ocaml/bytecomp/translmod.ml

182 lines
6.2 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Caml Special Light *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1995 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Translation from typed abstract syntax to lambda terms,
for the module language *)
open Misc
open Asttypes
open Typedtree
open Lambda
open Translcore
(* Compile a coercion *)
let rec apply_coercion restr arg =
match restr with
Tcoerce_none ->
arg
| Tcoerce_structure pos_cc_list ->
name_lambda arg (fun id ->
Lprim(Pmakeblock(0, Immutable),
List.map (apply_coercion_field id) pos_cc_list))
| Tcoerce_functor(cc_arg, cc_res) ->
let param = Ident.new "funarg" in
name_lambda arg (fun id ->
Lfunction([param],
apply_coercion cc_res
(Lapply(Lvar id, [apply_coercion cc_arg (Lvar param)]))))
| Tcoerce_primitive p ->
fatal_error "Translmod.apply_coercion"
and apply_coercion_field id (pos, cc) =
match cc with
Tcoerce_primitive p -> transl_primitive p
| _ -> apply_coercion cc (Lprim(Pfield pos, [Lvar id]))
(* Compose two coercions
apply_coercion c1 (apply_coercion c2 e) behaves like
apply_coercion (compose_coercions c1 c2) e. *)
let rec compose_coercions c1 c2 =
match (c1, c2) with
(Tcoerce_none, c2) -> c2
| (c1, Tcoerce_none) -> c1
| (Tcoerce_structure pc1, Tcoerce_structure pc2) ->
let v2 = Array.of_list pc2 in
Tcoerce_structure
(List.map (fun (p1, c1) ->
let (p2, c2) = v2.(p1) in (p2, compose_coercions c1 c2))
pc1)
| (Tcoerce_functor(arg1, res1), Tcoerce_functor(arg2, res2)) ->
Tcoerce_functor(compose_coercions arg2 arg1,
compose_coercions res1 res2)
| (_, _) ->
fatal_error "Translmod.compose_coercions"
(* Record the primitive declarations occuring in the module compiled *)
let primitive_declarations = ref ([] : string list)
(* Compile a module expression *)
let rec transl_module cc mexp =
match mexp.mod_desc with
Tmod_ident path ->
apply_coercion cc (transl_path path)
| Tmod_structure str ->
transl_structure [] cc str
| Tmod_functor(param, mty, body) ->
begin match cc with
Tcoerce_none ->
Lfunction([param], transl_module Tcoerce_none body)
| Tcoerce_functor(ccarg, ccres) ->
let param' = Ident.new "funarg" in
Lfunction([param'],
Llet(Alias, param, apply_coercion ccarg (Lvar param'),
transl_module ccres body))
| _ ->
fatal_error "Translmod.transl_module"
end
| Tmod_apply(funct, arg, ccarg) ->
apply_coercion cc
(Lapply(transl_module Tcoerce_none funct, [transl_module ccarg arg]))
| Tmod_constraint(arg, mty, ccarg) ->
transl_module (compose_coercions cc ccarg) arg
and transl_structure fields cc = function
[] ->
begin match cc with
Tcoerce_none ->
Lprim(Pmakeblock(0, Immutable),
List.map (fun id -> Lvar id) (List.rev fields))
| Tcoerce_structure pos_cc_list ->
let v = Array.of_list (List.rev fields) in
Lprim(Pmakeblock(0, Immutable),
List.map
(fun (pos, cc) ->
match cc with
Tcoerce_primitive p -> transl_primitive p
| _ -> apply_coercion cc (Lvar v.(pos)))
pos_cc_list)
| _ ->
fatal_error "Translmod.transl_structure"
end
| Tstr_eval expr :: rem ->
Lsequence(transl_exp expr, transl_structure fields cc rem)
| Tstr_value(rec_flag, pat_expr_list) :: rem ->
let ext_fields = let_bound_idents pat_expr_list @ fields in
transl_let rec_flag pat_expr_list (transl_structure ext_fields cc rem)
| Tstr_primitive(id, descr) :: rem ->
begin match descr.val_prim with
None -> ()
| Some p -> primitive_declarations :=
p.Primitive.prim_name :: !primitive_declarations
end;
transl_structure fields cc rem
| Tstr_type(decls) :: rem ->
transl_structure fields cc rem
| Tstr_exception(id, decl) :: rem ->
Llet(Strict, id, transl_exception id decl,
transl_structure (id :: fields) cc rem)
| Tstr_module(id, modl) :: rem ->
Llet(Strict, id, transl_module Tcoerce_none modl,
transl_structure (id :: fields) cc rem)
| Tstr_modtype(id, decl) :: rem ->
transl_structure fields cc rem
| Tstr_open path :: rem ->
transl_structure fields cc rem
(* Compile an implementation *)
let transl_implementation module_name str cc =
primitive_declarations := [];
let module_id = Ident.new_persistent module_name in
Lprim(Psetglobal module_id, [transl_structure [] cc str])
(* Compile a sequence of expressions *)
let rec make_sequence fn = function
[] -> lambda_unit
| [x] -> fn x
| x::rem -> Lsequence(fn x, make_sequence fn rem)
(* Compile a toplevel phrase *)
let transl_toplevel_item = function
Tstr_eval expr ->
transl_exp expr
| Tstr_value(rec_flag, pat_expr_list) ->
let idents = let_bound_idents pat_expr_list in
List.iter Ident.make_global idents;
transl_let rec_flag pat_expr_list
(make_sequence (fun id -> Lprim(Psetglobal id, [Lvar id])) idents)
| Tstr_primitive(id, descr) ->
lambda_unit
| Tstr_type(decls) ->
lambda_unit
| Tstr_exception(id, decl) ->
Ident.make_global id;
Lprim(Psetglobal id, [transl_exception id decl])
| Tstr_module(id, modl) ->
Ident.make_global id;
Lprim(Psetglobal id, [transl_module Tcoerce_none modl])
| Tstr_modtype(id, decl) ->
lambda_unit
| Tstr_open path ->
lambda_unit
let transl_toplevel_definition str =
make_sequence transl_toplevel_item str