ocaml/test/Lex/output.ml

170 lines
4.9 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Generating a DFA as a set of mutually recursive functions *)
open Syntax
let ic = ref stdin
let oc = ref stdout
(* 1- Generating the actions *)
let copy_buffer = String.create 1024
let copy_chunk (Location(start,stop)) =
seek_in !ic start;
let tocopy = ref(stop - start) in
while !tocopy > 0 do
let m =
input !ic copy_buffer 0 (min !tocopy (String.length copy_buffer)) in
output !oc copy_buffer 0 m;
tocopy := !tocopy - m
done
let output_action (i,act) =
output_string !oc ("action_" ^ string_of_int i ^ " lexbuf = (\n");
copy_chunk act;
output_string !oc ")\nand "
(* 2- Generating the states *)
let states = ref ([||] : automata array)
type occurrence =
{ mutable pos: int list;
mutable freq: int }
let enumerate_vect v =
let env = ref [] in
for pos = 0 to Array.length v - 1 do
try
let occ = List.assoc v.(pos) !env in
occ.pos <- pos :: occ.pos;
occ.freq <- occ.freq + 1
with Not_found ->
env := (v.(pos), {pos = [pos]; freq = 1 }) :: !env
done;
Sort.list (fun (e1, occ1) (e2, occ2) -> occ1.freq >= occ2.freq) !env
let output_move = function
Backtrack ->
output_string !oc "lexing.backtrack lexbuf"
| Goto dest ->
match !states.(dest) with
Perform act_num ->
output_string !oc ("action_" ^ string_of_int act_num ^ " lexbuf")
| _ ->
output_string !oc ("state_" ^ string_of_int dest ^ " lexbuf")
(* Cannot use standard char_for_read because the characters to escape
are not the same in CL6 and CL1999. *)
let output_char_lit oc = function
'\'' -> output_string oc "\\'"
| '\\' -> output_string oc "\\\\"
| '\n' -> output_string oc "\\n"
| '\t' -> output_string oc "\\t"
| c -> if Char.code c >= 32 & Char.code c < 128 then
output_char oc c
else begin
let n = Char.code c in
output_char oc '\\';
output_char oc (Char.chr (48 + n / 100));
output_char oc (Char.chr (48 + (n / 10) mod 10));
output_char oc (Char.chr (48 + n mod 10))
end
let rec output_chars = function
[] ->
failwith "output_chars"
| [c] ->
output_string !oc "'";
output_char_lit !oc (Char.chr c);
output_string !oc "'"
| c::cl ->
output_string !oc "'";
output_char_lit !oc (Char.chr c);
output_string !oc "'|";
output_chars cl
let output_one_trans (dest, occ) =
output_chars occ.pos;
output_string !oc " -> ";
output_move dest;
output_string !oc "\n | "
let output_all_trans trans =
output_string !oc " match lexing.next_char lexbuf with\n ";
match enumerate_vect trans with
[] ->
failwith "output_all_trans"
| (default, _) :: rest ->
List.iter output_one_trans rest;
output_string !oc "_ -> ";
output_move default;
output_string !oc "\nand "
let output_state state_num = function
Perform i ->
()
| Shift(what_to_do, moves) ->
output_string !oc
("state_" ^ string_of_int state_num ^ " lexbuf =\n");
begin match what_to_do with
No_remember -> ()
| Remember i ->
output_string !oc
(" Lexing.set_backtrack lexbuf action_" ^
string_of_int i ^ ";\n")
end;
output_all_trans moves
(* 3- Generating the entry points *)
let rec output_entries = function
[] -> failwith "output_entries"
| (name,state_num) :: rest ->
output_string !oc (name ^ " lexbuf =\n");
output_string !oc " Lexing.init lexbuf;\n";
output_string !oc (" state_" ^ string_of_int state_num ^
" lexbuf\n");
match rest with
[] -> output_string !oc "\n"; ()
| _ -> output_string !oc "\nand "; output_entries rest
(* All together *)
let output_lexdef header (initial_st, st, actions) =
prerr_int (Array.length st); prerr_string " states, ";
prerr_int (List.length actions); prerr_string " actions.";
prerr_newline();
copy_chunk header;
output_string !oc "\nlet rec ";
states := st;
List.iter output_action actions;
for i = 0 to Array.length st - 1 do
output_state i st.(i)
done;
output_entries initial_st