263 lines
9.0 KiB
OCaml
263 lines
9.0 KiB
OCaml
|
(***********************************************************************)
|
||
|
(* *)
|
||
|
(* Objective Caml *)
|
||
|
(* *)
|
||
|
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
|
||
|
(* *)
|
||
|
(* Copyright 1997 Institut National de Recherche en Informatique et *)
|
||
|
(* Automatique. Distributed only by permission. *)
|
||
|
(* *)
|
||
|
(***********************************************************************)
|
||
|
|
||
|
(* $Id$ *)
|
||
|
|
||
|
(* Instruction selection for the Intel x86 *)
|
||
|
|
||
|
open Misc
|
||
|
open Arch
|
||
|
open Proc
|
||
|
open Cmm
|
||
|
open Reg
|
||
|
open Mach
|
||
|
|
||
|
(* Auxiliary for recognizing addressing modes *)
|
||
|
|
||
|
type addressing_expr =
|
||
|
Asymbol of string
|
||
|
| Alinear of expression
|
||
|
| Aadd of expression * expression
|
||
|
| Ascale of expression * int
|
||
|
| Ascaledadd of expression * expression * int
|
||
|
|
||
|
let rec select_addr exp =
|
||
|
match exp with
|
||
|
Cconst_symbol s ->
|
||
|
(Asymbol s, 0)
|
||
|
| Cop((Caddi | Cadda), [arg; Cconst_int m]) ->
|
||
|
let (a, n) = select_addr arg in (a, n + m)
|
||
|
| Cop((Csubi | Csuba), [arg; Cconst_int m]) ->
|
||
|
let (a, n) = select_addr arg in (a, n - m)
|
||
|
| Cop((Caddi | Cadda), [Cconst_int m; arg]) ->
|
||
|
let (a, n) = select_addr arg in (a, n + m)
|
||
|
| Cop(Clsl, [arg; Cconst_int(1|2|3 as shift)]) ->
|
||
|
begin match select_addr arg with
|
||
|
(Alinear e, n) -> (Ascale(e, 1 lsl shift), n lsl shift)
|
||
|
| _ -> (Alinear exp, 0)
|
||
|
end
|
||
|
| Cop(Cmuli, [arg; Cconst_int(2|4|8 as mult)]) ->
|
||
|
begin match select_addr arg with
|
||
|
(Alinear e, n) -> (Ascale(e, mult), n * mult)
|
||
|
| _ -> (Alinear exp, 0)
|
||
|
end
|
||
|
| Cop(Cmuli, [Cconst_int(2|4|8 as mult); arg]) ->
|
||
|
begin match select_addr arg with
|
||
|
(Alinear e, n) -> (Ascale(e, mult), n * mult)
|
||
|
| _ -> (Alinear exp, 0)
|
||
|
end
|
||
|
| Cop((Caddi | Cadda), [arg1; arg2]) ->
|
||
|
begin match (select_addr arg1, select_addr arg2) with
|
||
|
((Alinear e1, n1), (Alinear e2, n2)) ->
|
||
|
(Aadd(e1, e2), n1 + n2)
|
||
|
| ((Alinear e1, n1), (Ascale(e2, scale), n2)) ->
|
||
|
(Ascaledadd(e1, e2, scale), n1 + n2)
|
||
|
| ((Ascale(e1, scale), n1), (Alinear e2, n2)) ->
|
||
|
(Ascaledadd(e2, e1, scale), n1 + n2)
|
||
|
| (_, (Ascale(e2, scale), n2)) ->
|
||
|
(Ascaledadd(arg1, e2, scale), n2)
|
||
|
| ((Ascale(e1, scale), n1), _) ->
|
||
|
(Ascaledadd(arg2, e1, scale), n1)
|
||
|
| _ ->
|
||
|
(Aadd(arg1, arg2), 0)
|
||
|
end
|
||
|
| arg ->
|
||
|
(Alinear arg, 0)
|
||
|
|
||
|
(* Estimate number of float temporaries needed to evaluate expression
|
||
|
(Ershov's algorithm) *)
|
||
|
|
||
|
let rec float_needs = function
|
||
|
Cop((Caddf | Csubf | Cmulf | Cdivf), [arg1; arg2]) ->
|
||
|
let n1 = float_needs arg1 in
|
||
|
let n2 = float_needs arg2 in
|
||
|
if n1 = n2 then 1 + n1 else if n1 > n2 then n1 else n2
|
||
|
| _ ->
|
||
|
1
|
||
|
|
||
|
(* Special constraints on operand and result registers *)
|
||
|
|
||
|
exception Use_default
|
||
|
|
||
|
let eax = phys_reg 0
|
||
|
let ecx = phys_reg 2
|
||
|
let edx = phys_reg 3
|
||
|
let tos = phys_reg 100
|
||
|
|
||
|
let pseudoregs_for_operation op arg res =
|
||
|
match op with
|
||
|
(* Two-address binary operations *)
|
||
|
Iintop(Iadd|Isub|Imul|Iand|Ior|Ixor) ->
|
||
|
([|res.(0); arg.(1)|], res, false)
|
||
|
(* Two-address unary operations *)
|
||
|
| Iintop_imm((Iadd|Isub|Imul|Idiv|Iand|Ior|Ixor|Ilsl|Ilsr|Iasr), _) ->
|
||
|
(res, res, false)
|
||
|
(* For shifts with variable shift count, second arg must be in ecx *)
|
||
|
| Iintop(Ilsl|Ilsr|Iasr) ->
|
||
|
([|res.(0); ecx|], res, false)
|
||
|
(* For div and mod, first arg must be in eax, edx is clobbered,
|
||
|
and result is in eax or edx respectively.
|
||
|
Keep it simple, just force second argument in ecx. *)
|
||
|
| Iintop(Idiv) ->
|
||
|
([| eax; ecx |], [| eax |], true)
|
||
|
| Iintop(Imod) ->
|
||
|
([| eax; ecx |], [| edx |], true)
|
||
|
(* For mod with immediate operand, arg must not be in eax.
|
||
|
Keep it simple, force it in edx. *)
|
||
|
| Iintop_imm(Imod, _) ->
|
||
|
([| edx |], [| edx |], true)
|
||
|
(* For floating-point operations, the result is always left at the
|
||
|
top of the floating-point stack *)
|
||
|
| Iconst_float _ | Inegf | Iabsf | Iaddf | Isubf | Imulf | Idivf
|
||
|
| Ifloatofint |Ispecific(Isubfrev | Idivfrev | Ifloatarithmem(_, _)) ->
|
||
|
(arg, [| tos |], false) (* don't move it immediately *)
|
||
|
(* Same for a floating-point load *)
|
||
|
| Iload(Word, addr) when res.(0).typ = Float ->
|
||
|
(arg, [| tos |], false)
|
||
|
(* For storing a byte, the argument must be in eax...edx.
|
||
|
For storing a halfword, any reg is ok.
|
||
|
Keep it simple, just force it to be in edx in both cases. *)
|
||
|
| Istore(Word, addr) -> raise Use_default
|
||
|
| Istore(chunk, addr) ->
|
||
|
let newarg = Array.copy arg in
|
||
|
newarg.(0) <- edx;
|
||
|
(newarg, res, false)
|
||
|
(* Other instructions are regular *)
|
||
|
| _ -> raise Use_default
|
||
|
|
||
|
(* The selector class *)
|
||
|
|
||
|
class selector () as self =
|
||
|
|
||
|
inherit Selectgen.selector_generic() as super
|
||
|
|
||
|
method is_immediate (n : int) = true
|
||
|
|
||
|
method select_addressing exp =
|
||
|
match select_addr exp with
|
||
|
(Asymbol s, d) ->
|
||
|
(Ibased(s, d), Ctuple [])
|
||
|
| (Alinear e, d) ->
|
||
|
(Iindexed d, e)
|
||
|
| (Aadd(e1, e2), d) ->
|
||
|
(Iindexed2 d, Ctuple[e1; e2])
|
||
|
| (Ascale(e, scale), d) ->
|
||
|
(Iscaled(scale, d), e)
|
||
|
| (Ascaledadd(e1, e2, scale), d) ->
|
||
|
(Iindexed2scaled(scale, d), Ctuple[e1; e2])
|
||
|
|
||
|
method select_store addr exp =
|
||
|
match exp with
|
||
|
Cconst_int n -> (Ispecific(Istore_int(n, addr)), Ctuple [])
|
||
|
| Cconst_pointer n -> (Ispecific(Istore_int(n, addr)), Ctuple [])
|
||
|
| Cconst_symbol s -> (Ispecific(Istore_symbol(s, addr)), Ctuple [])
|
||
|
| _ -> super#select_store addr exp
|
||
|
|
||
|
method select_operation op args =
|
||
|
match op with
|
||
|
(* Recognize the LEA instruction *)
|
||
|
Caddi | Cadda | Csubi | Csuba ->
|
||
|
begin match self#select_addressing (Cop(op, args)) with
|
||
|
(Iindexed d, _) -> super#select_operation op args
|
||
|
| (Iindexed2 0, _) -> super#select_operation op args
|
||
|
| (addr, arg) -> (Ispecific(Ilea addr), [arg])
|
||
|
end
|
||
|
(* Recognize (x / cst) and (x % cst) only if cst is a power of 2. *)
|
||
|
| Cdivi ->
|
||
|
begin match args with
|
||
|
[arg1; Cconst_int n] when n = 1 lsl (Misc.log2 n) ->
|
||
|
(Iintop_imm(Idiv, n), [arg1])
|
||
|
| _ -> (Iintop Idiv, args)
|
||
|
end
|
||
|
| Cmodi ->
|
||
|
begin match args with
|
||
|
[arg1; Cconst_int n] when n = 1 lsl (Misc.log2 n) ->
|
||
|
(Iintop_imm(Imod, n), [arg1])
|
||
|
| _ -> (Iintop Imod, args)
|
||
|
end
|
||
|
(* Recognize float arithmetic with memory.
|
||
|
In passing, apply Ershov's algorithm to reduce stack usage *)
|
||
|
| Caddf ->
|
||
|
self#select_floatarith Iaddf Iaddf Ifloatadd Ifloatadd args
|
||
|
| Csubf ->
|
||
|
self#select_floatarith Isubf (Ispecific Isubfrev) Ifloatsub Ifloatsubrev args
|
||
|
| Cmulf ->
|
||
|
self#select_floatarith Imulf Imulf Ifloatmul Ifloatmul args
|
||
|
| Cdivf ->
|
||
|
self#select_floatarith Idivf (Ispecific Idivfrev) Ifloatdiv Ifloatdivrev args
|
||
|
| _ -> super#select_operation op args
|
||
|
|
||
|
(* Recognize float arithmetic with mem *)
|
||
|
|
||
|
method select_floatarith regular_op reversed_op mem_op mem_rev_op args =
|
||
|
match args with
|
||
|
[arg1; Cop(Cload _, [loc2])] ->
|
||
|
let (addr, arg2) = self#select_addressing loc2 in
|
||
|
(Ispecific(Ifloatarithmem(mem_op, addr)), [arg1; arg2])
|
||
|
| [Cop(Cload _, [loc1]); arg2] ->
|
||
|
let (addr, arg1) = self#select_addressing loc1 in
|
||
|
(Ispecific(Ifloatarithmem(mem_rev_op, addr)), [arg2; arg1])
|
||
|
| [arg1; arg2] ->
|
||
|
(* Evaluate bigger subexpression first to minimize stack usage.
|
||
|
Because of right-to-left evaluation, rightmost arg is evaluated
|
||
|
first *)
|
||
|
if float_needs arg1 <= float_needs arg2
|
||
|
then (regular_op, [arg1; arg2])
|
||
|
else (reversed_op, [arg2; arg1])
|
||
|
| _ ->
|
||
|
fatal_error "Proc_i386: select_floatarith"
|
||
|
|
||
|
(* Deal with register constraints *)
|
||
|
|
||
|
method insert_op op rs rd =
|
||
|
try
|
||
|
let (rsrc, rdst, move_res) = pseudoregs_for_operation op rs rd in
|
||
|
self#insert_moves rs rsrc;
|
||
|
self#insert (Iop op) rsrc rdst;
|
||
|
if move_res then begin
|
||
|
self#insert_moves rdst rd;
|
||
|
rd
|
||
|
end else
|
||
|
rdst
|
||
|
with Use_default ->
|
||
|
super#insert_op op rs rd
|
||
|
|
||
|
(* Selection of push instructions for external calls *)
|
||
|
|
||
|
method select_push exp =
|
||
|
match exp with
|
||
|
Cconst_int n -> (Ispecific(Ipush_int n), Ctuple [])
|
||
|
| Cconst_pointer n -> (Ispecific(Ipush_int n), Ctuple [])
|
||
|
| Cconst_symbol s -> (Ispecific(Ipush_symbol s), Ctuple [])
|
||
|
| Cop(Cload ty, [loc]) when ty = typ_float ->
|
||
|
let (addr, arg) = self#select_addressing loc in
|
||
|
(Ispecific(Ipush_load_float addr), arg)
|
||
|
| Cop(Cload ty, [loc]) when ty = typ_addr or ty = typ_int ->
|
||
|
let (addr, arg) = self#select_addressing loc in
|
||
|
(Ispecific(Ipush_load addr), arg)
|
||
|
| _ -> (Ispecific(Ipush), exp)
|
||
|
|
||
|
method emit_extcall_args env args =
|
||
|
let rec emit_pushes = function
|
||
|
[] -> 0
|
||
|
| e :: el ->
|
||
|
let ofs = emit_pushes el in
|
||
|
let (op, arg) = self#select_push e in
|
||
|
let r = self#emit_expr env arg in
|
||
|
self#insert (Iop op) r [||];
|
||
|
ofs + Selectgen.size_expr env e
|
||
|
in ([||], emit_pushes args)
|
||
|
|
||
|
end
|
||
|
|
||
|
let fundecl f = (new selector ())#emit_fundecl f
|
||
|
|