ocaml/bytecomp/matching.ml

439 lines
16 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Compilation of pattern matching *)
open Misc
open Location
open Asttypes
open Primitive
open Types
open Typedtree
open Lambda
(* See Peyton-Jones, "The Implementation of functional programming
languages", chapter 5. *)
type pattern_matching =
{ mutable cases : (pattern list * lambda) list;
args : (lambda * let_kind) list }
(* To group lines of patterns with identical keys *)
let add_line patl_action pm =
pm.cases <- patl_action :: pm.cases; pm
let add make_matching_fun division key patl_action args =
try
let pm = List.assoc key division in
pm.cases <- patl_action :: pm.cases;
division
with Not_found ->
let pm = make_matching_fun args in
pm.cases <- patl_action :: pm.cases;
(key, pm) :: division
(* To find reasonable names for let-bound and lambda-bound idents *)
let rec name_pattern default = function
(pat :: patl, action) :: rem ->
begin match pat.pat_desc with
Tpat_var id -> id
| Tpat_alias(p, id) -> id
| _ -> name_pattern default rem
end
| _ -> Ident.create default
(* To remove aliases and bind named components *)
let any_pat =
{pat_desc = Tpat_any; pat_loc = Location.none; pat_type = Ctype.none}
let simplify_matching m =
match m.args with
[] -> m
| (arg, mut) :: argl ->
let rec simplify = function
(pat :: patl, action as patl_action) :: rem ->
begin match pat.pat_desc with
Tpat_var id ->
(any_pat :: patl, Llet(Alias, id, arg, action)) ::
simplify rem
| Tpat_alias(p, id) ->
simplify ((p :: patl, Llet(Alias, id, arg, action)) :: rem)
| _ ->
patl_action :: simplify rem
end
| cases -> cases in
{ args = m.args; cases = simplify m.cases }
(* Matching against a constant *)
let make_constant_matching = function
[] -> fatal_error "Matching.make_constant_matching"
| (arg :: argl) -> {cases = []; args = argl}
let divide_constant {cases = cl; args = al} =
let rec divide = function
({pat_desc = Tpat_constant cst} :: patl, action) :: rem ->
let (constants, others) = divide rem in
(add make_constant_matching constants cst (patl, action) al, others)
| cl ->
([], {cases = cl; args = al})
in divide cl
(* Matching against a constructor *)
let make_constr_matching cstr = function
[] -> fatal_error "Matching.make_constr_matching"
| ((arg, mut) :: argl) ->
let (first_pos, last_pos) =
match cstr.cstr_tag with
Cstr_constant _ | Cstr_block _ -> (0, cstr.cstr_arity - 1)
| Cstr_exception _ -> (1, cstr.cstr_arity) in
let rec make_args pos =
if pos > last_pos
then argl
else (Lprim(Pfield pos, [arg]), Alias) :: make_args (pos + 1) in
{cases = []; args = make_args first_pos}
let divide_constructor {cases = cl; args = al} =
let rec divide = function
({pat_desc = Tpat_construct(cstr, args)} :: patl, action) :: rem ->
let (constructs, others) = divide rem in
(add (make_constr_matching cstr) constructs
cstr.cstr_tag (args @ patl, action) al,
others)
| cl ->
([], {cases = cl; args = al})
in divide cl
(* Matching against a variable *)
let divide_var {cases = cl; args = al} =
let rec divide = function
({pat_desc = Tpat_any} :: patl, action) :: rem ->
let (vars, others) = divide rem in
(add_line (patl, action) vars, others)
| cl ->
(make_constant_matching al, {cases = cl; args = al})
in divide cl
(* Matching against a tuple pattern *)
let make_tuple_matching num_comps = function
[] -> fatal_error "Matching.make_tuple_matching"
| (arg, mut) :: argl ->
let rec make_args pos =
if pos >= num_comps
then argl
else (Lprim(Pfield pos, [arg]), Alias) :: make_args (pos + 1) in
{cases = []; args = make_args 0}
let divide_tuple arity {cases = cl; args = al} =
let rec divide = function
({pat_desc = Tpat_tuple args} :: patl, action) :: rem ->
let (tuples, others) = divide rem in
(add_line (args @ patl, action) tuples, others)
| ({pat_desc = Tpat_any} :: patl, action) :: rem ->
let (tuples, others) = divide rem in
(add_line (replicate_list any_pat arity @ patl, action) tuples, others)
| cl ->
(make_tuple_matching arity al, {cases = cl; args = al})
in divide cl
(* Matching against a record pattern *)
let make_record_matching all_labels = function
[] -> fatal_error "Matching.make_tuple_matching"
| ((arg, mut) :: argl) ->
let rec make_args pos =
if pos >= Array.length all_labels then argl else begin
let lbl = all_labels.(pos) in
let access =
match lbl.lbl_repres with
Record_regular -> Pfield lbl.lbl_pos
| Record_float -> Pfloatfield lbl.lbl_pos in
let str =
match lbl.lbl_mut with
Immutable -> Alias
| Mutable -> StrictOpt in
(Lprim(access, [arg]), str) :: make_args(pos + 1)
end in
{cases = []; args = make_args 0}
let divide_record all_labels {cases = cl; args = al} =
let num_fields = Array.length all_labels in
let record_matching_line lbl_pat_list =
let patv = Array.create num_fields any_pat in
List.iter (fun (lbl, pat) -> patv.(lbl.lbl_pos) <- pat) lbl_pat_list;
Array.to_list patv in
let rec divide = function
({pat_desc = Tpat_record lbl_pat_list} :: patl, action) :: rem ->
let (records, others) = divide rem in
(add_line (record_matching_line lbl_pat_list @ patl, action) records,
others)
| ({pat_desc = Tpat_any} :: patl, action) :: rem ->
let (records, others) = divide rem in
(add_line (record_matching_line [] @ patl, action) records, others)
| cl ->
(make_record_matching all_labels al, {cases = cl; args = al})
in divide cl
(* Matching against an or pattern. *)
let rec flatten_orpat_match pat =
match pat.pat_desc with
Tpat_or(p1, p2) -> flatten_orpat_match p1 @ flatten_orpat_match p2
| _ -> [[pat], lambda_unit]
let divide_orpat = function
{cases = (orpat :: patl, act) :: casel; args = arg1 :: argl as args} ->
({cases = flatten_orpat_match orpat; args = [arg1]},
{cases = [patl, act]; args = argl},
{cases = casel; args = args})
| _ ->
fatal_error "Matching.divide_orpat"
(* To combine sub-matchings together *)
let combine_var (lambda1, total1) (lambda2, total2) =
if total1 then (lambda1, true)
else if lambda2 = Lstaticfail then (lambda1, total1)
else (Lcatch(lambda1, lambda2), total2)
let make_test_sequence tst arg const_lambda_list =
List.fold_right
(fun (c, act) rem ->
Lifthenelse(Lprim(tst, [arg; Lconst(Const_base c)]), act, rem))
const_lambda_list Lstaticfail
let make_switch_or_test_sequence arg const_lambda_list int_lambda_list =
let min_key =
List.fold_right (fun (k, l) m -> min k m) int_lambda_list max_int in
let max_key =
List.fold_right (fun (k, l) m -> max k m) int_lambda_list min_int in
(* min_key and max_key can be arbitrarily large, so watch out for
overflow in the following comparison *)
if List.length int_lambda_list <= 1 + max_key / 4 - min_key / 4 then
(* Sparse matching -- use a sequence of tests
(4 bytecode instructions per test) *)
make_test_sequence (Pintcomp Ceq) arg const_lambda_list
else begin
(* Dense matching -- use a jump table
(2 bytecode instructions + 1 word per entry in the table) *)
let numcases = max_key - min_key + 1 in
let cases =
List.map (fun (key, l) -> (key - min_key, l)) int_lambda_list in
let offsetarg =
if min_key = 0 then arg else Lprim(Poffsetint(-min_key), [arg]) in
Lswitch(offsetarg,
{sw_numconsts = numcases; sw_consts = cases;
sw_numblocks = 0; sw_blocks = []; sw_checked = true})
end
let make_bitvect_check arg int_lambda_list =
let bv = String.make 32 '\000' in
List.iter
(fun (n, l) ->
bv.[n lsr 3] <- Char.chr(Char.code bv.[n lsr 3] lor (1 lsl (n land 7))))
int_lambda_list;
Lifthenelse(Lprim(Pbittest, [Lconst(Const_base(Const_string bv)); arg]),
lambda_unit, Lstaticfail)
let prim_string_equal =
Pccall{prim_name = "string_equal";
prim_arity = 2; prim_alloc = false;
prim_native_name = ""; prim_native_float = false}
let combine_constant arg cst (const_lambda_list, total1) (lambda2, total2) =
let lambda1 =
match cst with
Const_int _ ->
let int_lambda_list =
List.map (fun (Const_int n, l) -> (n, l)) const_lambda_list in
make_switch_or_test_sequence arg const_lambda_list int_lambda_list
| Const_char _ ->
let int_lambda_list =
List.map (fun (Const_char c, l) -> (Char.code c, l))
const_lambda_list in
if List.for_all (fun (c, l) -> l = lambda_unit) const_lambda_list then
make_bitvect_check arg int_lambda_list
else
make_switch_or_test_sequence arg const_lambda_list int_lambda_list
| Const_string _ ->
make_test_sequence prim_string_equal arg const_lambda_list
| Const_float _ ->
make_test_sequence (Pfloatcomp Ceq) arg const_lambda_list
in (Lcatch(lambda1, lambda2), total2)
let combine_constructor arg cstr (tag_lambda_list, total1) (lambda2, total2) =
if cstr.cstr_consts < 0 then begin
(* Special cases for exceptions *)
let lambda1 =
List.fold_right
(fun (Cstr_exception path, act) rem ->
Lifthenelse(Lprim(Pintcomp Ceq,
[Lprim(Pfield 0, [arg]); transl_path path]),
act, rem))
tag_lambda_list Lstaticfail
in (Lcatch(lambda1, lambda2), total2)
end else begin
(* Regular concrete type *)
let rec split_cases = function
[] -> ([], [])
| (cstr, act) :: rem ->
let (consts, nonconsts) = split_cases rem in
match cstr with
Cstr_constant n -> ((n, act) :: consts, nonconsts)
| Cstr_block n -> (consts, (n, act) :: nonconsts) in
let (consts, nonconsts) = split_cases tag_lambda_list in
let lambda1 =
match (cstr.cstr_consts, cstr.cstr_nonconsts, consts, nonconsts) with
(1, 0, [0, act], []) -> act
| (0, 1, [], [0, act]) -> act
| (1, 1, [0, act1], [0, act2]) ->
Lifthenelse(arg, act2, act1)
| (1, 1, [0, act1], []) ->
Lifthenelse(arg, Lstaticfail, act1)
| (1, 1, [], [0, act2]) ->
Lifthenelse(arg, act2, Lstaticfail)
| (_, _, _, _) ->
Lswitch(arg, {sw_numconsts = cstr.cstr_consts;
sw_consts = consts;
sw_numblocks = cstr.cstr_nonconsts;
sw_blocks = nonconsts;
sw_checked = false}) in
if total1
& List.length tag_lambda_list = cstr.cstr_consts + cstr.cstr_nonconsts
then (lambda1, true)
else (Lcatch(lambda1, lambda2), total2)
end
let combine_orpat (lambda1, total1) (lambda2, total2) (lambda3, total3) =
(Lcatch(Lsequence(lambda1, lambda2), lambda3), total3)
(* The main compilation function.
Input: a pattern matching.
Output: a lambda term, a "total" flag (true if we're sure that the
matching covers all cases; this is an approximation). *)
let rec compile_match m =
let rec compile_list = function
[] -> ([], true)
| (key, pm) :: rem ->
let (lambda1, total1) = compile_match pm in
let (list2, total2) = compile_list rem in
((key, lambda1) :: list2, total1 & total2) in
match m with
{ cases = [] } ->
(Lstaticfail, false)
| { cases = ([], action) :: rem; args = argl } ->
if is_guarded action then begin
let (lambda, total) = compile_match { cases = rem; args = argl } in
(Lcatch(action, lambda), total)
end else
(action, true)
| { args = (arg, str) :: argl } ->
let v = name_pattern "match" m.cases in
let newarg = Lvar v in
let pm =
simplify_matching
{ cases = m.cases; args = (newarg, Alias) :: argl } in
let (lam, total) =
match pm.cases with
(pat :: patl, action) :: _ ->
begin match pat.pat_desc with
Tpat_any ->
let (vars, others) = divide_var pm in
combine_var (compile_match vars) (compile_match others)
| Tpat_constant cst ->
let (constants, others) = divide_constant pm in
combine_constant newarg cst
(compile_list constants) (compile_match others)
| Tpat_tuple patl ->
let (tuples, others) = divide_tuple (List.length patl) pm in
combine_var (compile_match tuples) (compile_match others)
| Tpat_construct(cstr, patl) ->
let (constrs, others) = divide_constructor pm in
combine_constructor newarg cstr
(compile_list constrs) (compile_match others)
| Tpat_record((lbl, _) :: _) ->
let (records, others) = divide_record lbl.lbl_all pm in
combine_var (compile_match records) (compile_match others)
| Tpat_or(pat1, pat2) ->
(* Avoid duplicating the code of the action *)
let (or_match, remainder_line, others) = divide_orpat pm in
combine_orpat (compile_match or_match)
(compile_match remainder_line)
(compile_match others)
| _ ->
fatal_error "Matching.compile_match1"
end
| _ -> fatal_error "Matching.compile_match2" in
(Llet(str, v, arg, lam), total)
(* The entry points *)
let compile_matching handler_fun arg pat_act_list =
let pm =
{ cases = List.map (fun (pat, act) -> ([pat], act)) pat_act_list;
args = [arg, Strict] } in
let (lambda, total) = compile_match pm in
if total then lambda else Lcatch(lambda, handler_fun())
let partial_function loc () =
Lprim(Praise, [Lprim(Pmakeblock(0, Immutable),
[transl_path Predef.path_match_failure;
Lconst(Const_block(0,
[Const_base(Const_string !Location.input_name);
Const_base(Const_int loc.loc_start);
Const_base(Const_int loc.loc_end)]))])])
let for_function loc param pat_act_list =
compile_matching (partial_function loc) param pat_act_list
let for_trywith param pat_act_list =
compile_matching (fun () -> Lprim(Praise, [param])) param pat_act_list
let for_let loc param pat body =
compile_matching (partial_function loc) param [pat, body]
exception Cannot_flatten
let rec flatten_patterns size = function
[] -> []
| ({pat_desc = Tpat_tuple args} :: _, action) :: rem ->
(args, action) :: flatten_patterns size rem
| ({pat_desc = Tpat_any} :: patl, action) :: rem ->
(replicate_list any_pat size, action) :: flatten_patterns size rem
| _ ->
raise Cannot_flatten
let for_multiple_match loc paraml pat_act_list =
let pm1 =
{ cases = List.map (fun (pat, act) -> ([pat], act)) pat_act_list;
args = [Lprim(Pmakeblock(0, Immutable), paraml), Strict] } in
let pm2 =
simplify_matching pm1 in
let pm3 =
try
{ cases = flatten_patterns (List.length paraml) pm2.cases;
args = List.map (fun lam -> (lam, Strict)) paraml }
with Cannot_flatten ->
pm2 in
let (lambda, total) = compile_match pm3 in
if total then lambda else Lcatch(lambda, partial_function loc ())