ocaml/otherlibs/labltk/compiler/compile.ml

755 lines
25 KiB
OCaml
Raw Normal View History

(*************************************************************************)
(* *)
(* Objective Caml LablTk library *)
(* *)
(* Francois Rouaix, Francois Pessaux and Jun Furuse *)
(* projet Cristal, INRIA Rocquencourt *)
(* Jacques Garrigue, Kyoto University RIMS *)
(* *)
(* Copyright 1999 Institut National de Recherche en Informatique et *)
(* en Automatique and Kyoto University. All rights reserved. *)
(* This file is distributed under the terms of the GNU Library *)
(* General Public License. *)
(* *)
(*************************************************************************)
(* $Id$ *)
open Tables
(* CONFIGURE *)
(* if you set it true, ImagePhoto and ImageBitmap will annoy you... *)
let safetype = true
let labeloff :at l = match l with
"",t -> t
| l ,t -> raise (Failure ("labeloff : " ^ l ^ " at " ^ at))
let labelstring l = match l with
"" -> ""
| _ -> l ^ ":"
let labelprint :w l = w (labelstring l)
let small s =
let sout = ref "" in
for i=0 to String.length s - 1 do
let c =
if s.[i] >= 'A' && s.[i] <= 'Z' then
Char.chr(Char.code(s.[i]) - (Char.code 'A' - Char.code 'a'))
else s.[i]
in
sout := !sout ^ (String.make len:1 c)
done;
!sout
let small_ident s =
let idents = ["to"; "raise"; "in"; "class"; "new"]
in
let s = small s in
if List.mem key:s idents then (String.make len:1 s.[0])^s
else s
let gettklabel fc =
match fc.template with
ListArg( StringArg s :: _ ) ->
if (try s.[0] = '-' with _ -> false) then
String.sub s pos:1 len:(String.length s - 1)
else
if s = "" then small fc.ml_name else small s
| _ -> raise (Failure "gettklabel")
let count key:x l =
let count = ref 0 in
List.iter fun:(fun y -> if x = y then incr count) l;
!count
(* Extract all types from a template *)
let rec types_of_template = function
StringArg _ -> []
| TypeArg (l,t) -> [l,t]
| ListArg l -> List.flatten (List.map fun:types_of_template l)
| OptionalArgs (l,tl,_) ->
begin
match List.flatten (List.map fun:types_of_template tl) with
["",t] -> ["?"^l,t]
| [_,_] -> raise (Failure "0 label required")
| _ -> raise (Failure "0 or more than 1 args in for optionals")
end
(*
* Pretty print a type
* used to write ML type definitions
*)
let ppMLtype ?(:any=false) ?(:return=false) ?(:def=false) ?(:counter=ref 0) =
let rec ppMLtype =
function
Unit -> "unit"
| Int -> "int"
| Float -> "float"
| Bool -> "bool"
| Char -> "char"
| String -> "string"
(* new *)
| List (Subtype (sup,sub)) ->
if return then
sub^"_"^sup^" list"
else
begin
try
let typdef = Hashtbl.find types_table key:sup in
let fcl = List.assoc key:sub typdef.subtypes in
let tklabels = List.map fun:gettklabel fcl in
let l = List.map fcl fun:
begin fun fc ->
"?" ^ begin let p = gettklabel fc in
if count key:p tklabels > 1 then small fc.ml_name else p
end
^ ":" ^
let l = types_of_template fc.template in
match l with
[] -> "unit"
| [lt] -> ppMLtype (labeloff lt at:"ppMLtype")
| l ->
"(" ^ String.concat sep:"*"
(List.map l
fun:(fun lt -> ppMLtype (labeloff lt at:"ppMLtype")))
^ ")"
end in
String.concat sep:" ->\n" l
with
Not_found -> Printf.eprintf "ppMLtype %s/%s\n" sup sub; exit (-1)
end
| List ty -> (ppMLtype ty) ^ " list"
| Product tyl -> String.concat sep:" * " (List.map fun:ppMLtype tyl)
| Record tyl ->
String.concat sep:" * "
(List.map tyl fun:(fun (l,t) -> labelstring l ^ ppMLtype t))
| Subtype ("widget", sub) -> sub ^ " widget"
| UserDefined "widget" ->
if any then "any widget" else
let c = String.make len:1 (Char.chr(Char.code 'a' + !counter))
in
incr counter;
"'" ^ c ^ " widget"
| UserDefined s ->
(* a bit dirty hack for ImageBitmap and ImagePhoto *)
begin
try
let typdef = Hashtbl.find types_table key:s in
if typdef.variant then
if return then try
"[>" ^
String.concat sep:"|"
(List.map typdef.constructors fun:
begin
fun c ->
"`" ^ c.var_name ^
(match types_of_template c.template with
[] -> ""
| l -> " " ^ ppMLtype (Product (List.map l
fun:(labeloff at:"ppMLtype UserDefined"))))
end) ^ "]"
with
Not_found ->
(prerr_endline ("ppMLtype "^s^ " ?"); s)
else if not def & List.length typdef.constructors > 1 then
"#" ^ s
else s
else s
with Not_found -> s
end
| Subtype (s,s') -> s'^"_"^s
| Function (Product tyl) ->
raise (Failure "Function (Product tyl) ? ppMLtype")
| Function (Record tyl) ->
"(" ^ String.concat sep:" -> "
(List.map tyl fun:(fun (l,t) -> labelstring l ^ ppMLtype t))
^ " -> unit)"
| Function ty ->
"(" ^ (ppMLtype ty) ^ " -> unit)"
| As (_, s) -> s
in
ppMLtype
(* Produce a documentation version of a template *)
let rec ppTemplate = function
StringArg s -> s
| TypeArg (l,t) -> "<" ^ ppMLtype t ^ ">"
| ListArg l -> "{" ^ String.concat sep:" " (List.map fun:ppTemplate l) ^ "}"
| OptionalArgs (l,tl,d) ->
"?" ^ l ^ "{" ^ String.concat sep:" " (List.map fun:ppTemplate tl)
^ "}[<" ^ String.concat sep:" " (List.map fun:ppTemplate d) ^ ">]"
let doc_of_template = function
ListArg l -> String.concat sep:" " (List.map fun:ppTemplate l)
| t -> ppTemplate t
(*
* Type definitions
*)
(* Write an ML constructor *)
let write_constructor :w {ml_name = mlconstr; template = t} =
w mlconstr;
begin match types_of_template t with
[] -> ()
| l -> w " of ";
w (ppMLtype any:true (Product (List.map l
fun:(labeloff at:"write_constructor"))))
end;
w " (* tk option: "; w (doc_of_template t); w " *)"
(* Write a rhs type decl *)
let write_constructors :w = function
[] -> fatal_error "empty type"
| x::l ->
write_constructor :w x;
List.iter l fun:
begin fun x ->
w "\n | ";
write_constructor :w x
end
(* Write an ML variant *)
let write_variant :w {ml_name = mlconstr; var_name = varname; template = t} =
w "`";
w varname;
begin match types_of_template t with
[] -> ()
| l ->
w " ";
w (ppMLtype any:true def:true
(Product (List.map l fun:(labeloff at:"write_variant"))))
end;
w " (* tk option: "; w (doc_of_template t); w " *)"
let write_variants :w = function
[] -> fatal_error "empty variants"
| x::l ->
write_variant :w x;
List.iter l fun:
begin fun x ->
w "\n | ";
write_variant :w x
end
(* Definition of a type *)
let write_type intf:w impl:w' name def:typdef =
(* Only needed if no subtypes, otherwise use optionals *)
if typdef.subtypes = [] then begin
w "(* Variant type *)\n";
w ("type "^name^" = [\n ");
write_variants :w (sort_components typdef.constructors);
w "\n]\n\n"
end
(************************************************************)
(* Converters *)
(************************************************************)
let rec converterTKtoCAML argname as:ty =
match ty with
Int -> "int_of_string " ^ argname
| Float -> "float_of_string " ^ argname
| Bool -> "(match " ^ argname ^" with
\"1\" -> true
| \"0\" -> false
| s -> Pervasives.raise (Invalid_argument (\"cTKtoCAMLbool\" ^ s)))"
| Char -> "String.get "^argname ^" 0"
| String -> argname
| UserDefined s -> "cTKtoCAML"^s^" "^argname
| Subtype ("widget",s') ->
"(Obj.magic (cTKtoCAMLwidget "^argname^") : "^s'^" widget)"
| Subtype (s,s') -> "cTKtoCAML"^s'^"_"^s^" "^argname
| List ty ->
begin match type_parser_arity ty with
OneToken ->
"(List.map (function x -> " ^ (converterTKtoCAML "x) " as:ty)
^ argname ^ ")"
| MultipleToken ->
"iterate_converter (function x -> " ^
(converterTKtoCAML "x) " as:ty) ^ argname ^ ")"
end
| As (ty, _) -> converterTKtoCAML argname as:ty
| t -> (prerr_endline ("ERROR with "^argname^" "^ppMLtype t);fatal_error "converterTKtoCAML")
(*******************************)
(* Wrappers *)
(*******************************)
let varnames :prefix n =
let rec var i =
if i > n then []
else (prefix^(string_of_int i)) :: (var (succ i))
in var 1
(*
* generate wrapper source for callbacks
* transform a function ... -> unit in a function : unit -> unit
* using primitives arg_ ... from the protocol
* Warning: sequentiality is important in generated code
* TODO: remove arg_ stuff and process lists directly ?
*)
let rec wrapper_code fname of:ty =
match ty with
Unit -> "(function _ -> "^fname^" ())"
| As (ty, _) -> wrapper_code fname of:ty
| ty ->
"(function args ->\n " ^
begin match ty with
Product tyl -> raise (Failure "Product -> record was done. ???")
| Record tyl ->
(* variables for each component of the product *)
let vnames = varnames prefix:"a" (List.length tyl) in
(* getting the arguments *)
let readarg =
List.map2 vnames tyl fun:
begin fun v (l,ty) ->
match type_parser_arity ty with
OneToken ->
"let ("^v^",args) = " ^
converterTKtoCAML "(List.hd args)" as:ty ^
", List.tl args in\n "
| MultipleToken ->
"let ("^v^",args) = " ^
converterTKtoCAML "args" as:ty ^
" in\n "
end in
String.concat sep:"" readarg ^ fname ^ " " ^
String.concat sep:" "
(List.map2 fun:(fun v (l,_) -> labelstring l^v) vnames tyl)
(* all other types are read in one operation *)
| List ty ->
fname ^ "(" ^ converterTKtoCAML "args" as:ty ^ ")"
| String ->
fname ^ "(" ^ converterTKtoCAML "(List.hd args)" as:ty ^ ")"
| ty ->
begin match type_parser_arity ty with
OneToken ->
fname ^ "(" ^ converterTKtoCAML "(List.hd args)" as:ty ^ ")"
| MultipleToken ->
"let (v,_) = " ^ converterTKtoCAML "args" as:ty ^
" in\n " ^ fname ^ " v"
end
end ^ ")"
(*************************************************************)
(* Parsers *)
(* are required only for values returned by commands and *)
(* functions (table is computed by the parser) *)
(* Tuples/Lists are Ok if they don't contain strings *)
(* they will be returned as list of strings *)
(* Can we generate a "parser" ?
-> all constructors are unit and at most one int and one string, with null constr
*)
type parser_pieces =
{ mutable zeroary : (string * string) list ; (* kw string, ml name *)
mutable intpar : string list; (* one at most, mlname *)
mutable stringpar : string list (* idem *)
}
type mini_parser =
NoParser
| ParserPieces of parser_pieces
let can_generate_parser constructors =
let pp = {zeroary = []; intpar = []; stringpar = []} in
if List.for_all constructors pred:
begin fun c ->
match c.template with
ListArg [StringArg s] ->
pp.zeroary <- (s,"`" ^ c.var_name)::
pp.zeroary; true
| ListArg [TypeArg(_,Int)] | ListArg[TypeArg(_,Float)] ->
if pp.intpar <> [] then false
else (pp.intpar <- ["`" ^ c.var_name]; true)
| ListArg [TypeArg(_,String)] ->
if pp.stringpar <> [] then false
else (pp.stringpar <- ["`" ^ c.var_name]; true)
| _ -> false
end
then ParserPieces pp
else NoParser
(* We can generate parsers only for simple types *)
(* we should avoid multiple walks *)
let write_TKtoCAML :w name def:typdef =
if typdef.parser_arity = MultipleToken then
prerr_string ("You must write cTKtoCAML" ^ name ^
" : string list ->" ^ name ^ " * string list\n")
else
let write :consts :name =
match can_generate_parser consts with
NoParser ->
prerr_string
("You must write cTKtoCAML" ^ name ^" : string ->"^name^"\n")
| ParserPieces pp ->
w ("let cTKtoCAML"^name^" n =\n");
(* First check integer *)
if pp.intpar <> [] then
begin
w (" try " ^ List.hd pp.intpar ^ " (int_of_string n)\n");
w (" with _ ->\n")
end;
w (" match n with\n");
let first = ref true in
List.iter pp.zeroary fun:
begin fun (tk,ml) ->
if not !first then w " | " else w " ";
first := false;
w "\""; w tk; w "\" -> "; w ml; w "\n"
end;
let final = if pp.stringpar <> [] then
"n -> " ^ List.hd pp.stringpar ^ " n"
else " s -> Pervasives.raise (Invalid_argument (\"cTKtoCAML"
^ name ^ ": \" ^s))"
in
if not !first then w " | " else w " ";
w final;
w "\n\n"
in
begin
write :name consts:typdef.constructors;
List.iter typdef.subtypes fun: begin
fun (subname,consts) -> write name:(subname^"_"^name) :consts
end
end
(******************************)
(* Converters *)
(******************************)
(* Produce an in-lined converter Caml -> Tk for simple types *)
(* the converter is a function of type: <type> -> string *)
let rec converterCAMLtoTK :context_widget argname as:ty =
match ty with
Int -> "TkToken (string_of_int " ^ argname ^ ")"
| Float -> "TkToken (string_of_float " ^ argname ^ ")"
| Bool -> "if "^argname^" then TkToken \"1\" else TkToken \"0\""
| Char -> "TkToken (Char.escaped " ^ argname ^ ")"
| String -> "TkToken " ^ argname
| As (ty, _) -> converterCAMLtoTK :context_widget argname as:ty
| UserDefined s ->
let name = "cCAMLtoTK"^s^" " in
let args = argname in
let args =
if requires_widget_context s then
context_widget^" "^args
else args in
name^args
| Subtype ("widget",s') ->
let name = "cCAMLtoTKwidget" in
let args = "("^argname^" : "^s'^" widget)" in
name^args
| Subtype (s,s') ->
let name = "cCAMLtoTK"^s'^"_"^s^" " in
let args = if safetype then "("^argname^" : #"^s'^"_"^s^")" else argname
in
let args =
if requires_widget_context s then
context_widget^" "^args
else args in
name^args
| Function _ -> fatal_error "unexpected function type in converterCAMLtoTK"
| Unit -> fatal_error "unexpected unit type in converterCAMLtoTK"
| Product _ -> fatal_error "unexpected product type in converterCAMLtoTK"
| Record _ -> fatal_error "unexpected product type in converterCAMLtoTK"
| List ty -> fatal_error "unexpected list type in converterCAMLtoTK"
(*
* Produce a list of arguments from a template
* The idea here is to avoid allocation as much as possible
*
*)
let code_of_template :context_widget ?(func:funtemplate=false) template =
let catch_opts = ref ("","") in (* class name and first option *)
let variables = ref [] in
let variables2 = ref [] in
let varcnter = ref 0 in
let optionvar = ref None in
let newvar1 l =
match !optionvar with
Some v -> optionvar := None; v
| None ->
incr varcnter;
let v = "v" ^ (string_of_int !varcnter) in
variables := (l,v) :: !variables; v in
let newvar2 l =
match !optionvar with
Some v -> optionvar := None; v
| None ->
incr varcnter;
let v = "v" ^ (string_of_int !varcnter) in
variables2 := (l,v) :: !variables2; v in
let newvar = ref newvar1 in
let rec coderec = function
StringArg s -> "TkToken\"" ^ s ^ "\""
| TypeArg (_,List (Subtype (sup,sub) as ty)) ->
let typdef = Hashtbl.find key:sup types_table in
let classdef = List.assoc key:sub typdef.subtypes in
let lbl = gettklabel (List.hd classdef) in
catch_opts := (sub^"_"^sup, lbl);
newvar := newvar2;
"TkTokenList opts"
| TypeArg (l,List ty) ->
"TkTokenList (List.map fun:(function x -> "
^ converterCAMLtoTK :context_widget "x" as:ty
^ ") " ^ !newvar l ^ ")"
| TypeArg (l,Function tyarg) ->
"let id = register_callback " ^context_widget
^ " callback: "^ wrapper_code (!newvar l) of:tyarg
^ " in TkToken (\"camlcb \"^id)"
| TypeArg (l,ty) -> converterCAMLtoTK :context_widget (!newvar l) as:ty
| ListArg l ->
"TkQuote (TkTokenList ["
^ String.concat sep:";\n " (List.map fun:coderec l) ^ "])"
| OptionalArgs (l,tl,d) ->
let nv = !newvar ("?"^l) in
optionvar := Some nv; (* Store *)
let argstr = String.concat sep:"; " (List.map fun:coderec tl) in
let defstr = String.concat sep:"; " (List.map fun:coderec d) in
"TkTokenList (match "^ nv ^" with\n"
^ " Some " ^ nv ^ " -> [" ^ argstr ^ "]\n"
^ " | None -> [" ^ defstr ^ "])"
in
let code =
if funtemplate then
match template with
ListArg l ->
"[|" ^ String.concat sep:";\n " (List.map fun:coderec l) ^ "|]"
| _ -> "[|" ^ coderec template ^ "|]"
else
match template with
ListArg [x] -> coderec x
| ListArg l ->
"TkTokenList ["
^ String.concat sep:";\n " (List.map fun:coderec l) ^ "]"
| _ -> coderec template
in
code , List.rev !variables, List.rev !variables2, !catch_opts
(*
* Converters for user defined types
*)
(* For each case of a concrete type *)
let write_clause :w :context_widget comp =
let warrow () =
w " -> "
in
w "`";
w comp.var_name;
let code, variables, variables2, (co, _) =
code_of_template :context_widget comp.template in
(* no subtype I think ... *)
if co <> "" then raise (Failure "write_clause subtype ?");
begin match variables with
[] -> warrow()
| [x] -> w " "; w (labeloff x at:"write_clause"); warrow()
| l ->
w " ( ";
w (String.concat sep:", " (List.map fun:(labeloff at:"write_clause") l));
w ")";
warrow()
end;
w code
(* The full converter *)
let write_CAMLtoTK :w def:typdef ?(safetype:st = true) name =
let write_one name constrs =
w ("let cCAMLtoTK"^name);
let context_widget =
if typdef.requires_widget_context then begin
w " w"; "w"
end
else
"dummy" in
if st then begin
w " : ";
if typdef.variant then w "#";
w name; w " -> tkArgs "
end;
w(" = function\n ");
write_clause :w :context_widget (List.hd constrs);
List.iter (List.tl constrs)
fun:(fun c -> w "\n | "; write_clause :w :context_widget c);
w "\n\n\n"
in
(* Only needed if no subtypes, otherwise use optionals *)
if typdef.subtypes == [] then
write_one name typdef.constructors
else
List.iter typdef.constructors fun:
begin fun fc ->
let code, vars, _, (co, _) =
code_of_template context_widget:"dummy" fc.template in
if co <> "" then fatal_error "optionals in optionals";
let vars = List.map fun:snd vars in
w "let ccCAMLtoTK"; w name; w "_"; w (small fc.ml_name);
w " ("; w (String.concat sep:"," vars); w ") =\n ";
w code; w "\n\n"
end
(* Tcl does not really return "lists". It returns sp separated tokens *)
let rec write_result_parsing :w = function
List String ->
w "(splitlist res)"
| List ty ->
w (" List.map fun: "^ converterTKtoCAML "(splitlist res)" as:ty)
| Product tyl -> raise (Failure "Product -> record was done. ???")
| Record tyl -> (* of course all the labels are "" *)
let rnames = varnames prefix:"r" (List.length tyl) in
w " let l = splitlist res in";
w ("\n if List.length l <> " ^ string_of_int (List.length tyl));
w ("\n then Pervasives.raise (TkError (\"unexpected result: \" ^ res))");
w ("\n else ");
List.iter2 rnames tyl fun:
begin fun r (l,ty) ->
if l <> "" then raise (Failure "lables in return type!!!");
w (" let " ^ r ^ ", l = ");
begin match type_parser_arity ty with
OneToken ->
w (converterTKtoCAML "(List.hd l)" as:ty); w (", List.tl l")
| MultipleToken ->
w (converterTKtoCAML "l" as:ty)
end;
w (" in\n")
end;
w (String.concat sep:"," rnames)
| String ->
w (converterTKtoCAML "res" as:String)
| As (ty, _) -> write_result_parsing :w ty
| ty ->
match type_parser_arity ty with
OneToken -> w (converterTKtoCAML "res" as:ty)
| MultipleToken -> w (converterTKtoCAML "(splitlist res)" as:ty)
let write_function :w def =
w ("let "^def.ml_name);
(* a bit approximative *)
let context_widget = match def.template with
ListArg (TypeArg(_,UserDefined("widget"))::_) -> "v1"
| ListArg (TypeArg(_,Subtype("widget",_))::_) -> "v1"
| _ -> "dummy" in
let code, variables, variables2, (co, lbl) =
code_of_template func:true :context_widget def.template in
(* Arguments *)
let uv, lv, ov =
let rec replace_args :u :l :o = function
[] -> u, l, o
| ("",x)::ls ->
replace_args u:(x::u) :l :o ls
| (p,_ as x)::ls when p.[0] = '?' ->
replace_args :u :l o:(x::o) ls
| x::ls ->
replace_args :u l:(x::l) :o ls
in
replace_args u:[] l:[] o:[] (List.rev (variables @ variables2))
in
List.iter (lv@ov) fun:(fun (l,v) -> w " "; w (labelstring l); w v);
if co <> "" then begin
if lv = [] && ov = [] then w (" ?" ^ lbl ^ ":eta");
w " =\n";
w (co ^ "_optionals");
if lv = [] && ov = [] then w (" ?" ^ lbl ^ ":eta");
w " (fun opts";
if uv = [] then w " ()"
else List.iter uv fun:(fun x -> w " "; w x);
w " ->\n"
end else begin
List.iter uv fun:(fun x -> w " "; w x);
if (ov <> [] || lv = []) && uv = [] then w " ()";
w " =\n"
end;
begin match def.result with
Unit | As (Unit, _) ->
w "tkEval "; w code; w ";()";
| ty ->
w "let res = tkEval "; w code ; w " in \n";
write_result_parsing :w ty;
end;
if co <> "" then w ")";
w "\n\n"
let write_create :w clas =
(w "let create ?:name =\n" : unit);
w (" "^ clas ^ "_options_optionals (fun opts parent ->\n");
w (" let w = new_atom \"" ^ clas ^ "\" :parent ?:name in\n");
w " tkEval [|";
w ("TkToken \"" ^ clas ^ "\";\n");
w (" TkToken (Widget.name w);\n");
w (" TkTokenList opts |];\n");
w (" w)\n\n\n")
(* builtin-code: the file (without suffix) is in .template... *)
(* not efficient, but hell *)
let write_external :w def =
match def.template with
StringArg fname ->
let ic = open_in_bin (fname ^ ".ml") in
begin try
while true do
w (input_line ic);
w "\n"
done
with
End_of_file -> close_in ic
end
| _ -> raise (Compiler_Error "invalid external definition")
let write_catch_optionals :w clas def:typdef =
if typdef.subtypes = [] then () else
List.iter typdef.subtypes fun:
begin fun (subclass, classdefs) ->
w ("let " ^ subclass ^"_"^ clas ^ "_optionals f = fun\n");
let tklabels = List.map fun:gettklabel classdefs in
let l =
List.map classdefs fun:
begin fun fc ->
(*
let code, vars, _, (co, _) =
code_of_template context_widget:"dummy" fc.template in
if co <> "" then fatal_error "optionals in optionals";
*)
let p = gettklabel fc in
(if count key:p tklabels > 1 then small fc.ml_name else p),
small_ident fc.ml_name (* used as labels *),
small fc.ml_name
end in
let p =
List.map l fun:
begin fun (s, si, _) ->
if s = si then " ?:" ^ s
else " ?" ^ s ^ ":" ^ si
end in
let v =
List.map l fun:
begin fun (_, si, s) ->
(*
let vars = List.map fun:snd vars in
let vars = String.concat sep:"," vars in
"(maycons (fun (" ^ vars ^ ") -> " ^ code ^ ") " ^ si
*)
"(maycons ccCAMLtoTK" ^ clas ^ "_" ^ s ^ " " ^ si
end in
w (String.concat sep:"\n" p);
w " ->\n";
w " f ";
w (String.concat sep:"\n " v);
w "\n []";
w (String.make len:(List.length v) ')');
w "\n\n"
end