked"