ocaml/otherlibs/num/big_int.ml

602 lines
23 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Valerie Menissier-Morain, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
open Int_misc
open Nat
type big_int =
{ sign : int;
abs_value : nat }
let create_big_int sign nat =
if sign = 1 or sign = -1 or
(sign = 0 &
is_zero_nat nat 0 (num_digits_nat nat 0 (length_nat nat)))
then { sign = sign;
abs_value = nat }
else invalid_arg "create_big_int"
(* Sign of a big_int *)
let sign_big_int bi = bi.sign
let zero_big_int =
{ sign = 0;
abs_value = make_nat 1 }
let unit_big_int =
{ sign = 1;
abs_value = nat_of_int 1 }
(* Number of digits in a big_int *)
let num_digits_big_int bi =
num_digits_nat (bi.abs_value) 0 (length_nat bi.abs_value)
(* Opposite of a big_int *)
let minus_big_int bi =
{ sign = - bi.sign;
abs_value = copy_nat (bi.abs_value) 0 (num_digits_big_int bi)}
(* Absolute value of a big_int *)
let abs_big_int bi =
{ sign = if bi.sign = 0 then 0 else 1;
abs_value = copy_nat (bi.abs_value) 0 (num_digits_big_int bi)}
(* Comparison operators on big_int *)
(*
compare_big_int (bi, bi2) = sign of (bi-bi2)
i.e. 1 if bi > bi2
0 if bi = bi2
-1 if bi < bi2
*)
let compare_big_int bi1 bi2 =
if bi1.sign = 0 & bi2.sign = 0 then 0
else if bi1.sign < bi2.sign then -1
else if bi1.sign > bi2.sign then 1
else if bi1.sign = 1 then
compare_nat (bi1.abs_value) 0 (num_digits_big_int bi1)
(bi2.abs_value) 0 (num_digits_big_int bi2)
else
compare_nat (bi2.abs_value) 0 (num_digits_big_int bi2)
(bi1.abs_value) 0 (num_digits_big_int bi1)
let eq_big_int bi1 bi2 = compare_big_int bi1 bi2 = 0
and le_big_int bi1 bi2 = compare_big_int bi1 bi2 <= 0
and ge_big_int bi1 bi2 = compare_big_int bi1 bi2 >= 0
and lt_big_int bi1 bi2 = compare_big_int bi1 bi2 < 0
and gt_big_int bi1 bi2 = compare_big_int bi1 bi2 > 0
let max_big_int bi1 bi2 = if lt_big_int bi1 bi2 then bi2 else bi1
and min_big_int bi1 bi2 = if gt_big_int bi1 bi2 then bi2 else bi1
(* Operations on big_int *)
let pred_big_int bi =
match bi.sign with
0 -> { sign = -1; abs_value = nat_of_int 1}
| 1 -> let size_bi = num_digits_big_int bi in
let copy_bi = copy_nat (bi.abs_value) 0 size_bi in
decr_nat copy_bi 0 size_bi 0;
{ sign = if is_zero_nat copy_bi 0 size_bi then 0 else 1;
abs_value = copy_bi }
| _ -> let size_bi = num_digits_big_int bi in
let size_res = succ (size_bi) in
let copy_bi = create_nat (size_res) in
blit_nat copy_bi 0 (bi.abs_value) 0 size_bi;
set_digit_nat copy_bi size_bi 0;
incr_nat copy_bi 0 size_res 1;
{ sign = -1;
abs_value = copy_bi }
let succ_big_int bi =
match bi.sign with
0 -> {sign = 1; abs_value = nat_of_int 1}
| -1 -> let size_bi = num_digits_big_int bi in
let copy_bi = copy_nat (bi.abs_value) 0 size_bi in
decr_nat copy_bi 0 size_bi 0;
{ sign = if is_zero_nat copy_bi 0 size_bi then 0 else -1;
abs_value = copy_bi }
| _ -> let size_bi = num_digits_big_int bi in
let size_res = succ (size_bi) in
let copy_bi = create_nat (size_res) in
blit_nat copy_bi 0 (bi.abs_value) 0 size_bi;
set_digit_nat copy_bi size_bi 0;
incr_nat copy_bi 0 size_res 1;
{ sign = 1;
abs_value = copy_bi }
let add_big_int bi1 bi2 =
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
if bi1.sign = bi2.sign
then (* Add absolute values if signs are the same *)
{ sign = bi1.sign;
abs_value =
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
-1 -> let res = create_nat (succ size_bi2) in
(blit_nat res 0 (bi2.abs_value) 0 size_bi2;
set_digit_nat res size_bi2 0;
add_nat res 0 (succ size_bi2)
(bi1.abs_value) 0 size_bi1 0;
res)
|_ -> let res = create_nat (succ size_bi1) in
(blit_nat res 0 (bi1.abs_value) 0 size_bi1;
set_digit_nat res size_bi1 0;
add_nat res 0 (succ size_bi1)
(bi2.abs_value) 0 size_bi2 0;
res)}
else (* Subtract absolute values if signs are different *)
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
0 -> zero_big_int
| 1 -> { sign = bi1.sign;
abs_value =
let res = copy_nat (bi1.abs_value) 0 size_bi1 in
(sub_nat res 0 size_bi1
(bi2.abs_value) 0 size_bi2 1;
res) }
| _ -> { sign = bi2.sign;
abs_value =
let res = copy_nat (bi2.abs_value) 0 size_bi2 in
(sub_nat res 0 size_bi2
(bi1.abs_value) 0 size_bi1 1;
res) }
(* Coercion with int type *)
let big_int_of_int i =
{ sign = sign_int i;
abs_value =
let res = (create_nat 1)
in (if i = monster_int
then (set_digit_nat res 0 biggest_int;
incr_nat res 0 1 1; ())
else set_digit_nat res 0 (abs i));
res }
let add_int_big_int i bi = add_big_int (big_int_of_int i) bi
let sub_big_int bi1 bi2 = add_big_int bi1 (minus_big_int bi2)
(* Returns i * bi *)
let mult_int_big_int i bi =
let size_bi = num_digits_big_int bi in
let size_res = succ size_bi in
if i = monster_int
then let res = create_nat size_res in
blit_nat res 0 (bi.abs_value) 0 size_bi;
mult_digit_nat res 0 size_res (bi.abs_value) 0 size_bi
(nat_of_int biggest_int) 0;
{ sign = - (sign_big_int bi);
abs_value = res }
else let res = make_nat (size_res) in
mult_digit_nat res 0 size_res (bi.abs_value) 0 size_bi
(nat_of_int (abs i)) 0;
{ sign = (sign_int i) * (sign_big_int bi);
abs_value = res }
let mult_big_int bi1 bi2 =
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
let size_res = size_bi1 + size_bi2 in
let res = make_nat (size_res) in
{ sign = bi1.sign * bi2.sign;
abs_value =
if size_bi2 > size_bi1
then (mult_nat res 0 size_res (bi2.abs_value) 0 size_bi2
(bi1.abs_value) 0 size_bi1;res)
else (mult_nat res 0 size_res (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2;res) }
(* (quotient, rest) of the euclidian division of 2 big_int *)
let quomod_big_int bi1 bi2 =
if bi2.sign = 0 then raise Division_by_zero
else
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
-1 -> (* 1/2 -> 0, reste 1, -1/2 -> -1, reste 1 *)
if bi1.sign = -1
then (big_int_of_int(-1), add_big_int bi2 bi1)
else (big_int_of_int 0, bi1)
| 0 -> (big_int_of_int (bi1.sign * bi2.sign), zero_big_int)
| _ -> let bi1_negatif = bi1.sign = -1 in
let size_q =
if bi1_negatif
then succ (max (succ (size_bi1 - size_bi2)) 1)
else max (succ (size_bi1 - size_bi2)) 1
and size_r = succ (max size_bi1 size_bi2)
(* r is long enough to contain both quotient and remainder *)
(* of the euclidian division *)
in
(* set up quotient, remainder *)
let q = create_nat size_q
and r = create_nat size_r in
blit_nat r 0 (bi1.abs_value) 0 size_bi1;
set_to_zero_nat r size_bi1 (size_r - size_bi1);
(* do the division of |bi1| by |bi2|
- at the beginning, r contains |bi1|
- at the end, r contains
* in the size_bi2 least significant digits, the remainder
* in the size_r-size_bi2 most significant digits, the quotient
note the conditions for application of div_nat are verified here
*)
div_nat r 0 size_r (bi2.abs_value) 0 size_bi2;
(* separate quotient and remainder *)
blit_nat q 0 r size_bi2 (size_r - size_bi2);
let not_null_mod = not (is_zero_nat r 0 size_bi2) in
(* correct the signs, adjusting the quotient and remainder *)
if bi1_negatif & not_null_mod
then
(* bi1<0, r>0, noting r for (r, size_bi2) the remainder, *)
(* we have |bi1|=q * |bi2| + r with 0 < r < |bi2|, *)
(* thus -bi1 = q * |bi2| + r *)
(* and bi1 = (-q) * |bi2| + (-r) with -|bi2| < (-r) < 0 *)
(* thus bi1 = -(q+1) * |bi2| + (|bi2|-r) *)
(* with 0 < (|bi2|-r) < |bi2| *)
(* so the quotient has for sign the opposite of the bi2'one *)
(* and for value q+1 *)
(* and the remainder is strictly positive *)
(* has for value |bi2|-r *)
(let new_r = copy_nat (bi2.abs_value) 0 size_bi2 in
(* new_r contains (r, size_bi2) the remainder *)
{ sign = - bi2.sign;
abs_value = (set_digit_nat q (pred size_q) 0;
incr_nat q 0 size_q 1; q) },
{ sign = 1;
abs_value =
(sub_nat new_r 0 size_bi2 r 0 size_bi2 1;
new_r) })
else
(if bi1_negatif then set_digit_nat q (pred size_q) 0;
{ sign = if is_zero_nat q 0 size_q
then 0
else bi1.sign * bi2.sign;
abs_value = q },
{ sign = if not_null_mod then 1 else 0;
abs_value = copy_nat r 0 size_bi2 })
let div_big_int bi1 bi2 = fst (quomod_big_int bi1 bi2)
and mod_big_int bi1 bi2 = snd (quomod_big_int bi1 bi2)
let gcd_big_int bi1 bi2 =
let size_bi1 = num_digits_big_int bi1
and size_bi2 = num_digits_big_int bi2 in
if is_zero_nat (bi1.abs_value) 0 size_bi1 then abs_big_int bi2
else if is_zero_nat (bi2.abs_value) 0 size_bi2 then
{ sign = 1;
abs_value = bi1.abs_value }
else
{ sign = 1;
abs_value =
match compare_nat (bi1.abs_value) 0 size_bi1
(bi2.abs_value) 0 size_bi2 with
0 -> bi1.abs_value
| 1 ->
let res = copy_nat (bi1.abs_value) 0 size_bi1 in
let len =
gcd_nat res 0 size_bi1 (bi2.abs_value) 0 size_bi2 in
copy_nat res 0 len
| _ ->
let res = copy_nat (bi2.abs_value) 0 size_bi2 in
let len =
gcd_nat res 0 size_bi2 (bi1.abs_value) 0 size_bi1 in
copy_nat res 0 len
}
(* Coercion operators *)
let int_of_big_int bi =
try bi.sign * int_of_nat bi.abs_value
with Failure _ ->
if eq_big_int bi (big_int_of_int monster_int)
then monster_int
else failwith "int_of_big_int"
let is_int_big_int bi =
is_nat_int (bi.abs_value) 0 (num_digits_big_int bi)
or (bi.sign = -1 & num_digits_big_int bi = 1 &
num_leading_zero_bits_in_digit (bi.abs_value) 0 >= 1)
(* XL: le "1" provient de "pred (length_of_digit - length_of_int))" *)
(* Coercion with nat type *)
let nat_of_big_int bi =
if bi.sign = -1
then failwith "nat_of_big_int"
else copy_nat (bi.abs_value) 0 (num_digits_big_int bi)
let sys_big_int_of_nat nat off len =
let length = num_digits_nat nat off len in
{ sign = if is_zero_nat nat off length then 0 else 1;
abs_value = copy_nat nat off length }
let big_int_of_nat nat =
sys_big_int_of_nat nat 0 (length_nat nat)
(* Coercion with string type *)
let string_of_big_int bi =
if bi.sign = -1
then "-" ^ string_of_nat bi.abs_value
else string_of_nat bi.abs_value
(* XL: j'ai puissamment simplifie "big_int_of_string", en virant
la notation scientifique (123e6 ou 123.456e12). *)
let sys_big_int_of_string s ofs len =
let (sign, nat) =
match s.[ofs] with
'-' -> if len > 1
then (-1, sys_nat_of_string 10 s (ofs+1) (len-1))
else failwith "sys_big_int_of_string"
| '+' -> if len > 1
then (1, sys_nat_of_string 10 s (ofs+1) (len-1))
else failwith "sys_big_int_of_string"
| _ -> if len > 0
then (1, sys_nat_of_string 10 s ofs len)
else failwith "sys_big_int_of_string" in
{ sign = if is_zero_nat nat 0 (length_nat nat) then 0 else sign;
abs_value = nat }
let big_int_of_string s =
sys_big_int_of_string s 0 (String.length s)
let power_base_nat base nat off len =
if is_zero_nat nat off len then nat_of_int 1 else
let power_base = make_nat (succ length_of_digit) in
let (pmax, pint) = make_power_base base power_base in
let (n, rem) =
let (x, y) = quomod_big_int (sys_big_int_of_nat nat off len)
(big_int_of_int (succ pmax)) in
(int_of_big_int x, int_of_big_int y) in
if n = 0 then copy_nat power_base (pred rem) 1 else
begin
let res = make_nat n
and res2 = make_nat n
and l = num_bits_int n - 2 in
let p = ref (1 lsl l) in
blit_nat res 0 power_base pmax 1;
for i = l downto 0 do
let len = num_digits_nat res 0 n in
let len2 = min n (2 * len) in
let succ_len2 = succ len2 in
square_nat res2 0 len2 res 0 len;
begin
if n land !p > 0
then (set_to_zero_nat res 0 len;
mult_digit_nat res 0 succ_len2
res2 0 len2
power_base pmax; ())
else blit_nat res 0 res2 0 len2
end;
set_to_zero_nat res2 0 len2;
p := !p lsr 1
done;
if rem > 0
then (mult_digit_nat res2 0 n
res 0 n power_base (pred rem);
res2)
else res
end
let power_int_positive_int i n =
match sign_int n with
0 -> unit_big_int
| -1 -> invalid_arg "power_int_positive_int"
| _ -> let nat = power_base_int (abs i) n in
{ sign = if i >= 0
then sign_int i
else if n land 1 = 0
then 1
else -1;
abs_value = nat}
let power_big_int_positive_int bi n =
match sign_int n with
0 -> unit_big_int
| -1 -> invalid_arg "power_big_int_positive_int"
| _ -> let bi_len = num_digits_big_int bi in
let res_len = bi_len * n in
let res = make_nat res_len
and res2 = make_nat res_len
and l = num_bits_int n - 2 in
let p = ref (1 lsl l) in
blit_nat res 0 (bi.abs_value) 0 bi_len;
for i = l downto 0 do
let len = num_digits_nat res 0 res_len in
let len2 = min res_len (2 * len) in
let succ_len2 = succ len2 in
square_nat res2 0 len2 res 0 len;
(if n land !p > 0
then (set_to_zero_nat res 0 len;
mult_nat res 0 succ_len2
res2 0 len2 (bi.abs_value) 0 bi_len;
set_to_zero_nat res2 0 len2)
else blit_nat res 0 res2 0 len2;
set_to_zero_nat res2 0 len2);
p := !p lsr 1
done;
{sign = if bi.sign >= 0
then bi.sign
else if n land 1 = 0
then 1
else -1;
abs_value = res}
let power_int_positive_big_int i bi =
match sign_big_int bi with
0 -> unit_big_int
| -1 -> invalid_arg "power_int_positive_big_int"
| _ -> let nat = power_base_nat
(abs i) (bi.abs_value) 0 (num_digits_big_int bi) in
{ sign = if i >= 0
then sign_int i
else if is_digit_odd (bi.abs_value) 0
then -1
else 1;
abs_value = nat }
let power_big_int_positive_big_int bi1 bi2 =
match sign_big_int bi2 with
0 -> unit_big_int
| -1 -> invalid_arg "power_big_int_positive_big_int"
| _ -> let nat = bi2.abs_value
and off = 0
and len_bi2 = num_digits_big_int bi2 in
let bi1_len = num_digits_big_int bi1 in
let res_len = int_of_big_int (mult_int_big_int bi1_len bi2) in
let res = make_nat res_len
and res2 = make_nat res_len
and l = (len_bi2 * length_of_digit
- num_leading_zero_bits_in_digit nat (pred len_bi2)) - 2 in
let p = ref (1 lsl l) in
blit_nat res 0 (bi1.abs_value) 0 bi1_len;
for i = l downto 0 do
let nat = bi2.abs_value in
let len = num_digits_nat res 0 res_len in
let len2 = min res_len (2 * len) in
let succ_len2 = succ len2 in
square_nat res2 0 len2 res 0 len;
land_digit_nat nat 0 (nat_of_int !p) 0;
if is_zero_nat nat 0 len_bi2
then (blit_nat res 0 res2 0 len2;
set_to_zero_nat res2 0 len2)
else (set_to_zero_nat res 0 len;
mult_nat res 0 succ_len2
res2 0 len2 (bi1.abs_value) 0 bi1_len;
set_to_zero_nat res2 0 len2);
p := !p lsr 1
done;
{sign = if bi1.sign >= 0
then bi1.sign
else if is_digit_odd (bi2.abs_value) 0
then -1
else 1;
abs_value = res}
(* base_power_big_int compute bi*base^n *)
let base_power_big_int base n bi =
match sign_int n with
0 -> bi
| -1 -> let nat = power_base_int base (-n) in
let len_nat = num_digits_nat nat 0 (length_nat nat)
and len_bi = num_digits_big_int bi in
if len_bi < len_nat then
invalid_arg "base_power_big_int"
else if len_bi = len_nat &
compare_digits_nat (bi.abs_value) len_bi nat len_nat = -1
then invalid_arg "base_power_big_int"
else
let copy = create_nat (succ len_bi) in
blit_nat copy 0 (bi.abs_value) 0 len_bi;
set_digit_nat copy len_bi 0;
div_nat copy 0 (succ len_bi)
nat 0 len_nat;
if not (is_zero_nat copy 0 len_nat)
then invalid_arg "base_power_big_int"
else { sign = bi.sign;
abs_value = copy_nat copy len_nat 1 }
| _ -> let nat = power_base_int base n in
let len_nat = num_digits_nat nat 0 (length_nat nat)
and len_bi = num_digits_big_int bi in
let new_len = len_bi + len_nat in
let res = make_nat new_len in
(if len_bi > len_nat
then mult_nat res 0 new_len
(bi.abs_value) 0 len_bi
nat 0 len_nat
else mult_nat res 0 new_len
nat 0 len_nat
(bi.abs_value) 0 len_bi)
; if is_zero_nat res 0 new_len
then zero_big_int
else create_big_int (bi.sign) res
(* Coercion with float type *)
let float_of_big_int bi =
float_of_string (string_of_big_int bi)
(* XL: suppression de big_int_of_float et nat_of_float. *)
(* Other functions needed *)
(* Integer part of the square root of a big_int *)
let sqrt_big_int bi =
match bi.sign with
-1 -> invalid_arg "sqrt_big_int"
| 0 -> {sign = 0;
abs_value = make_nat (1)}
| _ -> {sign = 1;
abs_value = sqrt_nat (bi.abs_value) 0 (num_digits_big_int bi)}
let square_big_int bi =
let len_bi = num_digits_big_int bi in
let len_res = 2 * len_bi in
let res = make_nat len_res in
square_nat res 0 len_res (bi.abs_value) 0 len_bi;
{ sign = bi.sign;
abs_value = res }
(* round off of the futur last digit (of the integer represented by the string
argument of the function) that is now the previous one.
if s contains an integer of the form (10^n)-1
then s <- only 0 digits and the result_int is true
else s <- the round number and the result_int is false *)
let round_futur_last_digit s off_set length =
let l = pred (length + off_set) in
if Char.code(String.get s l) >= Char.code '5'
then
let rec round_rec l =
let current_char = String.get s l in
if current_char = '9'
then
(String.set s l '0';
if l = off_set then true else round_rec (pred l))
else
(String.set s l (Char.chr (succ (Char.code current_char)));
false)
in round_rec (pred l)
else false
(* Approximation with floating decimal point a` la approx_ratio_exp *)
let approx_big_int prec bi =
let len_bi = num_digits_big_int bi in
let n =
max 0
(int_of_big_int (
add_int_big_int
(-prec)
(div_big_int (mult_big_int (big_int_of_int (pred len_bi))
(big_int_of_string "963295986"))
(big_int_of_string "100000000")))) in
let s =
string_of_big_int (div_big_int bi (power_int_positive_int 10 n)) in
let (sign, off, len) =
if String.get s 0 = '-'
then ("-", 1, succ prec)
else ("", 0, prec) in
if (round_futur_last_digit s off (succ prec))
then (sign^"1."^(String.make prec '0')^"e"^
(string_of_int (n + 1 - off + String.length s)))
else (sign^(String.sub s off 1)^"."^
(String.sub s (succ off) (pred prec))
^"e"^(string_of_int (n - succ off + String.length s)))