ocaml/test/KB/kb.ml

189 lines
6.2 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
open Terms
open Equations
(****************** Critical pairs *********************)
(* All (u,subst) such that N/u (&var) unifies with M,
with principal unifier subst *)
let rec super m = function
Term(_,sons) as n ->
let rec collate n = function
[] -> []
| son::rest ->
List.map (fun (u, subst) -> (n::u, subst)) (super m son)
@ collate (n+1) rest in
let insides = collate 1 sons in
begin try
([], unify m n) :: insides
with Failure _ ->
insides
end
| _ -> []
(* Ex :
let (m,_) = <<F(A,B)>>
and (n,_) = <<H(F(A,x),F(x,y))>> in super m n
==> [[1],[2,Term ("B",[])]; x <- B
[2],[2,Term ("A",[]); 1,Term ("B",[])]] x <- A y <- B
*)
(* All (u,subst), u&[], such that n/u unifies with m *)
let super_strict m = function
Term(_,sons) ->
let rec collate n = function
[] -> []
| son::rest ->
List.map (fun (u, subst) -> (n::u, subst)) (super m son)
@ collate (n+1) rest in
collate 1 sons
| _ -> []
(* Critical pairs of l1=r1 with l2=r2 *)
(* critical_pairs : term_pair -> term_pair -> term_pair list *)
let critical_pairs (l1,r1) (l2,r2) =
let mk_pair (u,subst) =
substitute subst (replace l2 u r1), substitute subst r2 in
List.map mk_pair (super l1 l2)
(* Strict critical pairs of l1=r1 with l2=r2 *)
(* strict_critical_pairs : term_pair -> term_pair -> term_pair list *)
let strict_critical_pairs (l1,r1) (l2,r2) =
let mk_pair (u,subst) =
substitute subst (replace l2 u r1), substitute subst r2 in
List.map mk_pair (super_strict l1 l2)
(* All critical pairs of eq1 with eq2 *)
let mutual_critical_pairs eq1 eq2 =
(strict_critical_pairs eq1 eq2) @ (critical_pairs eq2 eq1)
(* Renaming of variables *)
let rename n (t1,t2) =
let rec ren_rec = function
Var k -> Var(k+n)
| Term(op,sons) -> Term(op, List.map ren_rec sons) in
(ren_rec t1, ren_rec t2)
(************************ Completion ******************************)
let deletion_message rule =
print_string "Rule ";print_int rule.number; print_string " deleted";
print_newline()
(* Generate failure message *)
let non_orientable (m,n) =
pretty_term m; print_string " = "; pretty_term n; print_newline()
let rec partition p = function
[] -> ([], [])
| x::l -> let (l1, l2) = partition p l in
if p x then (x::l1, l2) else (l1, x::l2)
let rec get_rule n = function
[] -> raise Not_found
| r::l -> if n = r.number then r else get_rule n l
(* Improved Knuth-Bendix completion procedure *)
let kb_completion greater =
let rec kbrec j rules =
let rec process failures (k,l) eqs =
(****
print_string "***kb_completion "; print_int j; print_newline();
pretty_rules rules;
List.iter non_orientable failures;
print_int k; print_string " "; print_int l; print_newline();
List.iter non_orientable eqs;
***)
match eqs with
[] ->
if k<l then next_criticals failures (k+1,l) else
if l<j then next_criticals failures (1,l+1) else
begin match failures with
[] -> rules (* successful completion *)
| _ -> print_string "Non-orientable equations :"; print_newline();
List.iter non_orientable failures;
failwith "kb_completion"
end
| (m,n)::eqs ->
let m' = mrewrite_all rules m
and n' = mrewrite_all rules n
and enter_rule(left,right) =
let new_rule = mk_rule (j+1) left right in
pretty_rule new_rule;
let left_reducible rule = reducible left rule.lhs in
let (redl,irredl) = partition left_reducible rules in
List.iter deletion_message redl;
let right_reduce rule =
mk_rule rule.number rule.lhs
(mrewrite_all (new_rule::rules) rule.rhs) in
let irreds = List.map right_reduce irredl in
let eqs' = List.map (fun rule -> (rule.lhs, rule.rhs)) redl in
kbrec (j+1) (new_rule::irreds) [] (k,l) (eqs @ eqs' @ failures) in
(***
print_string "--- Considering "; non_orientable (m', n');
***)
if m' = n' then process failures (k,l) eqs else
if greater(m',n') then enter_rule(m',n') else
if greater(n',m') then enter_rule(n',m') else
process ((m',n')::failures) (k,l) eqs
and next_criticals failures (k,l) =
(****
print_string "***next_criticals ";
print_int k; print_string " "; print_int l ; print_newline();
****)
try
let rl = get_rule l rules in
let el = (rl.lhs, rl.rhs) in
if k=l then
process failures (k,l)
(strict_critical_pairs el (rename rl.numvars el))
else
try
let rk = get_rule k rules in
let ek = (rk.lhs, rk.rhs) in
process failures (k,l)
(mutual_critical_pairs el (rename rl.numvars ek))
with Not_found -> next_criticals failures (k+1,l)
with Not_found -> next_criticals failures (1,l+1)
in process
in kbrec
(* complete_rules is assumed locally confluent, and checked Noetherian with
ordering greater, rules is any list of rules *)
let kb_complete greater complete_rules rules =
let n = check_rules complete_rules
and eqs = List.map (fun rule -> (rule.lhs, rule.rhs)) rules in
let completed_rules =
kb_completion greater n complete_rules [] (n,n) eqs in
print_string "Canonical set found :"; print_newline();
pretty_rules (List.rev completed_rules)