ocaml/asmcomp/amd64/emit.mlp

1016 lines
30 KiB
Plaintext
Raw Normal View History

# 2 "asmcomp/amd64/emit.mlp"
(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Emission of Intel x86_64 assembly code *)
[@@@ocaml.warning "+A-4-9-24-45-41-42"]
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
open Intel_ast
open Intel_proc
open Intel_dsl.DSL64
module I = Intel_dsl.INS64
(* Override proc.ml *)
let int_reg_name =
[| RAX; RBX; RDI; RSI; RDX; RCX; R8; R9;
R12; R13; R10; R11; RBP; |]
let float_reg_name = Array.init 16 (fun i -> XMM i)
let register_name r =
if r < 100 then Reg64 (int_reg_name.(r))
else Regf (float_reg_name.(r - 100))
(* CFI directives *)
let is_cfi_enabled () =
Config.asm_cfi_supported
let cfi_startproc () =
if is_cfi_enabled () then
_cfi_startproc ()
let cfi_endproc () =
if is_cfi_enabled () then
_cfi_endproc ()
let cfi_adjust_cfa_offset n =
if is_cfi_enabled () then
_cfi_adjust_cfa_offset n
let emit_debug_info dbg =
if system <> S_win64 then
emit_debug_info_gen dbg _file _loc
let fp = Config.with_frame_pointers
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
let stack_offset = ref 0
(* Layout of the stack frame *)
let frame_required () =
fp || !contains_calls || num_stack_slots.(0) > 0 || num_stack_slots.(1) > 0
let frame_size () = (* includes return address *)
if frame_required() then begin
let sz =
(!stack_offset + 8 * (num_stack_slots.(0) + num_stack_slots.(1)) + 8
+ (if fp then 8 else 0))
in Misc.align sz 16
end else
!stack_offset + 8
let slot_offset loc cl =
match loc with
Incoming n -> frame_size() + n
| Local n ->
if cl = 0
then !stack_offset + n * 8
else !stack_offset + (num_stack_slots.(0) + n) * 8
| Outgoing n -> n
(* Symbols *)
let symbol_prefix = if system = S_macosx then "_" else ""
let emit_symbol s =
string_of_symbol symbol_prefix s
(* Record symbols used and defined - at the end generate extern for those
used but not defined *)
let symbols_defined = ref StringSet.empty
let symbols_used = ref StringSet.empty
let add_def_symbol s =
symbols_defined := StringSet.add s !symbols_defined
let add_used_symbol s =
symbols_used := StringSet.add s !symbols_used
let use_plt =
match system with
| S_macosx | S_mingw64 | S_cygwin | S_win64 -> false
| _ -> !Clflags.dlcode
let rel_plt s =
sym (if use_plt then emit_symbol s ^ "@PLT" else emit_symbol s)
let emit_call s =
I.call (rel_plt s)
let emit_jump s =
I.jmp (rel_plt s)
let windows =
match system with
| S_mingw64 | S_cygwin | S_win64 -> true
| _ -> false
let load_symbol_addr s arg =
if !Clflags.dlcode && not windows then
I.movq (from_rip QWORD (emit_symbol s ^ "@GOTPCREL"), arg)
else if !pic_code then
I.leaq (from_rip NO (emit_symbol s), arg)
else
I.movq (sym (emit_symbol s), arg)
(* Output a label *)
let emit_label lbl =
if system = S_win64 then
Printf.sprintf "L%d" lbl
else
Printf.sprintf ".L%d" lbl
let emit_data_label lbl =
if system = S_win64 then
Printf.sprintf "Ld%d" lbl
else
Printf.sprintf ".Ld%d" lbl
let label s = sym (emit_label s)
let def_label s =
directive (NewLabel (emit_label s, NO))
(* Output a .align directive. *)
let emit_Llabel fallthrough lbl =
if not fallthrough && !fastcode_flag then _align 4;
emit_label lbl
(* Output a pseudo-register *)
let reg = function
| { loc = Reg.Reg r } -> register_name r
| { loc = Stack s; typ = Float } as r ->
let ofs = slot_offset s (register_class r) in
mem_ptr REAL8 ofs RSP
| { loc = Stack s } as r ->
let ofs = slot_offset s (register_class r) in
mem_ptr QWORD ofs RSP
| { loc = Unknown } ->
assert false
let reg64 = function
| { loc = Reg.Reg r } -> int_reg_name.(r)
| _ -> assert false
let res i n =
reg i.res.(n)
let arg i n =
reg i.arg.(n)
(* Output a reference to the lower 8, 16 or 32 bits of a register *)
let reg_low_8_name = Array.map (fun r -> Reg8 r)
[| AL; BL; DIL; SIL; DL; CL; R8B; R9B;
R12B; R13B; R10B; R11B; BPL; |]
let reg_low_16_name = Array.map (fun r -> Reg16 r)
[| AX; BX; DI; SI; DX; CX; R8W; R9W;
R12W; R13W; R10W; R11W; BP; |]
let reg_low_32_name = Array.map (fun r -> Reg32 r)
[| EAX; EBX; EDI; ESI; EDX; ECX; R8D; R9D;
R12D; R13D; R10D; R11D; EBP; |]
let emit_subreg tbl typ r =
match r.loc with
Reg.Reg r when r < 13 ->
tbl.(r)
| Stack s ->
let ofs = slot_offset s (register_class r) in
mem_ptr typ ofs RSP
| _ ->
assert false
let arg8 i n = emit_subreg reg_low_8_name BYTE i.arg.(n)
let arg16 i n = emit_subreg reg_low_16_name WORD i.arg.(n)
let arg32 i n = emit_subreg reg_low_32_name DWORD i.arg.(n)
let arg64 i n = reg64 i.arg.(n)
let res16 i n = emit_subreg reg_low_16_name WORD i.res.(n)
let res32 i n = emit_subreg reg_low_32_name DWORD i.res.(n)
(* Output an addressing mode *)
let addressing addr typ i n =
match addr with
(* | Ibased _ when !Clflags.dlcode -> assert false ONLY on Unix *)
| Ibased(s, ofs) ->
add_used_symbol s;
from_rip typ (emit_symbol s) ~ofs
| Iindexed d ->
mem_ptr typ d (arg64 i n)
| Iindexed2 d ->
mem_ptr typ ~base:(arg64 i n) d (arg64 i (n+1))
| Iscaled(2, d) ->
mem_ptr typ ~base:(arg64 i n) d (arg64 i n)
| Iscaled(scale, d) ->
mem_ptr typ ~scale d (arg64 i n)
| Iindexed2scaled(scale, d) ->
mem_ptr typ ~scale ~base:(arg64 i n) d (arg64 i (n+1))
(* Record live pointers at call points -- see Emitaux *)
let record_frame_label live dbg =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := ((r lsl 1) + 1) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset;
fd_debuginfo = dbg } :: !frame_descriptors;
lbl
let record_frame live dbg =
let lbl = record_frame_label live dbg in
def_label lbl
(* Record calls to the GC -- we've moved them out of the way *)
type gc_call =
{ gc_lbl: label; (* Entry label *)
gc_return_lbl: label; (* Where to branch after GC *)
gc_frame: label } (* Label of frame descriptor *)
let call_gc_sites = ref ([] : gc_call list)
let emit_call_gc gc =
def_label gc.gc_lbl;
emit_call "caml_call_gc";
def_label gc.gc_frame;
I.jmp (label gc.gc_return_lbl)
(* Record calls to caml_ml_array_bound_error.
In -g mode, we maintain one call to caml_ml_array_bound_error
per bound check site. Without -g, we can share a single call. *)
type bound_error_call =
{ bd_lbl: label; (* Entry label *)
bd_frame: label } (* Label of frame descriptor *)
let bound_error_sites = ref ([] : bound_error_call list)
let bound_error_call = ref 0
let bound_error_label dbg =
if !Clflags.debug then begin
let lbl_bound_error = new_label() in
let lbl_frame = record_frame_label Reg.Set.empty dbg in
bound_error_sites :=
{ bd_lbl = lbl_bound_error; bd_frame = lbl_frame } :: !bound_error_sites;
lbl_bound_error
end else begin
if !bound_error_call = 0 then bound_error_call := new_label();
!bound_error_call
end
let emit_call_bound_error bd =
def_label bd.bd_lbl;
emit_call "caml_ml_array_bound_error";
def_label bd.bd_frame
let emit_call_bound_errors () =
List.iter emit_call_bound_error !bound_error_sites;
if !bound_error_call > 0 then begin
def_label !bound_error_call;
emit_call "caml_ml_array_bound_error"
end
(* Names for instructions *)
let instr_for_intop = function
| Iadd -> I.addq
| Isub -> I.subq
| Imul -> (fun (arg1, arg2) -> I.imulq (arg1, Some arg2))
| Iand -> I.andq
| Ior -> I.orq
| Ixor -> I.xorq
| Ilsl -> I.salq
| Ilsr -> I.shrq
| Iasr -> I.sarq
| _ -> assert false
let instr_for_floatop = function
| Iaddf -> I.addsd
| Isubf -> I.subsd
| Imulf -> I.mulsd
| Idivf -> I.divsd
| _ -> assert false
let instr_for_floatarithmem = function
| Ifloatadd -> I.addsd
| Ifloatsub -> I.subsd
| Ifloatmul -> I.mulsd
| Ifloatdiv -> I.divsd
let name_for_cond_branch = function
| Isigned Ceq -> E | Isigned Cne -> NE
| Isigned Cle -> LE | Isigned Cgt -> G
| Isigned Clt -> L | Isigned Cge -> GE
| Iunsigned Ceq -> E | Iunsigned Cne -> NE
| Iunsigned Cle -> BE | Iunsigned Cgt -> A
| Iunsigned Clt -> B | Iunsigned Cge -> AE
(* Output an = 0 or <> 0 test. *)
let output_test_zero arg =
match arg.loc with
| Reg.Reg _ -> I.testq (reg arg, reg arg)
| _ -> I.cmpq (int 0, reg arg)
(* Output a floating-point compare and branch *)
let emit_float_test cmp neg i lbl =
(* Effect of comisd on flags and conditional branches:
ZF PF CF cond. branches taken
unordered 1 1 1 je, jb, jbe, jp
> 0 0 0 jne, jae, ja
< 0 0 1 jne, jbe, jb
= 1 0 0 je, jae, jbe.
If FP traps are on (they are off by default),
comisd traps on QNaN and SNaN but ucomisd traps on SNaN only.
*)
match (cmp, neg) with
| (Ceq, false) | (Cne, true) ->
let next = new_label() in
I.ucomisd (arg i 1 , arg i 0);
I.jp (label next); (* skip if unordered *)
I.je lbl; (* branch taken if x=y *)
def_label next
| (Cne, false) | (Ceq, true) ->
I.ucomisd (arg i 1, arg i 0);
I.jp lbl; (* branch taken if unordered *)
I.jne lbl (* branch taken if x<y or x>y *)
| (Clt, _) ->
I.comisd (arg i 0, arg i 1);
if not neg then I.ja lbl (* branch taken if y>x i.e. x<y *)
else I.jbe lbl (* taken if unordered or y<=x i.e. !(x<y) *)
| (Cle, _) ->
I.comisd (arg i 0, arg i 1);(* swap compare *)
if not neg then I.jae lbl (* branch taken if y>=x i.e. x<=y *)
else I.jb lbl (* taken if unordered or y<x i.e. !(x<=y) *)
| (Cgt, _) ->
I.comisd (arg i 1, arg i 0);
if not neg then I.ja lbl (* branch taken if x>y *)
else I.jbe lbl (* taken if unordered or x<=y i.e. !(x>y) *)
| (Cge, _) ->
I.comisd (arg i 1, arg i 0);(* swap compare *)
if not neg then I.jae lbl (* branch taken if x>=y *)
else I.jb lbl (* taken if unordered or x<y i.e. !(x>=y) *)
(* Deallocate the stack frame before a return or tail call *)
let output_epilogue f =
if frame_required() then begin
let n = frame_size() - 8 - (if fp then 8 else 0) in
I.addq (int n, rsp);
cfi_adjust_cfa_offset (-n);
if fp then I.popq rbp;
f ();
(* reset CFA back cause function body may continue *)
cfi_adjust_cfa_offset n
end
else
f ()
(* Floating-point constants *)
let float_constants = ref ([] : (int64 * int) list)
let add_float_constant cst =
let repr = Int64.bits_of_float cst in
try
List.assoc repr !float_constants
with
Not_found ->
let lbl = new_label() in
float_constants := (repr, lbl) :: !float_constants;
lbl
let emit_float_constant f lbl =
_label (emit_label lbl);
_qword (Const f)
let emit_global_label s =
let lbl = Compilenv.make_symbol (Some s) in
add_def_symbol lbl;
let lbl = emit_symbol lbl in
_global lbl;
_label lbl
(* Output the assembly code for an instruction *)
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Emit an instruction *)
let emit_instr fallthrough i =
emit_debug_info i.dbg;
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then
begin match src.typ, src.loc, dst.loc with
Float, Reg.Reg _, Reg.Reg _ ->
I.movapd (reg src, reg dst)
| Float, _, _ ->
I.movsd (reg src, reg dst)
| _ ->
I.movq (reg src, reg dst)
end
| Lop(Iconst_int n | Iconst_blockheader n) ->
if n = 0n then begin
match i.res.(0).loc with
| Reg _ -> I.xorq (res i 0, res i 0)
| _ -> I.movq (int 0, res i 0)
end
else
I.movabsq (Int64.of_nativeint n, res i 0)
| Lop(Iconst_float f) ->
begin match Int64.bits_of_float f with
| 0x0000_0000_0000_0000L -> (* +0.0 *)
I.xorpd (res i 0, res i 0)
| _ ->
let lbl = add_float_constant f in
I.movsd (from_rip NO (emit_label lbl), res i 0)
end
| Lop(Iconst_symbol s) ->
add_used_symbol s;
load_symbol_addr s (res i 0)
| Lop(Icall_ind) ->
I.call (arg i 0);
record_frame i.live i.dbg
| Lop(Icall_imm(s)) ->
add_used_symbol s;
emit_call s;
record_frame i.live i.dbg
| Lop(Itailcall_ind) ->
output_epilogue begin fun () ->
I.jmp (arg i 0)
end
| Lop(Itailcall_imm s) ->
if s = !function_name then
I.jmp (label !tailrec_entry_point)
else begin
output_epilogue begin fun () ->
add_used_symbol s;
emit_jump s
end
end
| Lop(Iextcall(s, alloc)) ->
add_used_symbol s;
if alloc then begin
load_symbol_addr s rax;
emit_call "caml_c_call";
record_frame i.live i.dbg;
if system <> S_win64 then begin
(* TODO: investigate why such a diff.
This comes from:
http://caml.inria.fr/cgi-bin/viewvc.cgi?view=revision&revision=12664
If we do the same for Win64, we probably need to change
amd64nt.asm accordingly.
*)
load_symbol_addr "caml_young_ptr" r11;
I.movq (mem_ptr QWORD 0 R11, r15)
end;
end else
emit_call s
| Lop(Istackoffset n) ->
if n < 0
then I.addq (int (-n), rsp)
else I.subq (int n, rsp);
cfi_adjust_cfa_offset n;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let dest = res i 0 in
begin match chunk with
| Word ->
I.movq (addressing addr QWORD i 0, dest)
| Byte_unsigned ->
I.movzbq (addressing addr BYTE i 0, dest)
| Byte_signed ->
I.movsbq (addressing addr BYTE i 0, dest)
| Sixteen_unsigned ->
I.movzwq (addressing addr WORD i 0, dest)
| Sixteen_signed ->
I.movswq (addressing addr WORD i 0, dest);
| Thirtytwo_unsigned ->
(* load to low 32 bits sets high 32 bits to 0. TODO: check ! *)
I.movl (addressing addr DWORD i 0, res32 i 0)
| Thirtytwo_signed ->
I.movslq (addressing addr DWORD i 0, dest)
| Single ->
I.cvtss2sd (addressing addr REAL4 i 0, dest)
| Double | Double_u ->
I.movsd (addressing addr REAL8 i 0, dest)
end
| Lop(Istore(chunk, addr, _)) ->
begin match chunk with
| Word ->
I.movq (arg i 0, addressing addr QWORD i 1)
| Byte_unsigned | Byte_signed ->
I.movb (arg8 i 0, addressing addr BYTE i 1)
| Sixteen_unsigned | Sixteen_signed ->
I.movw (arg16 i 0, addressing addr WORD i 1)
| Thirtytwo_signed | Thirtytwo_unsigned ->
I.movl (arg32 i 0, addressing addr DWORD i 1)
| Single ->
I.cvtsd2ss (arg i 0, xmm15);
I.movss (xmm15, addressing addr REAL4 i 1)
| Double | Double_u ->
I.movsd (arg i 0, addressing addr REAL8 i 1)
end
| Lop(Ialloc n) ->
if !fastcode_flag then begin
let lbl_redo = new_label() in
def_label lbl_redo;
I.subq (int n, r15);
if !Clflags.dlcode && system <> S_win64 then begin
load_symbol_addr "caml_young_limit" rax;
I.cmpq (mem_ptr QWORD 0 RAX, r15);
end else
I.cmpq (from_rip QWORD (emit_symbol "caml_young_limit"), r15);
let lbl_call_gc = new_label() in
let lbl_frame = record_frame_label i.live Debuginfo.none in
I.jb (label lbl_call_gc);
I.leaq (mem_ptr NO 8 R15, res i 0);
call_gc_sites :=
{ gc_lbl = lbl_call_gc;
gc_return_lbl = lbl_redo;
gc_frame = lbl_frame } :: !call_gc_sites
end else begin
begin match n with
| 16 -> emit_call "caml_alloc1"
| 24 -> emit_call "caml_alloc2"
| 32 -> emit_call "caml_alloc3"
| _ ->
I.movq (int n, rax);
emit_call "caml_allocN"
end;
record_frame i.live Debuginfo.none;
I.leaq (mem_ptr NO 8 R15, res i 0)
end
| Lop(Iintop(Icomp cmp)) ->
I.cmpq (arg i 1, arg i 0);
let b = name_for_cond_branch cmp in
I.set b al;
I.movzbq (al, res i 0)
| Lop(Iintop_imm(Icomp cmp, n)) ->
I.cmpq (int n, arg i 0);
let b = name_for_cond_branch cmp in
I.set b al;
I.movzbq (al, res i 0)
| Lop(Iintop Icheckbound) ->
let lbl = bound_error_label i.dbg in
I.cmpq (arg i 1, arg i 0);
I.jbe (label lbl)
| Lop(Iintop_imm(Icheckbound, n)) ->
let lbl = bound_error_label i.dbg in
I.cmpq (int n, arg i 0);
I.jbe (label lbl)
| Lop(Iintop(Idiv | Imod)) ->
I.cqto ();
I.idivq (arg i 1)
| Lop(Iintop(Ilsl | Ilsr | Iasr as op)) ->
(* We have i.arg.(0) = i.res.(0) and i.arg.(1) = %rcx *)
instr_for_intop op (cl, res i 0)
| Lop(Iintop Imulh) ->
I.imulq (arg i 1, None)
| Lop(Iintop op) ->
(* We have i.arg.(0) = i.res.(0) *)
instr_for_intop op (arg i 1, res i 0)
| Lop(Iintop_imm(Iadd, n)) when i.arg.(0).loc <> i.res.(0).loc ->
I.leaq (mem_ptr NO n (arg64 i 0), res i 0)
| Lop(Iintop_imm(Iadd, 1) | Iintop_imm(Isub, -1)) ->
I.incq (res i 0)
| Lop(Iintop_imm(Iadd, -1) | Iintop_imm(Isub, 1)) ->
I.decq (res i 0)
| Lop(Iintop_imm(op, n)) ->
(* We have i.arg.(0) = i.res.(0) *)
instr_for_intop op (int n, res i 0)
| Lop(Inegf) ->
I.xorpd (from_rip OWORD (emit_symbol "caml_negf_mask"), res i 0)
| Lop(Iabsf) ->
I.andpd (from_rip OWORD (emit_symbol "caml_absf_mask"), res i 0)
| Lop(Iaddf | Isubf | Imulf | Idivf as floatop) ->
instr_for_floatop floatop (arg i 1, res i 0)
| Lop(Ifloatofint) ->
I.cvtsi2sd (arg i 0, res i 0)
| Lop(Iintoffloat) ->
I.cvttsd2si (arg i 0, res i 0)
| Lop(Ispecific(Ilea addr)) ->
I.leaq (addressing addr NO i 0, res i 0)
| Lop(Ispecific(Istore_int(n, addr, _))) ->
I.movq (emit_nat n, addressing addr QWORD i 0)
| Lop(Ispecific(Istore_symbol(s, addr, _))) ->
assert (not !pic_code && not !Clflags.dlcode);
add_used_symbol s;
load_symbol_addr s (addressing addr QWORD i 0)
| Lop(Ispecific(Ioffset_loc(n, addr))) ->
I.addq (int n, addressing addr QWORD i 0)
| Lop(Ispecific(Ifloatarithmem(op, addr))) ->
instr_for_floatarithmem op (addressing addr REAL8 i 1, res i 0)
| Lop(Ispecific(Ibswap 16)) ->
I.xchg (ah, al);
I.movzwq (res16 i 0, res i 0)
| Lop(Ispecific(Ibswap 32)) ->
I.bswap (res32 i 0);
I.movslq (res32 i 0, res i 0)
| Lop(Ispecific(Ibswap 64)) ->
I.bswap (res i 0)
| Lop(Ispecific(Ibswap _)) ->
assert false
| Lop(Ispecific Isqrtf) ->
I.sqrtsd (arg i 0, res i 0)
| Lop(Ispecific(Ifloatsqrtf addr)) ->
I.sqrtsd (addressing addr REAL8 i 0, res i 0)
| Lreloadretaddr ->
()
| Lreturn ->
output_epilogue begin fun () ->
I.ret ()
end
| Llabel lbl ->
_llabel (emit_Llabel fallthrough lbl)
| Lbranch lbl ->
I.jmp (label lbl)
| Lcondbranch(tst, lbl) ->
let lbl = label lbl in
begin match tst with
Itruetest ->
output_test_zero i.arg.(0);
I.jne lbl
| Ifalsetest ->
output_test_zero i.arg.(0);
I.je lbl
| Iinttest cmp ->
I.cmpq (arg i 1, arg i 0);
let b = name_for_cond_branch cmp in
I.j b lbl
| Iinttest_imm((Isigned Ceq | Isigned Cne |
Iunsigned Ceq | Iunsigned Cne) as cmp, 0) ->
output_test_zero i.arg.(0);
let b = name_for_cond_branch cmp in
I.j b lbl
| Iinttest_imm(cmp, n) ->
I.cmpq (int n, arg i 0);
let b = name_for_cond_branch cmp in
I.j b lbl
| Ifloattest(cmp, neg) ->
emit_float_test cmp neg i lbl
| Ioddtest ->
I.testb (int 1, arg8 i 0);
I.jne lbl
| Ieventest ->
I.testb (int 1, arg8 i 0);
I.je lbl
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
I.cmpq (int 1, arg i 0);
begin match lbl0 with
None -> ()
| Some lbl -> I.jb (label lbl)
end;
begin match lbl1 with
None -> ()
| Some lbl -> I.je (label lbl)
end;
begin match lbl2 with
None -> ()
| Some lbl -> I.jg (label lbl)
end
| Lswitch jumptbl ->
let lbl = new_label() in
(* rax and rdx are clobbered by the Lswitch,
meaning that no variable that is live across the Lswitch
is assigned to rax or rdx. However, the argument to Lswitch
can still be assigned to one of these two registers, so
we must be careful not to clobber it before use. *)
let (tmp1, tmp2) =
if i.arg.(0).loc = Reg 0 (* rax *)
then (phys_reg 4 (*rdx*), phys_reg 0 (*rax*))
else (phys_reg 0 (*rax*), phys_reg 4 (*rdx*)) in
I.leaq (from_rip NO (emit_label lbl), reg tmp1);
I.movslq (mem_ptr DWORD 0 (arg64 i 0) ~scale:4 ~base:(reg64 tmp1), reg tmp2);
I.addq (reg tmp2, reg tmp1);
I.jmp (reg tmp1);
begin match system with
| S_macosx -> _section [".const"] None []
| S_mingw64 | S_cygwin -> _section [".rdata"] (Some "dr") []
| S_win64 -> () (* with MASM, use the text segment *)
| _ -> _section [".rodata"] None []
end;
_align 4;
_label (emit_label lbl);
for i = 0 to Array.length jumptbl - 1 do
_long (ConstSub (ConstLabel(emit_label jumptbl.(i)),
ConstLabel(emit_label lbl)))
done;
_text ()
| Lsetuptrap lbl ->
I.call (label lbl)
| Lpushtrap ->
cfi_adjust_cfa_offset 8;
I.pushq r14;
cfi_adjust_cfa_offset 8;
I.movq (rsp, r14);
stack_offset := !stack_offset + 16
| Lpoptrap ->
I.popq r14;
cfi_adjust_cfa_offset (-8);
I.addq (int 8, rsp);
cfi_adjust_cfa_offset (-8);
stack_offset := !stack_offset - 16
| Lraise k ->
begin match !Clflags.debug, k with
| true, Lambda.Raise_regular ->
emit_call "caml_raise_exn";
record_frame Reg.Set.empty i.dbg
| true, Lambda.Raise_reraise ->
emit_call "caml_reraise_exn";
record_frame Reg.Set.empty i.dbg
| false, _
| true, Lambda.Raise_notrace ->
I.movq (r14, rsp);
I.popq r14;
I.ret ()
end
(* DONE UNTIL HERE REVERSING ARGUMENTS *)
let rec emit_all fallthrough i =
match i.desc with
| Lend -> ()
| _ ->
emit_instr fallthrough i;
emit_all (Linearize.has_fallthrough i.desc) i.next
(* Emission of the profiling prelude *)
let emit_profile () =
if system = S_gnu || system = S_linux then begin
(* mcount preserves rax, rcx, rdx, rsi, rdi, r8, r9 explicitly
and rbx, rbp, r12-r15 like all C functions. This includes
all the registers used for argument passing, so we don't
need to preserve other regs. We do need to initialize rbp
like mcount expects it, though. *)
I.pushq r10;
if not fp then I.movq (rsp, rbp);
emit_call "mcount";
I.popq r10
end
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
tailrec_entry_point := new_label();
stack_offset := 0;
call_gc_sites := [];
bound_error_sites := [];
bound_error_call := 0;
_text ();
_align 16;
add_def_symbol fundecl.fun_name;
if system = S_macosx
&& not !Clflags.output_c_object
&& is_generic_function fundecl.fun_name
then (* PR#4690 *)
_private_extern (emit_symbol fundecl.fun_name)
else
_global (emit_symbol fundecl.fun_name);
_llabel (emit_symbol fundecl.fun_name);
emit_debug_info fundecl.fun_dbg;
cfi_startproc ();
if fp then begin
I.pushq rbp;
cfi_adjust_cfa_offset 8;
I.movq (rsp, rbp);
end;
if !Clflags.gprofile then emit_profile();
if frame_required() then begin
let n = frame_size() - 8 - (if fp then 8 else 0) in
I.subq (int n, rsp);
cfi_adjust_cfa_offset n;
end;
def_label !tailrec_entry_point;
emit_all true fundecl.fun_body;
List.iter emit_call_gc !call_gc_sites;
emit_call_bound_errors ();
cfi_endproc ();
if system = S_gnu || system = S_linux then begin
_type (emit_symbol fundecl.fun_name) "@function";
_size (emit_symbol fundecl.fun_name)
(ConstSub (
ConstThis,
ConstLabel (emit_symbol fundecl.fun_name)))
end
(* Emission of data *)
let emit_item = function
| Cglobal_symbol s -> _global (emit_symbol s)
| Cdefine_symbol s ->
add_def_symbol s;
_label (emit_symbol s)
| Cdefine_label lbl -> _label (emit_data_label lbl)
| Cint8 n -> _byte (const n)
| Cint16 n -> _word (const n)
| Cint32 n -> _long (const_nat n)
| Cint n -> _qword (const_nat n)
| Csingle f -> _long (Const (Int64.of_int32 (Int32.bits_of_float f)))
| Cdouble f -> _qword (Const (Int64.bits_of_float f))
| Csymbol_address s ->
add_used_symbol s;
_qword (ConstLabel (emit_symbol s))
| Clabel_address lbl -> _qword (ConstLabel (emit_data_label lbl))
| Cstring s -> _ascii s
| Cskip n -> if n > 0 then _space n
| Calign n -> _align n
(* Beginning / end of an assembly file *)
let begin_assembly() =
Intel_proc.reset_asm_code ();
reset_debug_info(); (* PR#5603 *)
float_constants := [];
if system = S_win64 then begin
_extrn "caml_young_ptr" QWORD;
_extrn "caml_young_limit" QWORD;
_extrn "caml_exception_pointer" QWORD;
_extrn "caml_absf_mask" QWORD;
_extrn "caml_negf_mask" QWORD;
_extrn "caml_call_gc" NEAR;
_extrn "caml_c_call" NEAR;
_extrn "caml_allocN" NEAR;
_extrn "caml_alloc1" NEAR;
_extrn "caml_alloc2" NEAR;
_extrn "caml_alloc3" NEAR;
_extrn "caml_ml_array_bound_error" NEAR;
_extrn "caml_raise_exn" NEAR;
_extrn "caml_reraise_exn" NEAR;
end;
if !Clflags.dlcode && system <> S_win64 then begin
(* from amd64.S; could emit these constants on demand *)
begin match system with
| S_macosx -> _section [".literal16"] None []
| S_mingw64 | S_cygwin -> _section [".rdata"] (Some "dr") []
| _ -> _section [".rodata.cst8"] (Some "a") ["@progbits"]
end;
_align 16;
_label (emit_symbol "caml_negf_mask");
_qword (Const 0x8000000000000000L);
_qword (Const 0L);
_align 16;
_label (emit_symbol "caml_absf_mask");
_qword (Const 0x7FFFFFFFFFFFFFFFL);
_qword (Const 0xFFFFFFFFFFFFFFFFL);
end;
_data ();
emit_global_label "data_begin";
_text ();
emit_global_label "code_begin";
if system = S_macosx then I.nop (); (* PR#4690 *)
()
let data l =
_data ();
List.iter emit_item l
(* TODO: emit_string_directive *)
let end_assembly() =
if !float_constants <> [] then begin
begin match system with
| S_macosx -> _section [".literal8"] None []
| S_mingw64 | S_cygwin -> _section [".rdata"] (Some "dr") []
| S_win64 -> _data ()
| _ -> _section [".rodata.cst8"] (Some "a") ["@progbits"]
end;
List.iter (fun (cst,lbl) -> emit_float_constant cst lbl) !float_constants
end;
_text ();
if system = S_macosx then I.nop (); (* suppress "ld warning: atom sorting error" *)
emit_global_label "code_end";
_data ();
emit_global_label "data_end";
_long (const 0);
emit_global_label "frametable";
emit_frames
{ efa_label = (fun l -> _qword (ConstLabel (emit_label l)));
efa_16 = (fun n -> _word (const n));
efa_32 = (fun n -> _long (const_32 n));
efa_word = (fun n -> _qword (Const (Int64.of_int n)));
efa_align = _align;
efa_label_rel =
if system = S_macosx then begin
let setcnt = ref 0 in
fun lbl ofs ->
incr setcnt;
let s = Printf.sprintf "L$set$%d" !setcnt in
_setvar (s,
ConstAdd (
ConstLabel(emit_label lbl),
ConstAdd (const 4, const_32 ofs))
);
_long (ConstLabel s)
end else begin
fun lbl ofs ->
_long (ConstAdd (
ConstSub(
ConstLabel(emit_label lbl),
ConstThis),
const_32 ofs))
end;
efa_def_label = (fun l -> _label (emit_label l));
efa_string = (fun s -> _ascii (s ^ "\000"))
};
if system = S_linux then
(* Mark stack as non-executable, PR#4564 *)
_section [".note.GNU-stack"] (Some "") [ "%progbits" ];
if system = S_win64 then begin
_comment "External functions";
StringSet.iter
(fun s ->
if not (StringSet.mem s !symbols_defined) then
_extrn (emit_symbol s) NEAR)
!symbols_used;
symbols_used := StringSet.empty;
symbols_defined := StringSet.empty;
end;
_end ();
let asm =
if !Emitaux.create_asm_file then
Some
(!Emitaux.output_channel,
if Intel_proc.masm then Intel_masm.bprint_instr
else Intel_gas.bprint_instr
)
else
None
in
Intel_proc.generate_code asm