ocaml/asmcomp/schedgen.ml

332 lines
11 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Instruction scheduling *)
open Misc
open Reg
open Mach
open Linearize
(* Representation of the code DAG. *)
type code_dag_node =
{ instr: instruction; (* The instruction *)
delay: int; (* How many cycles before result is available *)
mutable sons: (code_dag_node * int) list;
(* Instructions that depend on it *)
mutable date: int; (* Start date *)
mutable length: int; (* Length of longest path to result *)
mutable ancestors: int; (* Number of ancestors *)
mutable emitted_ancestors: int } (* Number of emitted ancestors *)
let dummy_node =
{ instr = end_instr; delay = 0; sons = []; date = 0;
length = -1; ancestors = 0; emitted_ancestors = 0 }
(* The code dag itself is represented by two tables from registers to nodes:
- "results" maps registers to the instructions that produced them;
- "uses" maps registers to the instructions that use them.
In addition, code_stores contains the latest store nodes emitted so far
and code_loads contains all load nodes emitted since the last store. *)
let code_results = (Hashtbl.create 31 : (location, code_dag_node) Hashtbl.t)
let code_uses = (Hashtbl.create 31 : (location, code_dag_node) Hashtbl.t)
let code_stores = ref ([] : code_dag_node list)
let code_loads = ref ([] : code_dag_node list)
let clear_code_dag () =
Hashtbl.clear code_results;
Hashtbl.clear code_uses;
code_stores := [];
code_loads := []
(* Add an edge to the code DAG *)
let add_edge ancestor son delay =
ancestor.sons <- (son, delay) :: ancestor.sons;
son.ancestors <- son.ancestors + 1
(* Compute length of longest path to a result.
For leafs of the DAG, see whether their result is used in the instruction
immediately following the basic block (a "critical" output). *)
let is_critical critical_outputs results =
try
for i = 0 to Array.length results - 1 do
let r = results.(i).loc in
for j = 0 to Array.length critical_outputs - 1 do
if critical_outputs.(j).loc = r then raise Exit
done
done;
false
with Exit ->
true
let rec longest_path critical_outputs node =
if node.length < 0 then begin
match node.sons with
[] ->
node.length <-
if is_critical critical_outputs node.instr.res
or node.instr.desc = Lreloadretaddr (* alway critical *)
then node.delay
else 0
| sons ->
node.length <-
List.fold_left
(fun len (son, delay) ->
max len (longest_path critical_outputs son + delay))
0 sons
end;
node.length
(* Remove an instruction from the ready queue *)
let rec remove_instr node = function
[] -> []
| instr :: rem ->
if instr == node then rem else instr :: remove_instr node rem
(* We treat Lreloadretaddr as a word-sized load *)
let some_load = (Iload(Cmm.Word, Arch.identity_addressing))
(* The generic scheduler *)
class virtual scheduler_generic = object (self)
(* Determine whether an operation ends a basic block or not.
Can be overriden for some processors to signal specific instructions
that terminate a basic block. *)
method oper_in_basic_block = function
Icall_ind -> false
| Icall_imm _ -> false
| Itailcall_ind -> false
| Itailcall_imm _ -> false
| Iextcall(_, _) -> false
| Istackoffset _ -> false
| Ialloc _ -> false
| _ -> true
(* Determine whether an instruction ends a basic block or not *)
method private instr_in_basic_block instr =
match instr.desc with
Lop op -> self#oper_in_basic_block op
| Lreloadretaddr -> true
| _ -> false
(* Determine whether an operation is a memory store or a memory load.
Can be overriden for some processors to signal specific
load or store instructions (e.g. on the I386). *)
method is_store = function
Istore(_, _) -> true
| _ -> false
method is_load = function
Iload(_, _) -> true
| _ -> false
method private instr_is_store instr =
match instr.desc with
Lop op -> self#is_store op
| _ -> false
method private instr_is_load instr =
match instr.desc with
Lop op -> self#is_load op
| _ -> false
(* Estimate the latency of an operation. *)
method virtual oper_latency : Mach.operation -> int
(* Estimate the latency of a Lreloadretaddr operation. *)
method reload_retaddr_latency = self#oper_latency some_load
(* Estimate the delay needed to evaluate an instruction *)
method private instr_latency instr =
match instr.desc with
Lop op -> self#oper_latency op
| Lreloadretaddr -> self#reload_retaddr_latency
| _ -> assert false
(* Estimate the number of cycles consumed by emitting an operation. *)
method virtual oper_issue_cycles : Mach.operation -> int
(* Estimate the number of cycles consumed by emitting a Lreloadretaddr. *)
method reload_retaddr_issue_cycles = self#oper_issue_cycles some_load
(* Estimate the number of cycles consumed by emitting an instruction. *)
method private instr_issue_cycles instr =
match instr.desc with
Lop op -> self#oper_issue_cycles op
| Lreloadretaddr -> self#reload_retaddr_issue_cycles
| _ -> assert false
(* Add an instruction to the code dag *)
method private add_instruction ready_queue instr =
let delay = self#instr_latency instr in
let node =
{ instr = instr;
delay = delay;
sons = [];
date = 0;
length = -1;
ancestors = 0;
emitted_ancestors = 0 } in
(* Add edges from all instructions that define one of the registers used
(RAW dependencies) *)
for i = 0 to Array.length instr.arg - 1 do
try
let ancestor = Hashtbl.find code_results instr.arg.(i).loc in
add_edge ancestor node ancestor.delay
with Not_found ->
()
done;
(* Also add edges from all instructions that use one of the result regs
of this instruction (WAR dependencies). *)
for i = 0 to Array.length instr.res - 1 do
let ancestors = Hashtbl.find_all code_uses instr.res.(i).loc in
List.iter (fun ancestor -> add_edge ancestor node 0) ancestors
done;
(* Also add edges from all instructions that have already defined one
of the results of this instruction (WAW dependencies). *)
for i = 0 to Array.length instr.res - 1 do
try
let ancestor = Hashtbl.find code_results instr.res.(i).loc in
add_edge ancestor node 0
with Not_found ->
()
done;
(* If this is a load, add edges from the most recent store viewed so
far (if any) and remember the load *)
if self#instr_is_load instr then begin
List.iter (fun store -> add_edge store node 0) !code_stores;
code_loads := node :: !code_loads
end
(* If this is a store, add edges from the most recent store,
as well as all loads viewed since then. Remember the store,
discarding the previous store and loads. *)
else if self#instr_is_store instr then begin
List.iter (fun store -> add_edge store node 0) !code_stores;
List.iter (fun load -> add_edge load node 0) !code_loads;
code_stores := [node];
code_loads := []
end;
(* Remember the registers used and produced by this instruction *)
for i = 0 to Array.length instr.res - 1 do
Hashtbl.add code_results instr.res.(i).loc node
done;
for i = 0 to Array.length instr.arg - 1 do
Hashtbl.add code_uses instr.arg.(i).loc node
done;
(* If this is a root instruction (all arguments already computed),
add it to the ready queue *)
if node.ancestors = 0 then node :: ready_queue else ready_queue
(* Given a list of instructions and a date, choose one or several
that are ready to be computed (start date <= current date)
and that we can emit in one cycle. Favor instructions with
maximal distance to result. If we can't find any, return None.
This does not take multiple issues into account, though. *)
method private ready_instruction date queue =
let rec extract best = function
[] ->
if best == dummy_node then None else Some best
| instr :: rem ->
let new_best =
if instr.date <= date && instr.length > best.length
then instr else best in
extract new_best rem in
extract dummy_node queue
(* Schedule a basic block, adding its instructions in front of the given
instruction sequence *)
method private reschedule ready_queue date cont =
if ready_queue = [] then cont else begin
match self#ready_instruction date ready_queue with
None ->
self#reschedule ready_queue (date + 1) cont
| Some node ->
(* Remove node from queue *)
let new_queue = ref (remove_instr node ready_queue) in
(* Update the start date and number of ancestors emitted of
all descendents of this node. Enter those that become ready
in the queue. *)
let issue_cycles = self#instr_issue_cycles node.instr in
List.iter
(fun (son, delay) ->
let completion_date = date + issue_cycles + delay - 1 in
if son.date < completion_date then son.date <- completion_date;
son.emitted_ancestors <- son.emitted_ancestors + 1;
if son.emitted_ancestors = son.ancestors then
new_queue := son :: !new_queue)
node.sons;
instr_cons node.instr.desc node.instr.arg node.instr.res
(self#reschedule !new_queue (date + issue_cycles) cont)
end
(* Entry point *)
(* Don't bother to schedule for initialization code and the like. *)
method schedule_fundecl f =
let rec schedule i =
match i.desc with
Lend -> i
| _ ->
if self#instr_in_basic_block i then begin
clear_code_dag();
schedule_block [] i
end else
{ desc = i.desc; arg = i.arg; res = i.res; live = i.live;
next = schedule i.next }
and schedule_block ready_queue i =
if self#instr_in_basic_block i then
schedule_block (self#add_instruction ready_queue i) i.next
else begin
let critical_outputs =
match i.desc with
Lop(Icall_ind | Itailcall_ind) -> [| i.arg.(0) |]
| Lop(Icall_imm _ | Itailcall_imm _ | Iextcall(_, _)) -> [||]
| Lreturn -> [||]
| _ -> i.arg in
List.iter (fun x -> longest_path critical_outputs x; ()) ready_queue;
self#reschedule ready_queue 0 (schedule i)
end in
if f.fun_fast then begin
let new_body = schedule f.fun_body in
clear_code_dag();
{ fun_name = f.fun_name;
fun_body = new_body;
fun_fast = f.fun_fast }
end else
f
end