ocaml/byterun/globroots.c

129 lines
4.3 KiB
C
Raw Normal View History

/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 2001 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License. */
/* */
/***********************************************************************/
/* $Id$ */
/* Registration of global memory roots */
#include "memory.h"
#include "misc.h"
#include "mlvalues.h"
#include "globroots.h"
/* The set of global memory roots is represented as a skip list
(see William Pugh, "Skip lists: a probabilistic alternative to
balanced binary trees", Comm. ACM 33(6), 1990). */
/* Generate a random level for a new node: 0 with probability 3/4,
1 with probability 3/16, 2 with probability 3/64, etc.
We use a simple linear congruential PRNG (see Knuth vol 2) instead
of random(), because we need exactly 32 bits of pseudo-random data
(i.e. 2 * (MAX_LEVEL + 1)). Moreover, the congruential PRNG
is faster and guaranteed to be deterministic (to reproduce bugs). */
static uint32 random_seed = 0;
static int random_level(void)
{
uint32 r;
int level = 0;
/* Linear congruence with modulus = 2^32, multiplier = 69069
(Knuth vol 2 p. 106, line 15 of table 1), additive = 25173. */
r = random_seed = random_seed * 69069 + 25173;
/* Knuth (vol 2 p. 13) shows that the least significant bits are
"less random" than the most significant bits with a modulus of 2^m,
so consume most significant bits first */
while ((r & 0xC0000000U) == 0xC0000000U) { level++; r = r << 2; }
Assert(level <= MAX_LEVEL);
return level;
}
/* The initial global root list */
struct global_root_list caml_global_roots = { NULL, { NULL, }, 0 };
/* Register a global C root */
void register_global_root(value *r)
{
struct global_root * update[MAX_LEVEL];
struct global_root * e, * f;
int i, new_level;
Assert (((long) r & 3) == 0); /* compact.c demands this (for now) */
/* Init "cursor" to list head */
e = (struct global_root *) &caml_global_roots;
/* Find place to insert new node */
for (i = caml_global_roots.level; i >= 0; i--) {
while (1) {
f = e->forward[i];
if (f == NULL || f->root >= r) break;
e = f;
}
update[i] = e;
}
e = e->forward[0];
/* If already present, don't do anything */
if (e != NULL && e->root == r) return;
/* Insert additional element, updating list level if necessary */
new_level = random_level();
if (new_level > caml_global_roots.level) {
for (i = caml_global_roots.level + 1; i <= new_level; i++)
update[i] = (struct global_root *) &caml_global_roots;
caml_global_roots.level = new_level;
}
e = stat_alloc(sizeof(struct global_root) +
new_level * sizeof(struct global_root *));
e->root = r;
for (i = 0; i <= new_level; i++) {
e->forward[i] = update[i]->forward[i];
update[i]->forward[i] = e;
}
}
/* Un-register a global C root */
void remove_global_root(value *r)
{
struct global_root * update[MAX_LEVEL];
struct global_root * e, * f;
int i;
/* Init "cursor" to list head */
e = (struct global_root *) &caml_global_roots;
/* Find element in list */
for (i = caml_global_roots.level; i >= 0; i--) {
while (1) {
f = e->forward[i];
if (f == NULL || f->root >= r) break;
e = f;
}
update[i] = e;
}
e = e->forward[0];
/* If not found, nothing to do */
if (e == NULL || e->root != r) return;
/* Rebuild list without node */
for (i = 0; i <= caml_global_roots.level; i++) {
if (update[i]->forward[i] == e)
update[i]->forward[i] = e->forward[i];
}
/* Reclaim list element */
stat_free(e);
/* Down-correct list level */
while (caml_global_roots.level > 0 &&
caml_global_roots.forward[caml_global_roots.level] == NULL)
caml_global_roots.level--;
}