2013-08-21 03:01:47 -07:00
|
|
|
(* First-Order Unification by Structural Recursion *)
|
|
|
|
(* Conor McBride, JFP 13(6) *)
|
|
|
|
(* http://strictlypositive.org/publications.html *)
|
|
|
|
|
|
|
|
(* This is a translation of the code part to ocaml *)
|
|
|
|
(* Of course, we do not prove other properties, not even termination *)
|
|
|
|
|
|
|
|
(* 2.2 Inductive Families *)
|
|
|
|
|
|
|
|
type zero = Zero
|
|
|
|
type _ succ = Succ
|
|
|
|
type _ nat =
|
|
|
|
| NZ : zero nat
|
|
|
|
| NS : 'a nat -> 'a succ nat
|
|
|
|
|
|
|
|
type _ fin =
|
|
|
|
| FZ : 'a succ fin
|
|
|
|
| FS : 'a fin -> 'a succ fin
|
|
|
|
|
|
|
|
(* We cannot define
|
|
|
|
val empty : zero fin -> 'a
|
|
|
|
because we cannot write an empty pattern matching.
|
|
|
|
This might be useful to have *)
|
|
|
|
|
|
|
|
(* In place, prove that the parameter is 'a succ *)
|
|
|
|
type _ is_succ = IS : 'a succ is_succ
|
|
|
|
|
|
|
|
let fin_succ : type n. n fin -> n is_succ = function
|
|
|
|
| FZ -> IS
|
|
|
|
| FS _ -> IS
|
|
|
|
;;
|
|
|
|
|
|
|
|
(* 3 First-Order Terms, Renaming and Substitution *)
|
|
|
|
|
|
|
|
type 'a term =
|
|
|
|
| Var of 'a fin
|
|
|
|
| Leaf
|
|
|
|
| Fork of 'a term * 'a term
|
|
|
|
|
|
|
|
let var x = Var x
|
|
|
|
|
|
|
|
let lift r : 'm fin -> 'n term = fun x -> Var (r x)
|
|
|
|
|
|
|
|
let rec pre_subst f = function
|
|
|
|
| Var x -> f x
|
|
|
|
| Leaf -> Leaf
|
|
|
|
| Fork (t1, t2) -> Fork (pre_subst f t1, pre_subst f t2)
|
|
|
|
|
|
|
|
let comp_subst f g (x : 'a fin) = pre_subst f (g x)
|
|
|
|
(* val comp_subst :
|
|
|
|
('b fin -> 'c term) -> ('a fin -> 'b term) -> 'a fin -> 'c term *)
|
|
|
|
;;
|
|
|
|
|
|
|
|
(* 4 The Occur-Check, through thick and thin *)
|
|
|
|
|
|
|
|
let rec thin : type n. n succ fin -> n fin -> n succ fin =
|
|
|
|
fun x y -> match x, y with
|
|
|
|
| FZ, y -> FS y
|
|
|
|
| FS x, FZ -> FZ
|
|
|
|
| FS x, FS y -> FS (thin x y)
|
|
|
|
|
|
|
|
let bind t f =
|
|
|
|
match t with
|
|
|
|
| None -> None
|
|
|
|
| Some x -> f x
|
|
|
|
(* val bind : 'a option -> ('a -> 'b option) -> 'b option *)
|
|
|
|
|
|
|
|
let rec thick : type n. n succ fin -> n succ fin -> n fin option =
|
|
|
|
fun x y -> match x, y with
|
|
|
|
| FZ, FZ -> None
|
|
|
|
| FZ, FS y -> Some y
|
|
|
|
| FS x, FZ -> let IS = fin_succ x in Some FZ
|
|
|
|
| FS x, FS y ->
|
|
|
|
let IS = fin_succ x in bind (thick x y) (fun x -> Some (FS x))
|
|
|
|
|
|
|
|
let rec check : type n. n succ fin -> n succ term -> n term option =
|
|
|
|
fun x t -> match t with
|
|
|
|
| Var y -> bind (thick x y) (fun x -> Some (Var x))
|
|
|
|
| Leaf -> Some Leaf
|
|
|
|
| Fork (t1, t2) ->
|
|
|
|
bind (check x t1) (fun t1 ->
|
|
|
|
bind (check x t2) (fun t2 -> Some (Fork (t1, t2))))
|
|
|
|
|
|
|
|
let subst_var x t' y =
|
|
|
|
match thick x y with
|
|
|
|
| None -> t'
|
|
|
|
| Some y' -> Var y'
|
|
|
|
(* val subst_var : 'a succ fin -> 'a term -> 'a succ fin -> 'a term *)
|
|
|
|
|
|
|
|
let subst x t' = pre_subst (subst_var x t')
|
|
|
|
(* val subst : 'a succ fin -> 'a term -> 'a succ term -> 'a term *)
|
|
|
|
;;
|
|
|
|
|
|
|
|
(* 5 A Refinement of Substitution *)
|
|
|
|
|
|
|
|
type (_,_) alist =
|
|
|
|
| Anil : ('n,'n) alist
|
|
|
|
| Asnoc : ('m,'n) alist * 'm term * 'm succ fin -> ('m succ, 'n) alist
|
|
|
|
|
|
|
|
let rec sub : type m n. (m,n) alist -> m fin -> n term = function
|
|
|
|
| Anil -> var
|
|
|
|
| Asnoc (s, t, x) -> comp_subst (sub s) (subst_var x t)
|
|
|
|
|
|
|
|
let rec append : type m n l. (m,n) alist -> (l,m) alist -> (l,n) alist =
|
|
|
|
fun r s -> match s with
|
|
|
|
| Anil -> r
|
|
|
|
| Asnoc (s, t, x) -> Asnoc (append r s, t, x)
|
|
|
|
|
|
|
|
type _ ealist = EAlist : ('a,'b) alist -> 'a ealist
|
|
|
|
|
|
|
|
let asnoc a t' x = EAlist (Asnoc (a, t', x))
|
|
|
|
|
|
|
|
(* Extra work: we need sub to work on ealist too, for examples *)
|
|
|
|
let rec weaken_fin : type n. n fin -> n succ fin = function
|
|
|
|
| FZ -> FZ
|
|
|
|
| FS x -> FS (weaken_fin x)
|
|
|
|
|
|
|
|
let weaken_term t = pre_subst (fun x -> Var (weaken_fin x)) t
|
|
|
|
|
|
|
|
let rec weaken_alist : type m n. (m, n) alist -> (m succ, n succ) alist =
|
|
|
|
function
|
|
|
|
| Anil -> Anil
|
|
|
|
| Asnoc (s, t, x) -> Asnoc (weaken_alist s, weaken_term t, weaken_fin x)
|
|
|
|
|
|
|
|
let rec sub' : type m. m ealist -> m fin -> m term = function
|
|
|
|
| EAlist Anil -> var
|
|
|
|
| EAlist (Asnoc (s, t, x)) ->
|
|
|
|
comp_subst (sub' (EAlist (weaken_alist s)))
|
|
|
|
(fun t' -> weaken_term (subst_var x t t'))
|
|
|
|
|
|
|
|
let subst' d = pre_subst (sub' d)
|
|
|
|
(* val subst' : 'a ealist -> 'a term -> 'a term *)
|
|
|
|
;;
|
|
|
|
|
|
|
|
(* 6 First-Order Unification *)
|
|
|
|
|
|
|
|
let flex_flex x y =
|
|
|
|
match thick x y with
|
|
|
|
| Some y' -> asnoc Anil (Var y') x
|
|
|
|
| None -> EAlist Anil
|
2013-08-23 01:16:00 -07:00
|
|
|
(* val flex_flex : 'a succ fin -> 'a succ fin -> 'a succ ealist *)
|
2013-08-21 03:01:47 -07:00
|
|
|
|
|
|
|
let flex_rigid x t =
|
|
|
|
bind (check x t) (fun t' -> Some (asnoc Anil t' x))
|
2013-08-23 01:16:00 -07:00
|
|
|
(* val flex_rigid : 'a succ fin -> 'a succ term -> 'a succ ealist option *)
|
2013-08-21 03:01:47 -07:00
|
|
|
|
|
|
|
let rec amgu : type m. m term -> m term -> m ealist -> m ealist option =
|
|
|
|
fun s t acc -> match s, t, acc with
|
|
|
|
| Leaf, Leaf, _ -> Some acc
|
|
|
|
| Leaf, Fork _, _ -> None
|
|
|
|
| Fork _, Leaf, _ -> None
|
|
|
|
| Fork (s1, s2), Fork (t1, t2), _ ->
|
|
|
|
bind (amgu s1 t1 acc) (amgu s2 t2)
|
|
|
|
| Var x, Var y, EAlist Anil -> let IS = fin_succ x in Some (flex_flex x y)
|
|
|
|
| Var x, t, EAlist Anil -> let IS = fin_succ x in flex_rigid x t
|
|
|
|
| t, Var x, EAlist Anil -> let IS = fin_succ x in flex_rigid x t
|
|
|
|
| s, t, EAlist(Asnoc(d,r,z)) ->
|
|
|
|
bind (amgu (subst z r s) (subst z r t) (EAlist d))
|
|
|
|
(fun (EAlist d) -> Some (asnoc d r z))
|
|
|
|
|
|
|
|
let mgu s t = amgu s t (EAlist Anil)
|
|
|
|
(* val mgu : 'a term -> 'a term -> 'a ealist option *)
|
|
|
|
;;
|
|
|
|
|
|
|
|
let s = Fork (Var FZ, Fork (Var (FS (FS FZ)), Leaf))
|
|
|
|
let t = Fork (Var (FS FZ), Var (FS FZ))
|
|
|
|
let d = match mgu s t with Some x -> x | None -> failwith "mgu"
|
|
|
|
let s' = subst' d s
|
|
|
|
let t' = subst' d t
|
|
|
|
;;
|