ocaml/byterun/io.c

667 lines
17 KiB
C
Raw Normal View History

/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License, with */
/* the special exception on linking described in file ../LICENSE. */
/* */
/***********************************************************************/
/* $Id$ */
/* Buffered input/output. */
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <string.h>
#include "config.h"
#ifdef HAS_UNISTD
#include <unistd.h>
#endif
#include "alloc.h"
#include "custom.h"
#include "fail.h"
#include "io.h"
#include "memory.h"
#include "misc.h"
#include "mlvalues.h"
#include "signals.h"
#include "sys.h"
#ifdef HAS_UI
#include "ui.h"
#endif
#ifndef SEEK_SET
#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2
#endif
/* Hooks for locking channels */
CAMLexport void (*channel_mutex_free) (struct channel *) = NULL;
CAMLexport void (*channel_mutex_lock) (struct channel *) = NULL;
CAMLexport void (*channel_mutex_unlock) (struct channel *) = NULL;
CAMLexport void (*channel_mutex_unlock_exn) (void) = NULL;
/* List of opened channels */
CAMLexport struct channel * all_opened_channels = NULL;
/* Basic functions over type struct channel *.
These functions can be called directly from C.
No locking is performed. */
/* Functions shared between input and output */
CAMLexport struct channel * open_descriptor_in(int fd)
{
struct channel * channel;
channel = (struct channel *) stat_alloc(sizeof(struct channel));
channel->fd = fd;
channel->offset = 0;
channel->curr = channel->max = channel->buff;
channel->end = channel->buff + IO_BUFFER_SIZE;
channel->mutex = NULL;
channel->revealed = 0;
channel->old_revealed = 0;
channel->refcount = 0;
channel->next = all_opened_channels;
all_opened_channels = channel;
return channel;
}
CAMLexport struct channel * open_descriptor_out(int fd)
{
struct channel * channel;
channel = open_descriptor_in(fd);
channel->max = NULL;
return channel;
}
static void unlink_channel(struct channel *channel)
{
struct channel ** cp = &all_opened_channels;
while (*cp != channel && *cp != NULL)
cp = &(*cp)->next;
if (*cp != NULL)
*cp = (*cp)->next;
}
CAMLexport void close_channel(struct channel *channel)
{
close(channel->fd);
if (channel->refcount > 0) return;
if (channel_mutex_free != NULL) (*channel_mutex_free)(channel);
unlink_channel(channel);
stat_free(channel);
}
CAMLexport long channel_size(struct channel *channel)
{
long end;
end = lseek(channel->fd, 0, SEEK_END);
if (end == -1 ||
lseek(channel->fd, channel->offset, SEEK_SET) != channel->offset) {
sys_error(NO_ARG);
}
return end;
}
CAMLexport int channel_binary_mode(struct channel *channel)
{
#ifdef _WIN32
int oldmode = setmode(channel->fd, O_BINARY);
if (oldmode == O_TEXT) setmode(channel->fd, O_TEXT);
return oldmode == O_BINARY;
#else
return 1;
#endif
}
/* Output */
#ifndef EINTR
#define EINTR (-1)
#endif
#ifndef EAGAIN
#define EAGAIN (-1)
#endif
#ifndef EWOULDBLOCK
#define EWOULDBLOCK (-1)
#endif
static int do_write(int fd, char *p, int n)
{
int retcode;
Assert(!Is_young(p));
#ifdef HAS_UI
retcode = ui_write(fd, p, n);
#else
again:
enter_blocking_section();
retcode = write(fd, p, n);
leave_blocking_section();
if (retcode == -1) {
if (errno == EINTR) goto again;
if ((errno == EAGAIN || errno == EWOULDBLOCK) && n > 1) {
/* We couldn't do a partial write here, probably because
n <= PIPE_BUF and POSIX says that writes of less than
PIPE_BUF characters must be atomic.
We first try again with a partial write of 1 character.
If that fails too, we'll raise Sys_blocked_io below. */
n = 1; goto again;
}
}
#endif
if (retcode == -1) sys_error(NO_ARG);
return retcode;
}
/* Attempt to flush the buffer. This will make room in the buffer for
at least one character. Returns true if the buffer is empty at the
end of the flush, or false if some data remains in the buffer. */
CAMLexport int flush_partial(struct channel *channel)
{
int towrite, written;
towrite = channel->curr - channel->buff;
if (towrite > 0) {
written = do_write(channel->fd, channel->buff, towrite);
channel->offset += written;
if (written < towrite)
memmove(channel->buff, channel->buff + written, towrite - written);
channel->curr -= written;
}
return (channel->curr == channel->buff);
}
/* Flush completely the buffer. */
CAMLexport void flush(struct channel *channel)
{
while (! flush_partial(channel)) /*nothing*/;
}
/* Output data */
CAMLexport void putword(struct channel *channel, uint32 w)
{
if (! channel_binary_mode(channel))
failwith("output_binary_int: not a binary channel");
putch(channel, w >> 24);
putch(channel, w >> 16);
putch(channel, w >> 8);
putch(channel, w);
}
CAMLexport int putblock(struct channel *channel, char *p, long int len)
{
int n, free, towrite, written;
n = len >= INT_MAX ? INT_MAX : (int) len;
free = channel->end - channel->curr;
if (n <= free) {
/* Write request small enough to fit in buffer: transfer to buffer. */
memmove(channel->curr, p, n);
channel->curr += n;
return n;
} else {
/* Write request overflows buffer: transfer whatever fits to buffer
and write the buffer */
memmove(channel->curr, p, free);
towrite = channel->end - channel->buff;
written = do_write(channel->fd, channel->buff, towrite);
if (written < towrite)
memmove(channel->buff, channel->buff + written, towrite - written);
channel->offset += written;
channel->curr = channel->end - written;
return free;
}
}
CAMLexport void really_putblock(struct channel *channel, char *p, long int len)
{
int written;
while (len > 0) {
written = putblock(channel, p, len);
p += written;
len -= written;
}
}
CAMLexport void seek_out(struct channel *channel, long int dest)
{
flush(channel);
if (lseek(channel->fd, dest, 0) != dest) sys_error(NO_ARG);
channel->offset = dest;
}
CAMLexport long pos_out(struct channel *channel)
{
return channel->offset + channel->curr - channel->buff;
}
/* Input */
CAMLexport int do_read(int fd, char *p, unsigned int n)
{
int retcode;
Assert(!Is_young(p));
enter_blocking_section();
#ifdef HAS_UI
retcode = ui_read(fd, p, n);
#else
#ifdef EINTR
do { retcode = read(fd, p, n); } while (retcode == -1 && errno == EINTR);
#else
retcode = read(fd, p, n);
#endif
#endif
leave_blocking_section();
if (retcode == -1) sys_error(NO_ARG);
return retcode;
}
CAMLexport unsigned char refill(struct channel *channel)
{
int n;
n = do_read(channel->fd, channel->buff, IO_BUFFER_SIZE);
if (n == 0) raise_end_of_file();
channel->offset += n;
channel->max = channel->buff + n;
channel->curr = channel->buff + 1;
return (unsigned char)(channel->buff[0]);
}
CAMLexport uint32 getword(struct channel *channel)
{
int i;
uint32 res;
if (! channel_binary_mode(channel))
failwith("input_binary_int: not a binary channel");
res = 0;
for(i = 0; i < 4; i++) {
res = (res << 8) + getch(channel);
}
return res;
}
CAMLexport int getblock(struct channel *channel, char *p, long int len)
{
int n, avail, nread;
n = len >= INT_MAX ? INT_MAX : (int) len;
avail = channel->max - channel->curr;
if (n <= avail) {
memmove(p, channel->curr, n);
channel->curr += n;
return n;
} else if (avail > 0) {
memmove(p, channel->curr, avail);
channel->curr += avail;
return avail;
} else {
nread = do_read(channel->fd, channel->buff, IO_BUFFER_SIZE);
channel->offset += nread;
channel->max = channel->buff + nread;
if (n > nread) n = nread;
memmove(p, channel->buff, n);
channel->curr = channel->buff + n;
return n;
}
}
CAMLexport int really_getblock(struct channel *chan, char *p, long int n)
{
int r;
while (n > 0) {
r = getblock(chan, p, n);
if (r == 0) break;
p += r;
n -= r;
}
return (n == 0);
}
CAMLexport void seek_in(struct channel *channel, long int dest)
{
if (dest >= channel->offset - (channel->max - channel->buff) &&
dest <= channel->offset) {
channel->curr = channel->max - (channel->offset - dest);
} else {
if (lseek(channel->fd, dest, SEEK_SET) != dest) sys_error(NO_ARG);
channel->offset = dest;
channel->curr = channel->max = channel->buff;
}
}
CAMLexport long pos_in(struct channel *channel)
{
return channel->offset - (channel->max - channel->curr);
}
CAMLexport long input_scan_line(struct channel *channel)
{
char * p;
int n;
p = channel->curr;
do {
if (p >= channel->max) {
/* No more characters available in the buffer */
if (channel->curr > channel->buff) {
/* Try to make some room in the buffer by shifting the unread
portion at the beginning */
memmove(channel->buff, channel->curr, channel->max - channel->curr);
n = channel->curr - channel->buff;
channel->curr -= n;
channel->max -= n;
p -= n;
}
if (channel->max >= channel->end) {
/* Buffer is full, no room to read more characters from the input.
Return the number of characters in the buffer, with negative
sign to indicate that no newline was encountered. */
return -(channel->max - channel->curr);
}
/* Fill the buffer as much as possible */
n = do_read(channel->fd, channel->max, channel->end - channel->max);
if (n == 0) {
/* End-of-file encountered. Return the number of characters in the
buffer, with negative sign since we haven't encountered
a newline. */
return -(channel->max - channel->curr);
}
channel->offset += n;
channel->max += n;
}
} while (*p++ != '\n');
/* Found a newline. Return the length of the line, newline included. */
return (p - channel->curr);
}
/* Caml entry points for the I/O functions. Wrap struct channel *
objects into a heap-allocated object. Perform locking
and unlocking around the I/O operations. */
CAMLexport void finalize_channel(value vchan)
{
struct channel * chan = Channel(vchan);
if (--chan->refcount > 0) return;
if (channel_mutex_free != NULL) (*channel_mutex_free)(chan);
unlink_channel(chan);
stat_free(chan);
}
static int compare_channel(value vchan1, value vchan2)
{
struct channel * chan1 = Channel(vchan1);
struct channel * chan2 = Channel(vchan2);
return (chan1 == chan2) ? 0 : (chan1 < chan2) ? -1 : 1;
}
static struct custom_operations channel_operations = {
"_chan",
finalize_channel,
compare_channel,
custom_hash_default,
custom_serialize_default,
custom_deserialize_default
};
CAMLexport value alloc_channel(struct channel *chan)
{
value res = alloc_custom(&channel_operations, sizeof(struct channel *),
1, 1000);
Channel(res) = chan;
chan->refcount++;
return res;
}
CAMLprim value caml_open_descriptor_in(value fd)
{
return alloc_channel(open_descriptor_in(Int_val(fd)));
}
CAMLprim value caml_open_descriptor_out(value fd)
{
return alloc_channel(open_descriptor_out(Int_val(fd)));
}
#define Pair_tag 0
CAMLprim value caml_out_channels_list (value unit)
{
CAMLparam0 ();
CAMLlocal3 (res, tail, chan);
struct channel * channel;
res = Val_emptylist;
for (channel = all_opened_channels;
channel != NULL;
channel = channel->next)
/* Testing channel->fd >= 0 looks unnecessary, as
caml_close_channel changes max when setting fd to -1. */
if (channel->max == NULL) {
chan = alloc_channel (channel);
tail = res;
res = alloc_small (2, Pair_tag);
Field (res, 0) = chan;
Field (res, 1) = tail;
}
CAMLreturn (res);
}
CAMLprim value channel_descriptor(value vchannel)
{
int fd = Channel(vchannel)->fd;
if (fd == -1) { errno = EBADF; sys_error(NO_ARG); }
return Val_int(fd);
}
CAMLprim value caml_close_channel(value vchannel)
{
/* For output channels, must have flushed before */
struct channel * channel = Channel(vchannel);
close(channel->fd);
channel->fd = -1;
/* Ensure that every read or write on the channel will cause an
immediate flush_partial or refill, thus raising a Sys_error
exception */
channel->curr = channel->max = channel->end;
return Val_unit;
}
CAMLprim value caml_channel_size(value vchannel)
{
return Val_long(channel_size(Channel(vchannel)));
}
CAMLprim value caml_set_binary_mode(value vchannel, value mode)
{
#ifdef _WIN32
struct channel * channel = Channel(vchannel);
if (setmode(channel->fd, Bool_val(mode) ? O_BINARY : O_TEXT) == -1)
sys_error(NO_ARG);
#endif
return Val_unit;
}
CAMLprim value caml_flush_partial(value vchannel)
{
struct channel * channel = Channel(vchannel);
int res;
Lock(channel);
res = flush_partial(channel);
Unlock(channel);
return Val_bool(res);
}
CAMLprim value caml_flush(value vchannel)
{
struct channel * channel = Channel(vchannel);
Lock(channel);
flush(channel);
Unlock(channel);
return Val_unit;
}
CAMLprim value caml_output_char(value vchannel, value ch)
{
struct channel * channel = Channel(vchannel);
Lock(channel);
putch(channel, Long_val(ch));
Unlock(channel);
return Val_unit;
}
CAMLprim value caml_output_int(value vchannel, value w)
{
struct channel * channel = Channel(vchannel);
Lock(channel);
putword(channel, Long_val(w));
Unlock(channel);
return Val_unit;
}
CAMLprim value caml_output_partial(value vchannel, value buff, value start, value length)
{
CAMLparam4 (vchannel, buff, start, length);
struct channel * channel = Channel(vchannel);
int res;
Lock(channel);
res = putblock(channel, &Byte(buff, Long_val(start)), Long_val(length));
Unlock(channel);
CAMLreturn (Val_int(res));
}
CAMLprim value caml_output(value vchannel, value buff, value start, value length)
{
CAMLparam4 (vchannel, buff, start, length);
struct channel * channel = Channel(vchannel);
long pos = Long_val(start);
long len = Long_val(length);
Lock(channel);
while (len > 0) {
int written = putblock(channel, &Byte(buff, pos), len);
pos += written;
len -= written;
}
Unlock(channel);
CAMLreturn (Val_unit);
}
CAMLprim value caml_seek_out(value vchannel, value pos)
{
struct channel * channel = Channel(vchannel);
Lock(channel);
seek_out(channel, Long_val(pos));
Unlock(channel);
return Val_unit;
}
CAMLprim value caml_pos_out(value vchannel)
{
return Val_long(pos_out(Channel(vchannel)));
}
CAMLprim value caml_input_char(value vchannel)
{
struct channel * channel = Channel(vchannel);
unsigned char c;
Lock(channel);
c = getch(channel);
Unlock(channel);
return Val_long(c);
}
CAMLprim value caml_input_int(value vchannel)
{
struct channel * channel = Channel(vchannel);
long i;
Lock(channel);
i = getword(channel);
Unlock(channel);
#ifdef ARCH_SIXTYFOUR
i = (i << 32) >> 32; /* Force sign extension */
#endif
return Val_long(i);
}
CAMLprim value caml_input(value vchannel,value buff,value vstart,value vlength)
{
CAMLparam4 (vchannel, buff, vstart, vlength);
struct channel * channel = Channel(vchannel);
long start, len;
int n, avail, nread;
Lock(channel);
/* We cannot call getblock here because buff may move during do_read */
start = Long_val(vstart);
len = Long_val(vlength);
n = len >= INT_MAX ? INT_MAX : (int) len;
avail = channel->max - channel->curr;
if (n <= avail) {
memmove(&Byte(buff, start), channel->curr, n);
channel->curr += n;
} else if (avail > 0) {
memmove(&Byte(buff, start), channel->curr, avail);
channel->curr += avail;
n = avail;
} else {
nread = do_read(channel->fd, channel->buff, IO_BUFFER_SIZE);
channel->offset += nread;
channel->max = channel->buff + nread;
if (n > nread) n = nread;
memmove(&Byte(buff, start), channel->buff, n);
channel->curr = channel->buff + n;
}
Unlock(channel);
CAMLreturn (Val_long(n));
}
CAMLprim value caml_seek_in(value vchannel, value pos)
{
struct channel * channel = Channel(vchannel);
Lock(channel);
seek_in(channel, Long_val(pos));
Unlock(channel);
return Val_unit;
}
CAMLprim value caml_pos_in(value vchannel)
{
return Val_long(pos_in(Channel(vchannel)));
}
CAMLprim value caml_input_scan_line(value vchannel)
{
struct channel * channel = Channel(vchannel);
long res;
Lock(channel);
res = input_scan_line(channel);
Unlock(channel);
return Val_long(res);
}