switch to simplex noise because it is a bit quicker and looks dandy

git-svn-id: https://pioneer.svn.sourceforge.net/svnroot/pioneer/trunk@230 e632f14b-6550-0410-b89e-a82653faca30
master
tompox 2009-03-15 17:40:52 +00:00
parent 7549bae37a
commit 33dfaee3d0
4 changed files with 164 additions and 55 deletions

View File

@ -876,9 +876,9 @@ void Planet::DrawAtmosphere(double rad, vector3d &pos)
// tri edge lengths
#define GEOPATCH_SUBDIVIDE_AT_CAMDIST 1.0
#define GEOPATCH_SUBDIVIDE_AT_CAMDIST 1.5
#define GEOPATCH_MAX_DEPTH 16
#define GEOPATCH_EDGELEN 32
#define GEOPATCH_EDGELEN 16
#define GEOPATCH_NUMVERTICES (GEOPATCH_EDGELEN*GEOPATCH_EDGELEN)
#define PRINT_VECTOR(_v) printf("%.2f,%.2f,%.2f\n", (_v).x, (_v).y, (_v).z);
@ -1394,7 +1394,7 @@ void Planet::Render(const Frame *a_camFrame)
SetMaterialColor(poo);
campos = campos * (1.0/rad);
m_geosphere->Render(campos);
//printf("%d triangles in GeoSphere\n", geo_patch_tri_count);
printf("%d triangles in GeoSphere\n", geo_patch_tri_count);
}
glPopMatrix();
glDisable(GL_NORMALIZE);

View File

@ -22,7 +22,6 @@
#include "Serializer.h"
#include "NameGenerator.h"
#include "mods/Mods.h"
#include "perlin.h"
float Pi::timeAccel = 1.0f;
int Pi::scrWidth;
@ -672,7 +671,6 @@ int main(int argc, char**)
{
printf("Pioneer ultra high tech tech demo dude!\n");
signal(SIGSEGV, sigsegv_handler);
perlin_init();
IniConfig cfg("config.ini");
Pi::Init(cfg);
Pi::Start();

View File

@ -1,54 +1,162 @@
#include <math.h>
#include "libs.h"
#include "vector3.h"
// JAVA REFERENCE IMPLEMENTATION OF IMPROVED NOISE - COPYRIGHT 2002 KEN PERLIN.
// molested a bit for pioneer
static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); }
static double lerp(double t, double a, double b) { return a + t * (b - a); }
static double grad(int hash, double x, double y, double z) {
int h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE
double u = h<8 ? x : y, // INTO 12 GRADIENT DIRECTIONS.
v = h<4 ? y : h==12||h==14 ? x : z;
return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
}
static int p[512];
static const int permutation[] = { 151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
double noise(vector3d V) {
int X = (int)floor(V.x) & 255, // FIND UNIT CUBE THAT
Y = (int)floor(V.y) & 255, // CONTAINS POINT.
Z = (int)floor(V.z) & 255;
V.x -= floor(V.x); // FIND RELATIVE X,Y,Z
V.y -= floor(V.y); // OF POINT IN CUBE.
V.z -= floor(V.z);
double u = fade(V.x), // COMPUTE FADE CURVES
v = fade(V.y), // FOR EACH OF X,Y,Z.
w = fade(V.z);
int A = p[X ]+Y, AA = p[A]+Z, AB = p[A+1]+Z, // HASH COORDINATES OF
B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z; // THE 8 CUBE CORNERS,
/* Simplex.cpp
*
* Copyright 2007 Eliot Eshelman
* battlestartux@6by9.net
*
*
* This file is part of Battlestar Tux.
*
* Battlestar Tux is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* Battlestar Tux is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Battlestar Tux; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
return lerp(w, lerp(v, lerp(u, grad(p[AA ], V.x , V.y , V.z ), // AND ADD
grad(p[BA ], V.x-1, V.y , V.z )), // BLENDED
lerp(u, grad(p[AB ], V.x , V.y-1, V.z ), // RESULTS
grad(p[BB ], V.x-1, V.y-1, V.z ))),// FROM 8
lerp(v, lerp(u, grad(p[AA+1], V.x , V.y , V.z-1 ), // CORNERS
grad(p[BA+1], V.x-1, V.y , V.z-1 )), // OF CUBE
lerp(u, grad(p[AB+1], V.x , V.y-1, V.z-1 ),
grad(p[BB+1], V.x-1, V.y-1, V.z-1 ))));
}
void perlin_init() { for (int i=0; i < 256 ; i++) p[256+i] = p[i] = permutation[i]; }
static int fastfloor( const double x ) { return x > 0 ? (int) x : (int) x - 1; }
//static double dot( const int* g, const double x, const double y ) { return g[0]*x + g[1]*y; }
static double dot( const int* g, const double x, const double y, const double z ) { return g[0]*x + g[1]*y + g[2]*z; }
//static double dot( const int* g, const double x, const double y, const double z, const double w ) { return g[0]*x + g[1]*y + g[2]*z + g[3]*w; }
// The gradients are the midpoints of the vertices of a cube.
static const int grad3[12][3] = {
{1,1,0}, {-1,1,0}, {1,-1,0}, {-1,-1,0},
{1,0,1}, {-1,0,1}, {1,0,-1}, {-1,0,-1},
{0,1,1}, {0,-1,1}, {0,1,-1}, {0,-1,-1}
};
// Permutation table. The same list is repeated twice.
static const int perm[512] = {
151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,
8,99,37,240,21,10,23,190,6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,
35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168,68,175,74,165,71,
134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,
55,46,245,40,244,102,143,54,65,25,63,161,1,216,80,73,209,76,132,187,208, 89,
18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186,3,64,52,217,226,
250,124,123,5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,
189,28,42,223,183,170,213,119,248,152,2,44,154,163,70,221,153,101,155,167,43,
172,9,129,22,39,253,19,98,108,110,79,113,224,232,178,185,112,104,218,246,97,
228,251,34,242,193,238,210,144,12,191,179,162,241,81,51,145,235,249,14,239,
107,49,192,214,31,181,199,106,157,184,84,204,176,115,121,50,45,127,4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,
8,99,37,240,21,10,23,190,6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,
35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168,68,175,74,165,71,
134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,
55,46,245,40,244,102,143,54,65,25,63,161,1,216,80,73,209,76,132,187,208, 89,
18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186,3,64,52,217,226,
250,124,123,5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,
189,28,42,223,183,170,213,119,248,152,2,44,154,163,70,221,153,101,155,167,43,
172,9,129,22,39,253,19,98,108,110,79,113,224,232,178,185,112,104,218,246,97,
228,251,34,242,193,238,210,144,12,191,179,162,241,81,51,145,235,249,14,239,
107,49,192,214,31,181,199,106,157,184,84,204,176,115,121,50,45,127,4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
// 3D raw Simplex noise
double noise( const double x, const double y, const double z ) {
double n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
double F3 = 1.0/3.0;
double s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
int i = fastfloor(x+s);
int j = fastfloor(y+s);
int k = fastfloor(z+s);
double G3 = 1.0/6.0; // Very nice and simple unskew factor, too
double t = (i+j+k)*G3;
double X0 = i-t; // Unskew the cell origin back to (x,y,z) space
double Y0 = j-t;
double Z0 = k-t;
double x0 = x-X0; // The x,y,z distances from the cell origin
double y0 = y-Y0;
double z0 = z-Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if(x0>=y0) {
if(y0>=z0)
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
}
else { // x0<y0
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
double y1 = y0 - j1 + G3;
double z1 = z0 - k1 + G3;
double x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
double y2 = y0 - j2 + 2.0*G3;
double z2 = z0 - k2 + 2.0*G3;
double x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
double y3 = y0 - 1.0 + 3.0*G3;
double z3 = z0 - 1.0 + 3.0*G3;
// Work out the hashed gradient indices of the four simplex corners
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int gi0 = perm[ii+perm[jj+perm[kk]]] % 12;
int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12;
int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;
int gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;
// Calculate the contribution from the four corners
double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
}
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
}
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
}
double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
if(t3<0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0*(n0 + n1 + n2 + n3);
}

View File

@ -3,7 +3,10 @@
#include "vector3.h"
double noise(vector3d p);
double noise(const double x, const double y, const double z );
static inline double noise(const vector3d p) {
return noise(p.x, p.y, p.z);
}
void perlin_init();
#endif /* _PERLIN_H */