ocaml/asmcomp/amd64/emit.mlp

683 lines
22 KiB
Plaintext
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Emission of Intel 386 assembly code *)
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
let stack_offset = ref 0
(* Layout of the stack frame *)
let frame_required () =
!contains_calls || num_stack_slots.(0) > 0 || num_stack_slots.(1) > 0
let frame_size () = (* includes return address *)
let sz = (!stack_offset + 8 * (num_stack_slots.(0) + num_stack_slots.(1)) + 8)
in Misc.align sz 16
let slot_offset loc cl =
match loc with
Incoming n -> frame_size() + n
| Local n ->
if cl = 0
then !stack_offset + n * 8
else !stack_offset + (num_stack_slots.(0) + n) * 8
| Outgoing n -> n
(* Symbols *)
let emit_symbol s =
Emitaux.emit_symbol '$' s
(* Output a label *)
let emit_label lbl =
emit_string ".L"; emit_int lbl
(* Output a .align directive. *)
let emit_align n =
` .align {emit_int n}\n`
let emit_Llabel fallthrough lbl =
if not fallthrough && !fastcode_flag then emit_align 4;
emit_label lbl
(* Output a pseudo-register *)
let emit_reg = function
{ loc = Reg r } ->
emit_string (register_name r)
| { loc = Stack s } as r ->
let ofs = slot_offset s (register_class r) in
`{emit_int ofs}(%rsp)`
| { loc = Unknown } ->
assert false
(* Output a reference to the lower 8, 16 or 32 bits of a register *)
let reg_low_8_name =
[| "%al"; "%bl"; "%dil"; "%sil"; "%dl"; "%cl"; "%r8b"; "%r9b";
"%r10b"; "%r11b"; "%bpl"; "%r12b"; "%r13b" |]
let reg_low_16_name =
[| "%ax"; "%bx"; "%di"; "%si"; "%dx"; "%cx"; "%r8w"; "%r9w";
"%r10w"; "%r11w"; "%bp"; "%r12w"; "%r13w" |]
let reg_low_32_name =
[| "%eax"; "%ebx"; "%edi"; "%esi"; "%edx"; "%ecx"; "%r8d"; "%r9d";
"%r10d"; "%r11d"; "%ebp"; "%r12d"; "%r13d" |]
let emit_subreg tbl r =
match r.loc with
Reg r when r < 13 ->
emit_string tbl.(r)
| Stack s ->
let ofs = slot_offset s (register_class r) in
`{emit_int ofs}(%rsp)`
| _ ->
assert false
let emit_reg8 r = emit_subreg reg_low_8_name r
let emit_reg16 r = emit_subreg reg_low_16_name r
let emit_reg32 r = emit_subreg reg_low_32_name r
(* Output an addressing mode *)
let emit_addressing addr r n =
match addr with
Ibased(s, d) ->
`{emit_symbol s}`;
if d <> 0 then ` + {emit_int d}`;
`(%rip)`
| Iindexed d ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)})`
| Iindexed2 d ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)}, {emit_reg r.(n+1)})`
| Iscaled(2, d) ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)}, {emit_reg r.(n)})`
| Iscaled(scale, d) ->
if d <> 0 then emit_int d;
`(, {emit_reg r.(n)}, {emit_int scale})`
| Iindexed2scaled(scale, d) ->
if d <> 0 then emit_int d;
`({emit_reg r.(n)}, {emit_reg r.(n+1)}, {emit_int scale})`
(* Record live pointers at call points *)
type frame_descr =
{ fd_lbl: int; (* Return address *)
fd_frame_size: int; (* Size of stack frame *)
fd_live_offset: int list } (* Offsets/regs of live addresses *)
let frame_descriptors = ref([] : frame_descr list)
let record_frame_label live =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := ((r lsl 1) + 1) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset } :: !frame_descriptors;
lbl
let record_frame live =
let lbl = record_frame_label live in `{emit_label lbl}:\n`
let emit_frame fd =
` .quad {emit_label fd.fd_lbl}\n`;
` .word {emit_int fd.fd_frame_size}\n`;
` .word {emit_int (List.length fd.fd_live_offset)}\n`;
List.iter
(fun n ->
` .word {emit_int n}\n`)
fd.fd_live_offset;
emit_align 8
(* Record calls to the GC -- we've moved them out of the way *)
type gc_call =
{ gc_lbl: label; (* Entry label *)
gc_return_lbl: label; (* Where to branch after GC *)
gc_frame: label } (* Label of frame descriptor *)
let call_gc_sites = ref ([] : gc_call list)
let emit_call_gc gc =
`{emit_label gc.gc_lbl}: call {emit_symbol "caml_call_gc"}\n`;
`{emit_label gc.gc_frame}: jmp {emit_label gc.gc_return_lbl}\n`
(* Names for instructions *)
let instr_for_intop = function
Iadd -> "addq"
| Isub -> "subq"
| Imul -> "imulq"
| Iand -> "andq"
| Ior -> "orq"
| Ixor -> "xorq"
| Ilsl -> "salq"
| Ilsr -> "shrq"
| Iasr -> "sarq"
| _ -> assert false
let instr_for_floatop = function
Iaddf -> "addsd"
| Isubf -> "subsd"
| Imulf -> "mulsd"
| Idivf -> "divsd"
| _ -> assert false
let instr_for_floatarithmem = function
Ifloatadd -> "addsd"
| Ifloatsub -> "subsd"
| Ifloatmul -> "mulsd"
| Ifloatdiv -> "divsd"
let name_for_cond_branch = function
Isigned Ceq -> "e" | Isigned Cne -> "ne"
| Isigned Cle -> "le" | Isigned Cgt -> "g"
| Isigned Clt -> "l" | Isigned Cge -> "ge"
| Iunsigned Ceq -> "e" | Iunsigned Cne -> "ne"
| Iunsigned Cle -> "be" | Iunsigned Cgt -> "a"
| Iunsigned Clt -> "b" | Iunsigned Cge -> "ae"
(* Output an = 0 or <> 0 test. *)
let output_test_zero arg =
match arg.loc with
Reg r -> ` testq {emit_reg arg}, {emit_reg arg}\n`
| _ -> ` cmpq $0, {emit_reg arg}\n`
(* Output a floating-point compare and branch *)
let emit_float_test cmp neg arg lbl =
begin match cmp with
| Ceq | Cne -> ` ucomisd `
| _ -> ` comisd `
end;
`{emit_reg arg.(1)}, {emit_reg arg.(0)}\n`;
let (branch_opcode, need_jp) =
match (cmp, neg) with
(Ceq, false) -> ("je", true)
| (Ceq, true) -> ("jne", true)
| (Cne, false) -> ("jne", true)
| (Cne, true) -> ("je", true)
| (Clt, false) -> ("jb", true)
| (Clt, true) -> ("jae", true)
| (Cle, false) -> ("jbe", true)
| (Cle, true) -> ("ja", true)
| (Cgt, false) -> ("ja", false)
| (Cgt, true) -> ("jbe", false)
| (Cge, false) -> ("jae", true)
| (Cge, true) -> ("jb", false) in
let branch_if_not_comparable =
if cmp = Cne then not neg else neg in
if need_jp then
if branch_if_not_comparable then begin
` jp {emit_label lbl}\n`;
` {emit_string branch_opcode} {emit_label lbl}\n`
end else begin
let next = new_label() in
` jp {emit_label next}\n`;
` {emit_string branch_opcode} {emit_label lbl}\n`;
`{emit_label next}:\n`
end
else begin
` {emit_string branch_opcode} {emit_label lbl}\n`
end
(* Deallocate the stack frame before a return or tail call *)
let output_epilogue () =
if frame_required() then begin
let n = frame_size() - 8 in
` addq ${emit_int n}, %rsp\n`
end
(* Output the assembly code for an instruction *)
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Label of trap for out-of-range accesses *)
let range_check_trap = ref 0
let float_constants = ref ([] : (int * string) list)
let emit_instr fallthrough i =
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then begin
if src.typ = Float then
` movsd {emit_reg src}, {emit_reg dst}\n`
else
` movq {emit_reg src}, {emit_reg dst}\n`
end
| Lop(Iconst_int n) ->
if n = 0n then begin
match i.res.(0).loc with
Reg n -> ` xorq {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| _ -> ` movq $0, {emit_reg i.res.(0)}\n`
end else if n <= 0x7FFFFFFFn && n >= -0x80000000n then
` movq ${emit_nativeint n}, {emit_reg i.res.(0)}\n`
else
` movabsq ${emit_nativeint n}, {emit_reg i.res.(0)}\n`
| Lop(Iconst_float s) ->
let f = float_of_string s in
if f = 0.0 then
` xorpd {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
else begin
let lbl = new_label() in
float_constants := (lbl, s) :: !float_constants;
` movlpd {emit_label lbl}(%rip), {emit_reg i.res.(0)}\n`
end
| Lop(Iconst_symbol s) ->
` movq ${emit_symbol s}, {emit_reg i.res.(0)}\n`
| Lop(Icall_ind) ->
` call *{emit_reg i.arg.(0)}\n`;
record_frame i.live
| Lop(Icall_imm s) ->
` call {emit_symbol s}\n`;
record_frame i.live
| Lop(Itailcall_ind) ->
output_epilogue();
` jmp *{emit_reg i.arg.(0)}\n`
| Lop(Itailcall_imm s) ->
if s = !function_name then
` jmp {emit_label !tailrec_entry_point}\n`
else begin
output_epilogue();
` jmp {emit_symbol s}\n`
end
| Lop(Iextcall(s, alloc)) ->
if alloc then begin
` movq ${emit_symbol s}, %rax\n`;
` call {emit_symbol "caml_c_call"}\n`;
record_frame i.live
end else begin
` call {emit_symbol s}\n`
end
| Lop(Istackoffset n) ->
if n < 0
then ` addq ${emit_int(-n)}, %rsp\n`
else ` subq ${emit_int(n)}, %rsp\n`;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let dest = i.res.(0) in
begin match chunk with
| Word ->
` movq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Byte_unsigned ->
` movzbq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Byte_signed ->
` movsbq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Sixteen_unsigned ->
` movzwq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Sixteen_signed ->
` movswq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Thirtytwo_unsigned ->
` movl {emit_addressing addr i.arg 0}, {emit_reg32 dest}\n`
| Thirtytwo_signed ->
` movslq {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Single ->
` cvtss2sd {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
| Double | Double_u ->
` movlpd {emit_addressing addr i.arg 0}, {emit_reg dest}\n`
end
| Lop(Istore(chunk, addr)) ->
begin match chunk with
| Word ->
` movq {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Byte_unsigned | Byte_signed ->
` movb {emit_reg8 i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Sixteen_unsigned | Sixteen_signed ->
` movw {emit_reg16 i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Thirtytwo_signed | Thirtytwo_unsigned ->
` movl {emit_reg32 i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Single ->
` cvtsd2ss {emit_reg i.arg.(0)}, %xmm15\n`;
` movss %xmm15, {emit_addressing addr i.arg 1}\n`
| Double | Double_u ->
` movlpd {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
end
| Lop(Ialloc n) ->
if !fastcode_flag then begin
let lbl_redo = new_label() in
`{emit_label lbl_redo}: subq ${emit_int n}, %r15\n`;
` cmpq {emit_symbol "caml_young_limit"}(%rip), %r15\n`;
let lbl_call_gc = new_label() in
let lbl_frame = record_frame_label i.live in
` jb {emit_label lbl_call_gc}\n`;
` leaq 8(%r15), {emit_reg i.res.(0)}\n`;
call_gc_sites :=
{ gc_lbl = lbl_call_gc;
gc_return_lbl = lbl_redo;
gc_frame = lbl_frame } :: !call_gc_sites
end else begin
begin match n with
16 -> ` call {emit_symbol "caml_alloc1"}\n`
| 24 -> ` call {emit_symbol "caml_alloc2"}\n`
| 32 -> ` call {emit_symbol "caml_alloc3"}\n`
| _ -> ` movq ${emit_int n}, %rax\n`;
` call {emit_symbol "caml_allocN"}\n`
end;
`{record_frame i.live} leaq 8(%r15), {emit_reg i.res.(0)}\n`
end
| Lop(Iintop(Icomp cmp)) ->
` cmpq {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} %al\n`;
` movzbq %al, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Icomp cmp, n)) ->
` cmpq ${emit_int n}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` set{emit_string b} %al\n`;
` movzbq %al, {emit_reg i.res.(0)}\n`
| Lop(Iintop Icheckbound) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` cmpq {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
` jbe {emit_label !range_check_trap}\n`
| Lop(Iintop_imm(Icheckbound, n)) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` cmpq ${emit_int n}, {emit_reg i.arg.(0)}\n`;
` jbe {emit_label !range_check_trap}\n`
| Lop(Iintop(Idiv | Imod)) ->
` cqto\n`;
` idivq {emit_reg i.arg.(1)}\n`
| Lop(Iintop(Ilsl | Ilsr | Iasr as op)) ->
(* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %rcx *)
` {emit_string(instr_for_intop op)} %cl, {emit_reg i.res.(0)}\n`
| Lop(Iintop op) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, n)) when i.arg.(0).loc <> i.res.(0).loc ->
` leaq {emit_int n}({emit_reg i.arg.(0)}), {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) ->
` incq {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) ->
` decq {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Idiv, n)) ->
(* Note: i.arg.(0) = i.res.(0) = rdx (cf. selection.ml) *)
let l = Misc.log2 n in
` movq {emit_reg i.arg.(0)}, %rax\n`;
` addq ${emit_int(n-1)}, {emit_reg i.arg.(0)}\n`;
` testq %rax, %rax\n`;
` cmovns %rax, {emit_reg i.arg.(0)}\n`;
` sarq ${emit_int l}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Imod, n)) ->
(* Note: i.arg.(0) = i.res.(0) = rdx (cf. selection.ml) *)
let l = Misc.log2 n in
` movq {emit_reg i.arg.(0)}, %rax\n`;
` testq %rax, %rax\n`;
` leaq {emit_int(n-1)}(%rax), %rax\n`;
` cmovns {emit_reg i.arg.(0)}, %rax\n`;
` andq ${emit_int (-n)}, %rax\n`;
` subq %rax, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(op, n)) ->
(* We have i.arg.(0) = i.res.(0) *)
` {emit_string(instr_for_intop op)} ${emit_int n}, {emit_reg i.res.(0)}\n`
| Lop(Inegf) ->
` xorpd {emit_symbol "caml_negf_mask"}(%rip), {emit_reg i.res.(0)}\n`
| Lop(Iabsf) ->
` andpd {emit_symbol "caml_absf_mask"}(%rip), {emit_reg i.res.(0)}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf as floatop) ->
` {emit_string(instr_for_floatop floatop)} {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Ifloatofint) ->
` cvtsi2sdq {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iintoffloat) ->
` cvttsd2siq {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Ispecific(Ilea addr)) ->
` leaq {emit_addressing addr i.arg 0}, {emit_reg i.res.(0)}\n`
| Lop(Ispecific(Istore_int(n, addr))) ->
` movq ${emit_nativeint n}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Istore_symbol(s, addr))) ->
` movq ${emit_symbol s}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Ioffset_loc(n, addr))) ->
` addq ${emit_int n}, {emit_addressing addr i.arg 0}\n`
| Lop(Ispecific(Ifloatarithmem(op, addr))) ->
` {emit_string(instr_for_floatarithmem op)} {emit_addressing addr i.arg 1}, {emit_reg i.res.(0)}\n`
| Lreloadretaddr ->
()
| Lreturn ->
output_epilogue();
` ret\n`
| Llabel lbl ->
`{emit_Llabel fallthrough lbl}:\n`
| Lbranch lbl ->
` jmp {emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
output_test_zero i.arg.(0);
` jne {emit_label lbl}\n`
| Ifalsetest ->
output_test_zero i.arg.(0);
` je {emit_label lbl}\n`
| Iinttest cmp ->
` cmpq {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm((Isigned Ceq | Isigned Cne |
Iunsigned Ceq | Iunsigned Cne) as cmp, 0) ->
output_test_zero i.arg.(0);
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
` cmpq ${emit_int n}, {emit_reg i.arg.(0)}\n`;
let b = name_for_cond_branch cmp in
` j{emit_string b} {emit_label lbl}\n`
| Ifloattest(cmp, neg) ->
emit_float_test cmp neg i.arg lbl
| Ioddtest ->
` testb $1, {emit_reg8 i.arg.(0)}\n`;
` jne {emit_label lbl}\n`
| Ieventest ->
` testb $1, {emit_reg8 i.arg.(0)}\n`;
` je {emit_label lbl}\n`
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` cmpq $1, {emit_reg i.arg.(0)}\n`;
begin match lbl0 with
None -> ()
| Some lbl -> ` jb {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` je {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` jg {emit_label lbl}\n`
end
| Lswitch jumptbl ->
let lbl = new_label() in
` jmp *{emit_label lbl}(, {emit_reg i.arg.(0)}, 8)\n`;
` .section .rodata\n`;
emit_align 8;
`{emit_label lbl}:`;
for i = 0 to Array.length jumptbl - 1 do
` .quad {emit_label jumptbl.(i)}\n`
done;
` .text\n`
| Lsetuptrap lbl ->
` call {emit_label lbl}\n`
| Lpushtrap ->
` pushq %r14\n`;
` movq %rsp, %r14\n`;
stack_offset := !stack_offset + 16
| Lpoptrap ->
` popq %r14\n`;
` addq $8, %rsp\n`;
stack_offset := !stack_offset - 16
| Lraise ->
` movq %r14, %rsp\n`;
` popq %r14\n`;
` ret\n`
let rec emit_all fallthrough i =
match i.desc with
| Lend -> ()
| _ ->
emit_instr fallthrough i;
emit_all (Linearize.has_fallthrough i.desc) i.next
(* Emission of the floating-point constants *)
let emit_float_constant (lbl, cst) =
`{emit_label lbl}: .double {emit_string cst}\n`
(* Emission of the profiling prelude -- FIXME *)
let emit_profile () =
match Config.system with
"linux_elf" ->
` pushl %eax\n`;
` movl %esp, %ebp\n`;
` pushl %ecx\n`;
` pushl %edx\n`;
` call {emit_symbol "mcount"}\n`;
` popl %edx\n`;
` popl %ecx\n`;
` popl %eax\n`
| "bsd_elf" ->
` pushl %eax\n`;
` movl %esp, %ebp\n`;
` pushl %ecx\n`;
` pushl %edx\n`;
` call .mcount\n`;
` popl %edx\n`;
` popl %ecx\n`;
` popl %eax\n`
| _ -> () (*unsupported yet*)
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
tailrec_entry_point := new_label();
stack_offset := 0;
float_constants := [];
call_gc_sites := [];
range_check_trap := 0;
` .text\n`;
emit_align 16;
` .globl {emit_symbol fundecl.fun_name}\n`;
`{emit_symbol fundecl.fun_name}:\n`;
if !Clflags.gprofile then emit_profile();
if frame_required() then begin
let n = frame_size() - 8 in
` subq ${emit_int n}, %rsp\n`
end;
`{emit_label !tailrec_entry_point}:\n`;
emit_all true fundecl.fun_body;
List.iter emit_call_gc !call_gc_sites;
if !range_check_trap > 0 then
`{emit_label !range_check_trap}: call {emit_symbol "caml_ml_array_bound_error"}\n`;
(* Never returns, but useful to have retaddr on stack for debugging *)
if !float_constants <> [] then begin
` .section .rodata.cst8,\"aM\",@progbits,8\n`;
List.iter emit_float_constant !float_constants
end
(* Emission of data *)
let emit_item = function
Cglobal_symbol s ->
` .globl {emit_symbol s}\n`;
| Cdefine_symbol s ->
`{emit_symbol s}:\n`
| Cdefine_label lbl ->
`{emit_label (100000 + lbl)}:\n`
| Cint8 n ->
` .byte {emit_int n}\n`
| Cint16 n ->
` .word {emit_int n}\n`
| Cint32 n ->
` .long {emit_nativeint n}\n`
| Cint n ->
` .quad {emit_nativeint n}\n`
| Csingle f ->
` .float {emit_string f}\n`
| Cdouble f ->
` .double {emit_string f}\n`
| Csymbol_address s ->
` .quad {emit_symbol s}\n`
| Clabel_address lbl ->
` .quad {emit_label (100000 + lbl)}\n`
| Cstring s ->
emit_string_directive " .ascii " s
| Cskip n ->
if n > 0 then ` .space {emit_int n}\n`
| Calign n ->
emit_align n
let data l =
` .data\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
let lbl_begin = Compilenv.current_unit_name() ^ "__data_begin" in
` .data\n`;
` .globl {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin}:\n`;
let lbl_begin = Compilenv.current_unit_name() ^ "__code_begin" in
` .text\n`;
` .globl {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin}:\n`
let end_assembly() =
let lbl_end = Compilenv.current_unit_name() ^ "__code_end" in
` .text\n`;
` .globl {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end}:\n`;
` .data\n`;
let lbl_end = Compilenv.current_unit_name() ^ "__data_end" in
` .globl {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end}:\n`;
` .long 0\n`;
let lbl = Compilenv.current_unit_name() ^ "__frametable" in
` .globl {emit_symbol lbl}\n`;
`{emit_symbol lbl}:\n`;
` .quad {emit_int (List.length !frame_descriptors)}\n`;
List.iter emit_frame !frame_descriptors;
frame_descriptors := []