240 lines
5.8 KiB
Objective-C
240 lines
5.8 KiB
Objective-C
//
|
|
// JAIcosTriangle.m
|
|
// icosmesh
|
|
//
|
|
// Created by Jens Ayton on 2009-11-18.
|
|
// Copyright 2009 Jens Ayton. All rights reserved.
|
|
//
|
|
|
|
#import "JAIcosTriangle.h"
|
|
|
|
|
|
static inline BOOL IsPolarVector(Vector v)
|
|
{
|
|
return v.x == 0.0 && v.z == 0.0;
|
|
}
|
|
|
|
|
|
@interface JAIcosTriangle (Private)
|
|
|
|
@end
|
|
|
|
|
|
static NSComparisonResult CompareVertices(Vertex *a, Vertex *b)
|
|
{
|
|
return NSOrderedSame;
|
|
}
|
|
|
|
|
|
static NSString *VertexDescription(Vertex v)
|
|
{
|
|
return [NSString stringWithFormat:@"{ %g, %g, %g} (%g, %g)", v.v.x, v.v.y, v.v.z, v.s, v.t];
|
|
}
|
|
|
|
|
|
@implementation JAIcosTriangle
|
|
|
|
+ (id) triangleWithVectorA:(Vector)a b:(Vector)b c:(Vector)c
|
|
{
|
|
return [[self alloc] initWithVectorA:a b:b c:c];
|
|
}
|
|
|
|
|
|
- (id) initWithVectorA:(Vector)a b:(Vector)b c:(Vector)c
|
|
{
|
|
if ((self = [super init]))
|
|
{
|
|
_vertices[0].v = VectorNormal(a);
|
|
_vertices[1].v = VectorNormal(b);
|
|
_vertices[2].v = VectorNormal(c);
|
|
|
|
// If one of our vertices is a pole, make it the first.
|
|
if (IsPolarVector(_vertices[2].v)) [self rotate];
|
|
if (IsPolarVector(_vertices[1].v)) [self rotate];
|
|
|
|
// Ensure winding is consistent.
|
|
[self fixUpWinding];
|
|
|
|
[self generateTextureCoordinatesAndBinormals];
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
|
|
- (NSString *) description
|
|
{
|
|
return [NSString stringWithFormat:@"{%@, %@, %@}", VertexDescription(_vertices[0]), VertexDescription(_vertices[1]), VertexDescription(_vertices[2])];
|
|
}
|
|
|
|
|
|
- (Vertex) vertexA
|
|
{
|
|
return _vertices[0];
|
|
}
|
|
|
|
|
|
- (Vertex) vertexB
|
|
{
|
|
return _vertices[1];
|
|
}
|
|
|
|
|
|
- (Vertex) vertexC
|
|
{
|
|
return _vertices[2];
|
|
}
|
|
|
|
|
|
- (void) rotate
|
|
{
|
|
Vertex temp = _vertices[0];
|
|
_vertices[0] = _vertices[1];
|
|
_vertices[1] = _vertices[2];
|
|
_vertices[2] = temp;
|
|
}
|
|
|
|
|
|
static inline Vector BinormalFromNormal(Vector v)
|
|
{
|
|
return VectorNormal(VectorCross(v, (Vector){0, 1.0, 0.0}));
|
|
}
|
|
|
|
|
|
- (void) generateTextureCoordinatesAndBinormals
|
|
{
|
|
VectorToCoords0_1(_vertices[1].v, &_vertices[1].t, &_vertices[1].s);
|
|
VectorToCoords0_1(_vertices[2].v, &_vertices[2].t, &_vertices[2].s);
|
|
if (!IsPolarVector(_vertices[0].v)) VectorToCoords0_1(_vertices[0].v, &_vertices[0].t, &_vertices[0].s);
|
|
else
|
|
{
|
|
// Use longitude of average of v1 and v2.
|
|
VectorToCoords0_1(VectorAdd(_vertices[1].v, _vertices[2].v), NULL, &_vertices[0].s);
|
|
_vertices[0].t = (_vertices[0].v.y < 0) ? 1.0 : 0.0;
|
|
}
|
|
|
|
/* Texture seam handling
|
|
At the back of the mesh, at the longitude = 180°/-180° meridian, the
|
|
texture wraps around. However, there isn't a convenient matching seam
|
|
in the geometry - there are no great circles touching "poles" (source
|
|
vertices) on a subdivided icosahedron - so we need to adjust texture
|
|
coordinates and use the GL_REPEAT texture wrapping mode to cover it
|
|
over.
|
|
|
|
The technique is to establish whether we have at least one vertex in
|
|
each of the (x, -z) and (-x, -z) quadrants, and if so, add 1 to the
|
|
texture coordinates for the vertices in (-x, -z) -- corresponding to
|
|
the east Pacific.
|
|
|
|
NOTE: this technique is suboptimal because the selection of wrapped
|
|
vertices changes at each subdivision level. Interpolating texture
|
|
coordinates during subidivision, then finding the "nearest" option
|
|
for "correct" calculated s for interpolated vertices could fix this.
|
|
*/
|
|
|
|
bool haveNXNZ = false;
|
|
bool havePXNZ = false;
|
|
unsigned i;
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (_vertices[i].v.z < 0)
|
|
{
|
|
if (_vertices[i].v.x < 0)
|
|
{
|
|
haveNXNZ = true;
|
|
}
|
|
else
|
|
{
|
|
havePXNZ = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (haveNXNZ && havePXNZ)
|
|
{
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (_vertices[i].v.z < 0 && _vertices[i].v.x >= 0)
|
|
{
|
|
// printf("Remapping %g -> %g\n", _vertices[i].s, _vertices[i].s + 1.0);
|
|
_vertices[i].s += 1.0;
|
|
}
|
|
}
|
|
if (_vertices[0].v.y == -1.0)
|
|
{
|
|
/* Special case: also need to wrap the polar coordinate of the
|
|
southernmost seam triangle.
|
|
*/
|
|
_vertices[0].s += 1.0;
|
|
}
|
|
}
|
|
|
|
#if OUTPUT_BINORMALS
|
|
/* Binormals
|
|
For non-polar points, the binormal is the cross product of the normal
|
|
(equal to the vertex, for a unit sphere) and the Y axis. At the poles,
|
|
this is a singularity and we use the average of the other two binormals
|
|
instead.
|
|
|
|
Note: for non-polar vertices, it makes sense to calculate this in the
|
|
shaders instead. It may be better to use texture coordinates to handle
|
|
polar coordinates instead of using an attribute.
|
|
*/
|
|
_vertices[1].binormal = BinormalFromNormal(_vertices[1].v);
|
|
_vertices[2].binormal = BinormalFromNormal(_vertices[2].v);
|
|
if (!IsPolarVector(_vertices[0].v)) _vertices[0].binormal = BinormalFromNormal(_vertices[0].v);
|
|
else
|
|
{
|
|
_vertices[0].binormal = VectorNormal(VectorAdd(_vertices[1].binormal, _vertices[2].binormal));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
- (NSArray *) subdivide
|
|
{
|
|
Vector a = _vertices[0].v;
|
|
Vector b = _vertices[1].v;
|
|
Vector c = _vertices[2].v;
|
|
|
|
Vector ab = VectorNormal(VectorAdd(a, b));
|
|
Vector bc = VectorNormal(VectorAdd(b, c));
|
|
Vector ca = VectorNormal(VectorAdd(c, a));
|
|
|
|
/* Note: vertex orders preserve winding. Triangle order is intended to be
|
|
somewhat cache-friendly, but not as good as actually optimizing the
|
|
data.
|
|
*/
|
|
JAIcosTriangle *subTris[4];
|
|
subTris[0] = [JAIcosTriangle triangleWithVectorA:a b:ab c:ca];
|
|
subTris[3] = [JAIcosTriangle triangleWithVectorA:ab b:bc c:ca];
|
|
subTris[1] = [JAIcosTriangle triangleWithVectorA:ab b:b c:bc];
|
|
subTris[2] = [JAIcosTriangle triangleWithVectorA:ca b:bc c:c];
|
|
|
|
return [NSArray arrayWithObjects:subTris count:4];
|
|
}
|
|
|
|
|
|
- (void) fixUpWinding
|
|
{
|
|
// Construct vectors from v0 to v1 and v0 to v2.
|
|
Vector ab = VectorSubtract(_vertices[1].v, _vertices[0].v);
|
|
Vector ac = VectorSubtract(_vertices[2].v, _vertices[0].v);
|
|
|
|
// Take their cross product.
|
|
Vector cross = VectorCross(ab, ac);
|
|
|
|
// For a correctly-wound triangle, this should point inwards.
|
|
// Since our corner vectors point generally outwards, the dot product of
|
|
// any of these with cross should be negative.
|
|
if (VectorDot(cross, _vertices[0].v) > 0)
|
|
{
|
|
// If not, we swap v1 and v2.
|
|
Vertex temp = _vertices[1];
|
|
_vertices[1] = _vertices[2];
|
|
_vertices[2] = temp;
|
|
}
|
|
}
|
|
|
|
@end
|