6f9df08549
git-svn-id: http://svn.berlios.de/svnroot/repos/oolite-linux/trunk@53 127b21dd-08f5-0310-b4b7-95ae10353056
646 lines
16 KiB
C
Executable File
646 lines
16 KiB
C
Executable File
/*
|
|
|
|
Provides utility routines for Vectors, rotation matrices, and conversion to OpenGL transformation matrices
|
|
|
|
*
|
|
* Oolite
|
|
*
|
|
* Created by Giles Williams on Sat Apr 03 2004.
|
|
* Copyright (c) 2004 for aegidian.org. All rights reserved.
|
|
*
|
|
|
|
Copyright (c) 2004, Giles C Williams
|
|
All rights reserved.
|
|
|
|
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License.
|
|
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.0/
|
|
or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
|
|
|
|
You are free:
|
|
|
|
¥ to copy, distribute, display, and perform the work
|
|
¥ to make derivative works
|
|
|
|
Under the following conditions:
|
|
|
|
¥ Attribution. You must give the original author credit.
|
|
|
|
¥ Noncommercial. You may not use this work for commercial purposes.
|
|
|
|
¥ Share Alike. If you alter, transform, or build upon this work,
|
|
you may distribute the resulting work only under a license identical to this one.
|
|
|
|
For any reuse or distribution, you must make clear to others the license terms of this work.
|
|
|
|
Any of these conditions can be waived if you get permission from the copyright holder.
|
|
|
|
Your fair use and other rights are in no way affected by the above.
|
|
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
//#include <ppc_intrinsics.h>
|
|
|
|
#include "vector.h"
|
|
#include "legacy_random.h"
|
|
|
|
#define PI 3.1415926535897932384626433832795
|
|
|
|
static Matrix start_matrix =
|
|
{
|
|
{1.0, 0.0, 0.0},
|
|
{0.0, 1.0, 0.0},
|
|
{0.0, 0.0, 1.0}
|
|
};
|
|
|
|
//
|
|
// Multiply first matrix by second matrix.
|
|
// Put result into first matrix.
|
|
//
|
|
void mult_matrix (struct vector *first, struct vector *second)
|
|
{
|
|
int i;
|
|
Matrix rv;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
|
|
rv[i].x = (first[0].x * second[i].x) +
|
|
(first[1].x * second[i].y) +
|
|
(first[2].x * second[i].z);
|
|
|
|
rv[i].y = (first[0].y * second[i].x) +
|
|
(first[1].y * second[i].y) +
|
|
(first[2].y * second[i].z);
|
|
|
|
rv[i].z = (first[0].z * second[i].x) +
|
|
(first[1].z * second[i].y) +
|
|
(first[2].z * second[i].z);
|
|
}
|
|
|
|
for (i = 0; i < 3; i++)
|
|
first[i] = rv[i];
|
|
}
|
|
|
|
//
|
|
// Multiply vector by matrix.
|
|
//
|
|
void mult_vector (struct vector *vec, struct vector *mat)
|
|
{
|
|
GLfloat x;
|
|
GLfloat y;
|
|
GLfloat z;
|
|
|
|
x = (vec->x * mat[0].x) +
|
|
(vec->y * mat[0].y) +
|
|
(vec->z * mat[0].z);
|
|
|
|
y = (vec->x * mat[1].x) +
|
|
(vec->y * mat[1].y) +
|
|
(vec->z * mat[1].z);
|
|
|
|
z = (vec->x * mat[2].x) +
|
|
(vec->y * mat[2].y) +
|
|
(vec->z * mat[2].z);
|
|
|
|
vec->x = x;
|
|
vec->y = y;
|
|
vec->z = z;
|
|
}
|
|
|
|
//
|
|
// Multiply vector by gl_matrix.
|
|
//
|
|
void mult_vector_gl_matrix (struct vector *vec, GLfloat *glmat)
|
|
{
|
|
GLfloat x;
|
|
GLfloat y;
|
|
GLfloat z;
|
|
GLfloat w = 1.0;
|
|
|
|
x = (vec->x * glmat[0]) +
|
|
(vec->y * glmat[4]) +
|
|
(vec->z * glmat[8]) +
|
|
(1.0 * glmat[12]);
|
|
|
|
y = (vec->x * glmat[1]) +
|
|
(vec->y * glmat[5]) +
|
|
(vec->z * glmat[9]) +
|
|
(1.0 * glmat[13]);
|
|
|
|
z = (vec->x * glmat[2]) +
|
|
(vec->y * glmat[6]) +
|
|
(vec->z * glmat[10]) +
|
|
(1.0 * glmat[13]);
|
|
|
|
w = (vec->x * glmat[3]) +
|
|
(vec->y * glmat[7]) +
|
|
(vec->z * glmat[11]) +
|
|
(1.0 * glmat[15]);
|
|
|
|
vec->x = x/w;
|
|
vec->y = y/w;
|
|
vec->z = z/w;
|
|
}
|
|
|
|
// returns the square of the magnitude of the vector
|
|
//
|
|
inline GLfloat magnitude2 (Vector vec)
|
|
{
|
|
return vec.x * vec.x + vec.y * vec.y + vec.z * vec.z;
|
|
}
|
|
|
|
// returns the square of the distance between two points
|
|
//
|
|
inline GLfloat distance2 (Vector v1, Vector v2)
|
|
{
|
|
return (v1.x - v2.x) * (v1.x - v2.x) + (v1.y - v2.y) * (v1.y - v2.y) + (v1.z - v2.z) * (v1.z - v2.z);
|
|
}
|
|
|
|
// Calculate the dot product of two vectors sharing a common point.
|
|
// Returns the cosine of the angle between the two vectors.
|
|
//
|
|
inline GLfloat dot_product (Vector first, Vector second)
|
|
{
|
|
return (first.x * second.x) + (first.y * second.y) + (first.z * second.z);
|
|
}
|
|
|
|
// NOTE IMPORTANT
|
|
// this cross product routine returns the UNIT vector cross product
|
|
//
|
|
Vector cross_product (Vector first, Vector second)
|
|
{
|
|
Vector result;
|
|
GLfloat det, mag2;
|
|
result.x = (first.y * second.z) - (first.z * second.y);
|
|
result.y = (first.z * second.x) - (first.x * second.z);
|
|
result.z = (first.x * second.y) - (first.y * second.x);
|
|
mag2 = result.x * result.x + result.y * result.y + result.z * result.z;
|
|
if (mag2 > 0.0)
|
|
{
|
|
det = 1.0 / sqrt(mag2);
|
|
result.x *= det; result.y *= det; result.z *= det;
|
|
return result;
|
|
}
|
|
else
|
|
{
|
|
result.x = result.y = result.z = 0.0;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
|
|
Vector normal_to_surface (Vector v1, Vector v2, Vector v3)
|
|
{
|
|
Vector d0, d1;
|
|
d0.x = v2.x - v1.x; d0.y = v2.y - v1.y; d0.z = v2.z - v1.z;
|
|
d1.x = v3.x - v2.x; d1.y = v3.y - v2.y; d1.z = v3.z - v2.z;
|
|
return cross_product(d0,d1);
|
|
}
|
|
|
|
// make a vector
|
|
//
|
|
inline struct vector make_vector (GLfloat vx, GLfloat vy, GLfloat vz)
|
|
{
|
|
Vector result;
|
|
result.x = vx;
|
|
result.y = vy;
|
|
result.z = vz;
|
|
return result;
|
|
}
|
|
|
|
|
|
// Convert a vector into a vector of unit (1) length.
|
|
//
|
|
//Vector unit_vector (struct vector *vec)
|
|
//{
|
|
// GLfloat lx,ly,lz;
|
|
// float len,isqrt,temp1,temp2;
|
|
// Vector res;
|
|
//
|
|
// lx = vec->x;
|
|
// ly = vec->y;
|
|
// lz = vec->z;
|
|
//
|
|
// len = lx * lx + ly * ly + lz * lz;
|
|
//
|
|
// // Fast estimate
|
|
// isqrt = __frsqrte (len);
|
|
//
|
|
// // Newton-Rhapson
|
|
// temp1 = len - 0.5f;
|
|
// temp2 = isqrt * isqrt;
|
|
// temp1 *= isqrt;
|
|
// isqrt *= (float)(3.0/2.0);
|
|
// len = isqrt + temp1 * temp2;
|
|
//
|
|
// res.x = lx * len;
|
|
// res.y = ly * len;
|
|
// res.z = lz * len;
|
|
//
|
|
// return res;
|
|
//}
|
|
Vector unit_vector (struct vector *vec)
|
|
{
|
|
GLfloat lx,ly,lz;
|
|
GLfloat det;
|
|
Vector res;
|
|
|
|
lx = vec->x;
|
|
ly = vec->y;
|
|
lz = vec->z;
|
|
|
|
det = 1.0 / sqrt (lx * lx + ly * ly + lz * lz);
|
|
|
|
res.x = lx * det;
|
|
res.y = ly * det;
|
|
res.z = lz * det;
|
|
|
|
return res;
|
|
}
|
|
|
|
// set the unit matrix
|
|
//
|
|
void set_matrix_identity (struct vector *mat)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
mat[i] = start_matrix[i];
|
|
}
|
|
|
|
|
|
// orthonormalisation
|
|
//
|
|
void tidy_matrix (struct vector *mat)
|
|
{
|
|
mat[2] = unit_vector (&mat[2]);
|
|
|
|
if ((mat[2].x > -1) && (mat[2].x < 1))
|
|
{
|
|
if ((mat[2].y > -1) && (mat[2].y < 1))
|
|
{
|
|
mat[1].z = -(mat[2].x * mat[1].x + mat[2].y * mat[1].y) / mat[2].z;
|
|
}
|
|
else
|
|
{
|
|
mat[1].y = -(mat[2].x * mat[1].x + mat[2].z * mat[1].z) / mat[2].y;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mat[1].x = -(mat[2].y * mat[1].y + mat[2].z * mat[1].z) / mat[2].x;
|
|
}
|
|
|
|
mat[1] = unit_vector (&mat[1]);
|
|
|
|
mat[0].x = mat[1].y * mat[2].z - mat[1].z * mat[2].y;
|
|
mat[0].y = mat[1].z * mat[2].x - mat[1].x * mat[2].z;
|
|
mat[0].z = mat[1].x * mat[2].y - mat[1].y * mat[2].x;
|
|
}
|
|
|
|
|
|
// produce a GL_matrix from a rotation matrix
|
|
//
|
|
void matrix_into_gl_matrix(struct vector *mat, GLfloat *glmat)
|
|
{
|
|
glmat[0] = mat[0].x; glmat[4] = mat[0].y; glmat[8] = mat[0].z; glmat[3] = 0.0;
|
|
glmat[1] = mat[1].x; glmat[5] = mat[1].y; glmat[9] = mat[1].z; glmat[7] = 0.0;
|
|
glmat[2] = mat[2].x; glmat[6] = mat[2].y; glmat[10] = mat[2].z; glmat[11] = 0.0;
|
|
glmat[12] = 0.0; glmat[13] = 0.0; glmat[14] = 0.0; glmat[15] = 1.0;
|
|
}
|
|
|
|
// turn forward, up and right vectors into a gl matrix
|
|
//
|
|
void vectors_into_gl_matrix(Vector vf, Vector vr, Vector vu, GLfloat *glmat)
|
|
{
|
|
glmat[0] = vr.x; glmat[4] = vu.x; glmat[8] = vf.x; glmat[3] = 0.0;
|
|
glmat[1] = vr.y; glmat[5] = vu.y; glmat[9] = vf.y; glmat[7] = 0.0;
|
|
glmat[2] = vr.z; glmat[6] = vu.z; glmat[10] = vf.z; glmat[11] = 0.0;
|
|
glmat[12] = 0.0; glmat[13] = 0.0; glmat[14] = 0.0; glmat[15] = 1.0;
|
|
}
|
|
|
|
void gl_matrix_into_matrix(GLfloat *glmat, struct vector *mat)
|
|
{
|
|
mat[0].x = glmat[0]; mat[0].y = glmat[4]; mat[0].z = glmat[8];
|
|
mat[1].x = glmat[1]; mat[1].y = glmat[5]; mat[1].z = glmat[9];
|
|
mat[2].x = glmat[2]; mat[2].y = glmat[6]; mat[2].z = glmat[10];
|
|
}
|
|
|
|
void bounding_box_add_vector(struct boundingBox *box, Vector vec)
|
|
{
|
|
if (vec.x < box->min_x) box->min_x = vec.x;
|
|
if (vec.x > box->max_x) box->max_x = vec.x;
|
|
if (vec.y < box->min_y) box->min_y = vec.y;
|
|
if (vec.y > box->max_y) box->max_y = vec.y;
|
|
if (vec.z < box->min_z) box->min_z = vec.z;
|
|
if (vec.z > box->max_z) box->max_z = vec.z;
|
|
}
|
|
|
|
void bounding_box_add_xyz(struct boundingBox *box, GLfloat x, GLfloat y, GLfloat z)
|
|
{
|
|
if (x < box->min_x) box->min_x = x;
|
|
if (x > box->max_x) box->max_x = x;
|
|
if (y < box->min_y) box->min_y = y;
|
|
if (y > box->max_y) box->max_y = y;
|
|
if (z < box->min_z) box->min_z = z;
|
|
if (z > box->max_z) box->max_z = z;
|
|
}
|
|
|
|
void bounding_box_reset(struct boundingBox *box)
|
|
{
|
|
box->min_x = 0.0;
|
|
box->max_x = 0.0;
|
|
box->min_y = 0.0;
|
|
box->max_y = 0.0;
|
|
box->min_z = 0.0;
|
|
box->max_z = 0.0;
|
|
}
|
|
|
|
void bounding_box_reset_to_vector(struct boundingBox *box, Vector vec)
|
|
{
|
|
box->min_x = vec.x;
|
|
box->max_x = vec.x;
|
|
box->min_y = vec.y;
|
|
box->max_y = vec.y;
|
|
box->min_z = vec.z;
|
|
box->max_z = vec.z;
|
|
}
|
|
|
|
/*
|
|
|
|
QUATERNION MATH ROUTINES
|
|
|
|
|
|
*/
|
|
|
|
// product of two quaternions
|
|
//
|
|
Quaternion quaternion_multiply(Quaternion q1, Quaternion q2)
|
|
{
|
|
Quaternion result;
|
|
result.w = q1.w * q2.w - q2.x * q1.x - q1.y * q2.y - q1.z * q2.z;
|
|
result.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;
|
|
result.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z;
|
|
result.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x;
|
|
return result;
|
|
}
|
|
// set identity
|
|
//
|
|
void quaternion_set_identity(struct quaternion *quat)
|
|
{
|
|
quat->w = 1.0;
|
|
quat->x = 0.0;
|
|
quat->y = 0.0;
|
|
quat->z = 0.0;
|
|
}
|
|
// set random
|
|
//
|
|
void quaternion_set_random(struct quaternion *quat)
|
|
{
|
|
quat->w = (ranrot_rand() & 1023) - 512.0; // -512 to +512;
|
|
quat->x = (ranrot_rand() & 1023) - 512.0; // -512 to +512
|
|
quat->y = (ranrot_rand() & 1023) - 512.0; // -512 to +512
|
|
quat->z = (ranrot_rand() & 1023) - 512.0; // -512 to +512
|
|
quaternion_normalise(quat);
|
|
}
|
|
// set angle a about axis v
|
|
//
|
|
void quaternion_set_rotate_about_axis(struct quaternion *quat, Vector axis, GLfloat angle)
|
|
{
|
|
GLfloat a = angle * 0.5;
|
|
GLfloat scale = sin(a);
|
|
|
|
quat->w = cos(a);
|
|
quat->x = axis.x * scale;
|
|
quat->y = axis.y * scale;
|
|
quat->z = axis.z * scale;
|
|
}
|
|
// dot product of two vectors
|
|
//
|
|
GLfloat quaternion_dot_product(Quaternion q1, Quaternion q2)
|
|
{
|
|
return (q1.w*q2.w + q1.x*q2.x + q1.y*q2.y + q1.z*q2.z);
|
|
}
|
|
// produce a GL_matrix from a quaternion
|
|
//
|
|
void quaternion_into_gl_matrix(Quaternion quat, GLfloat *glmat)
|
|
{
|
|
GLfloat w, wz, wy, wx;
|
|
GLfloat x, xz, xy, xx;
|
|
GLfloat y, yz, yy;
|
|
GLfloat z, zz;
|
|
|
|
w = quat.w;
|
|
z = quat.z;
|
|
y = quat.y;
|
|
x = quat.x;
|
|
|
|
xx = 2.0 * x; yy = 2.0 * y; zz = 2.0 * z;
|
|
wx = w * xx; wy = w * yy; wz = w * zz;
|
|
xx = x * xx; xy = x * yy; xz = x * zz;
|
|
yy = y * yy; yz = y * zz;
|
|
zz = z * zz;
|
|
|
|
glmat[0] = 1.0 - yy- zz; glmat[4] = xy + wz; glmat[8] = xz - wy; glmat[12] = 0.0;
|
|
glmat[1] = xy - wz; glmat[5] = 1.0 - xx - zz; glmat[9] = yz + wx; glmat[13] = 0.0;
|
|
glmat[2] = xz + wy; glmat[6] = yz - wx; glmat[10] = 1.0 - xx - yy; glmat[14] = 0.0;
|
|
glmat[3] = 0.0; glmat[7] = 0.0; glmat[11] = 0.0; glmat[15] = 1.0;
|
|
|
|
}
|
|
// produce a right vector from a quaternion
|
|
//
|
|
Vector vector_right_from_quaternion(Quaternion quat)
|
|
{
|
|
GLfloat w, wz, wy, wx;
|
|
GLfloat x, xz, xy, xx;
|
|
GLfloat y, yz, yy;
|
|
GLfloat z, zz;
|
|
Vector res;
|
|
|
|
w = quat.w;
|
|
z = quat.z;
|
|
y = quat.y;
|
|
x = quat.x;
|
|
|
|
xx = 2.0 * x; yy = 2.0 * y; zz = 2.0 * z;
|
|
wx = w * xx; wy = w * yy; wz = w * zz;
|
|
xx = x * xx; xy = x * yy; xz = x * zz;
|
|
yy = y * yy; yz = y * zz;
|
|
zz = z * zz;
|
|
|
|
res.x = 1.0 - yy - zz; res.y = xy - wz; res.z = xz + wy;
|
|
|
|
return unit_vector(&res);
|
|
}
|
|
// produce an up vector from a quaternion
|
|
//
|
|
Vector vector_up_from_quaternion(Quaternion quat)
|
|
{
|
|
GLfloat w, wz, wy, wx;
|
|
GLfloat x, xz, xy, xx;
|
|
GLfloat y, yz, yy;
|
|
GLfloat z, zz;
|
|
Vector res;
|
|
|
|
w = quat.w;
|
|
z = quat.z;
|
|
y = quat.y;
|
|
x = quat.x;
|
|
|
|
xx = 2.0 * x; yy = 2.0 * y; zz = 2.0 * z;
|
|
wx = w * xx; wy = w * yy; wz = w * zz;
|
|
xx = x * xx; xy = x * yy; xz = x * zz;
|
|
yy = y * yy; yz = y * zz;
|
|
zz = z * zz;
|
|
|
|
res.x = xy + wz; res.y = 1.0 - xx - zz; res.z = yz - wx;
|
|
|
|
return unit_vector(&res);
|
|
}
|
|
// produce a forward vector from a quaternion
|
|
//
|
|
Vector vector_forward_from_quaternion(Quaternion quat)
|
|
{
|
|
GLfloat w, wz, wy, wx;
|
|
GLfloat x, xz, xy, xx;
|
|
GLfloat y, yz, yy;
|
|
GLfloat z, zz;
|
|
Vector res;
|
|
|
|
w = quat.w;
|
|
z = quat.z;
|
|
y = quat.y;
|
|
x = quat.x;
|
|
|
|
xx = 2.0 * x; yy = 2.0 * y; zz = 2.0 * z;
|
|
wx = w * xx; wy = w * yy; wz = w * zz;
|
|
xx = x * xx; xy = x * yy; xz = x * zz;
|
|
yy = y * yy; yz = y * zz;
|
|
zz = z * zz;
|
|
|
|
res.x = xz - wy; res.y = yz + wx; res.z = 1.0 - xx - yy;
|
|
|
|
return unit_vector(&res);
|
|
}
|
|
|
|
// produce a quaternion representing an angle between two vectors
|
|
//
|
|
Quaternion quaternion_rotation_between(Vector v0, Vector v1) // vectors both normalised
|
|
{
|
|
Quaternion q;
|
|
quaternion_set_identity(&q);
|
|
Vector xp = make_vector((v0.y * v1.z) - (v0.z * v1.y), (v0.z * v1.x) - (v0.x * v1.z), (v0.x * v1.y) - (v0.y * v1.x));
|
|
double d = dot_product( v0, v1);
|
|
double s = sqrt((1.0 + d) * 2.0);
|
|
if (s)
|
|
{
|
|
q.x = xp.x / s;
|
|
q.y = xp.y / s;
|
|
q.z = xp.z / s;
|
|
q.w = s / 2.0;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
// rotate about fixed axes
|
|
//
|
|
void quaternion_rotate_about_x(struct quaternion *quat, GLfloat angle)
|
|
{
|
|
Quaternion result;
|
|
GLfloat a = angle * 0.5;
|
|
GLfloat w = cos(a);
|
|
GLfloat scale = sin(a);
|
|
|
|
result.w = quat->w * w - quat->x * scale;
|
|
result.x = quat->w * scale + quat->x * w;
|
|
result.y = quat->y * w + quat->z * scale;
|
|
result.z = quat->z * w - quat->y * scale;
|
|
|
|
quat->w = result.w;
|
|
quat->x = result.x;
|
|
quat->y = result.y;
|
|
quat->z = result.z;
|
|
}
|
|
void quaternion_rotate_about_y(struct quaternion *quat, GLfloat angle)
|
|
{
|
|
Quaternion result;
|
|
GLfloat a = angle * 0.5;
|
|
GLfloat w = cos(a);
|
|
GLfloat scale = sin(a);
|
|
|
|
result.w = quat->w * w - quat->y * scale;
|
|
result.x = quat->x * w - quat->z * scale;
|
|
result.y = quat->w * scale + quat->y * w;
|
|
result.z = quat->z * w + quat->x * scale;
|
|
|
|
quat->w = result.w;
|
|
quat->x = result.x;
|
|
quat->y = result.y;
|
|
quat->z = result.z;
|
|
}
|
|
void quaternion_rotate_about_z(struct quaternion *quat, GLfloat angle)
|
|
{
|
|
Quaternion result;
|
|
GLfloat a = angle * 0.5;
|
|
GLfloat w = cos(a);
|
|
GLfloat scale = sin(a);
|
|
|
|
result.w = quat->w * w - quat->z * scale;
|
|
result.x = quat->x * w + quat->y * scale;
|
|
result.y = quat->y * w - quat->x * scale;
|
|
result.z = quat->w * scale + quat->z * w;
|
|
|
|
quat->w = result.w;
|
|
quat->x = result.x;
|
|
quat->y = result.y;
|
|
quat->z = result.z;
|
|
}
|
|
void quaternion_rotate_about_axis(struct quaternion *quat, Vector axis, GLfloat angle)
|
|
{
|
|
Quaternion q2, result;
|
|
GLfloat a = angle * 0.5;
|
|
GLfloat w = cos(a);
|
|
GLfloat scale = sin(a);
|
|
|
|
//printf("Axis %.1f, %.1f, %.1f : ", axis.x, axis.y, axis.z);
|
|
|
|
q2.w = w;
|
|
q2.x = axis.x * scale;
|
|
q2.y = axis.y * scale;
|
|
q2.z = axis.z * scale;
|
|
|
|
//printf("Quat input %.1f, %.1f, %.1f, %.1f : ", quat->w, quat->x, quat->y, quat->z); // input is OKAY
|
|
|
|
//printf("Quat multiplier %.1f, %.1f, %.1f, %.1f : ", q2.w, q2.x, q2.y, q2.z);
|
|
|
|
result.w = quat->w * q2.w - q2.x * quat->x - quat->y * q2.y - quat->z * q2.z;
|
|
result.x = quat->w * q2.x + quat->x * q2.w + quat->y * q2.z - quat->z * q2.y;
|
|
result.y = quat->w * q2.y + quat->y * q2.w + quat->z * q2.x - quat->x * q2.z;
|
|
result.z = quat->w * q2.z + quat->z * q2.w + quat->x * q2.y - quat->y * q2.x;
|
|
|
|
//printf("Quat result %.1f, %.1f, %.1f, %.1f\n", result.w, result.x, result.y, result.z);
|
|
|
|
quat->w = result.w;
|
|
quat->x = result.x;
|
|
quat->y = result.y;
|
|
quat->z = result.z;
|
|
}
|
|
//
|
|
// normalise
|
|
//
|
|
void quaternion_normalise(struct quaternion *quat)
|
|
{
|
|
GLfloat w = quat->w;
|
|
GLfloat x = quat->x;
|
|
GLfloat y = quat->y;
|
|
GLfloat z = quat->z;
|
|
GLfloat lv = 1.0 / sqrt(w*w + x*x + y*y + z*z);
|
|
|
|
quat->w = lv * w;
|
|
quat->x = lv * x;
|
|
quat->y = lv * y;
|
|
quat->z = lv * z;
|
|
}
|