ocaml/test/KB/kbmain.ml

82 lines
2.7 KiB
OCaml
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
open Terms
open Equations
open Orderings
open Kb
(****
let group_rules = [
{ number = 1; numvars = 1;
lhs = Term("*", [Term("U",[]); Var 1]); rhs = Var 1 };
{ number = 2; numvars = 1;
lhs = Term("*", [Term("I",[Var 1]); Var 1]); rhs = Term("U",[]) };
{ number = 3; numvars = 3;
lhs = Term("*", [Term("*", [Var 1; Var 2]); Var 3]);
rhs = Term("*", [Var 1; Term("*", [Var 2; Var 3])]) }
]
****)
let geom_rules = [
{ number = 1; numvars = 1;
lhs = Term ("*",[(Term ("U",[])); (Var 1)]);
rhs = Var 1 };
{ number = 2; numvars = 1;
lhs = Term ("*",[(Term ("I",[(Var 1)])); (Var 1)]);
rhs = Term ("U",[]) };
{ number = 3; numvars = 3;
lhs = Term ("*",[(Term ("*",[(Var 1); (Var 2)])); (Var 3)]);
rhs = Term ("*",[(Var 1); (Term ("*",[(Var 2); (Var 3)]))]) };
{ number = 4; numvars = 0;
lhs = Term ("*",[(Term ("A",[])); (Term ("B",[]))]);
rhs = Term ("*",[(Term ("B",[])); (Term ("A",[]))]) };
{ number = 5; numvars = 0;
lhs = Term ("*",[(Term ("C",[])); (Term ("C",[]))]);
rhs = Term ("U",[]) };
{ number = 6; numvars = 0;
lhs = Term("*",
[(Term ("C",[]));
(Term ("*",[(Term ("A",[])); (Term ("I",[(Term ("C",[]))]))]))]);
rhs = Term ("I",[(Term ("A",[]))]) };
{ number = 7; numvars = 0;
lhs = Term("*",
[(Term ("C",[]));
(Term ("*",[(Term ("B",[])); (Term ("I",[(Term ("C",[]))]))]))]);
rhs = Term ("B",[]) }
]
let group_rank = function
"U" -> 0
| "*" -> 1
| "I" -> 2
| "B" -> 3
| "C" -> 4
| "A" -> 5
| _ -> assert false
let group_precedence op1 op2 =
let r1 = group_rank op1
and r2 = group_rank op2 in
if r1 = r2 then Equal else
if r1 > r2 then Greater else NotGE
let group_order = rpo group_precedence lex_ext
let greater pair =
match group_order pair with Greater -> true | _ -> false
let _ = kb_complete greater [] geom_rules