Add libjpeg-turbo win64 build v2.0.6...

https://libjpeg-turbo.virtualgl.org/
master
Jordan Irwin 2021-06-01 15:30:15 -07:00
parent 19d2bcfb91
commit 1ffac194fe
12 changed files with 4359 additions and 0 deletions

View File

@ -17,3 +17,4 @@ Dependencies for building [Minetest](http://minetest.net/) on Windows.
- [ncurses](https://invisible-island.net/ncurses/) ([ncurses](docs/licenses/ncurses.txt)) v6.2
- [gettext (libintl)](https://www.gnu.org/software/gettext/) ([GNU GPL v3.0](docs/licenses/GNU-GPLv3.0.txt)) v0.21
- [libpng](http://www.libpng.org/pub/png/libpng.html) ([zlib](docs/licenses/libpng.txt)) v1.6.37
- [libjpeg-turbo](https://libjpeg-turbo.virtualgl.org/) ([BSD / zlib](docs/licenses/libjpeg-turbo.txt) / [IJG](docs/licenses/README.ijg)) v2.0.6

271
docs/licenses/README.ijg Normal file
View File

@ -0,0 +1,271 @@
libjpeg-turbo note: This file has been modified by The libjpeg-turbo Project
to include only information relevant to libjpeg-turbo, to wordsmith certain
sections, and to remove impolitic language that existed in the libjpeg v8
README. It is included only for reference. Please see README.md for
information specific to libjpeg-turbo.
The Independent JPEG Group's JPEG software
==========================================
This distribution contains a release of the Independent JPEG Group's free JPEG
software. You are welcome to redistribute this software and to use it for any
purpose, subject to the conditions under LEGAL ISSUES, below.
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers,
and other members of the Independent JPEG Group.
IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee
(also known as JPEG, together with ITU-T SG16).
DOCUMENTATION ROADMAP
=====================
This file contains the following sections:
OVERVIEW General description of JPEG and the IJG software.
LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
REFERENCES Where to learn more about JPEG.
ARCHIVE LOCATIONS Where to find newer versions of this software.
FILE FORMAT WARS Software *not* to get.
TO DO Plans for future IJG releases.
Other documentation files in the distribution are:
User documentation:
usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
rdjpgcom, and wrjpgcom.
*.1 Unix-style man pages for programs (same info as usage.txt).
wizard.txt Advanced usage instructions for JPEG wizards only.
change.log Version-to-version change highlights.
Programmer and internal documentation:
libjpeg.txt How to use the JPEG library in your own programs.
example.txt Sample code for calling the JPEG library.
structure.txt Overview of the JPEG library's internal structure.
coderules.txt Coding style rules --- please read if you contribute code.
Please read at least usage.txt. Some information can also be found in the JPEG
FAQ (Frequently Asked Questions) article. See ARCHIVE LOCATIONS below to find
out where to obtain the FAQ article.
If you want to understand how the JPEG code works, we suggest reading one or
more of the REFERENCES, then looking at the documentation files (in roughly
the order listed) before diving into the code.
OVERVIEW
========
This package contains C software to implement JPEG image encoding, decoding,
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
method for full-color and grayscale images. JPEG's strong suit is compressing
photographic images or other types of images that have smooth color and
brightness transitions between neighboring pixels. Images with sharp lines or
other abrupt features may not compress well with JPEG, and a higher JPEG
quality may have to be used to avoid visible compression artifacts with such
images.
JPEG is lossy, meaning that the output pixels are not necessarily identical to
the input pixels. However, on photographic content and other "smooth" images,
very good compression ratios can be obtained with no visible compression
artifacts, and extremely high compression ratios are possible if you are
willing to sacrifice image quality (by reducing the "quality" setting in the
compressor.)
This software implements JPEG baseline, extended-sequential, and progressive
compression processes. Provision is made for supporting all variants of these
processes, although some uncommon parameter settings aren't implemented yet.
We have made no provision for supporting the hierarchical or lossless
processes defined in the standard.
We provide a set of library routines for reading and writing JPEG image files,
plus two sample applications "cjpeg" and "djpeg", which use the library to
perform conversion between JPEG and some other popular image file formats.
The library is intended to be reused in other applications.
In order to support file conversion and viewing software, we have included
considerable functionality beyond the bare JPEG coding/decoding capability;
for example, the color quantization modules are not strictly part of JPEG
decoding, but they are essential for output to colormapped file formats or
colormapped displays. These extra functions can be compiled out of the
library if not required for a particular application.
We have also included "jpegtran", a utility for lossless transcoding between
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
applications for inserting and extracting textual comments in JFIF files.
The emphasis in designing this software has been on achieving portability and
flexibility, while also making it fast enough to be useful. In particular,
the software is not intended to be read as a tutorial on JPEG. (See the
REFERENCES section for introductory material.) Rather, it is intended to
be reliable, portable, industrial-strength code. We do not claim to have
achieved that goal in every aspect of the software, but we strive for it.
We welcome the use of this software as a component of commercial products.
No royalty is required, but we do ask for an acknowledgement in product
documentation, as described under LEGAL ISSUES.
LEGAL ISSUES
============
In plain English:
1. We don't promise that this software works. (But if you find any bugs,
please let us know!)
2. You can use this software for whatever you want. You don't have to pay us.
3. You may not pretend that you wrote this software. If you use it in a
program, you must acknowledge somewhere in your documentation that
you've used the IJG code.
In legalese:
The authors make NO WARRANTY or representation, either express or implied,
with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose. This software is provided "AS IS", and you,
its user, assume the entire risk as to its quality and accuracy.
This software is copyright (C) 1991-2016, Thomas G. Lane, Guido Vollbeding.
All Rights Reserved except as specified below.
Permission is hereby granted to use, copy, modify, and distribute this
software (or portions thereof) for any purpose, without fee, subject to these
conditions:
(1) If any part of the source code for this software is distributed, then this
README file must be included, with this copyright and no-warranty notice
unaltered; and any additions, deletions, or changes to the original files
must be clearly indicated in accompanying documentation.
(2) If only executable code is distributed, then the accompanying
documentation must state that "this software is based in part on the work of
the Independent JPEG Group".
(3) Permission for use of this software is granted only if the user accepts
full responsibility for any undesirable consequences; the authors accept
NO LIABILITY for damages of any kind.
These conditions apply to any software derived from or based on the IJG code,
not just to the unmodified library. If you use our work, you ought to
acknowledge us.
Permission is NOT granted for the use of any IJG author's name or company name
in advertising or publicity relating to this software or products derived from
it. This software may be referred to only as "the Independent JPEG Group's
software".
We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are
assumed by the product vendor.
The IJG distribution formerly included code to read and write GIF files.
To avoid entanglement with the Unisys LZW patent (now expired), GIF reading
support has been removed altogether, and the GIF writer has been simplified
to produce "uncompressed GIFs". This technique does not use the LZW
algorithm; the resulting GIF files are larger than usual, but are readable
by all standard GIF decoders.
We are required to state that
"The Graphics Interchange Format(c) is the Copyright property of
CompuServe Incorporated. GIF(sm) is a Service Mark property of
CompuServe Incorporated."
REFERENCES
==========
We recommend reading one or more of these references before trying to
understand the innards of the JPEG software.
The best short technical introduction to the JPEG compression algorithm is
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
(Adjacent articles in that issue discuss MPEG motion picture compression,
applications of JPEG, and related topics.) If you don't have the CACM issue
handy, a PDF file containing a revised version of Wallace's article is
available at http://www.ijg.org/files/Wallace.JPEG.pdf. The file (actually
a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
omits the sample images that appeared in CACM, but it includes corrections
and some added material. Note: the Wallace article is copyright ACM and IEEE,
and it may not be used for commercial purposes.
A somewhat less technical, more leisurely introduction to JPEG can be found in
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides
good explanations and example C code for a multitude of compression methods
including JPEG. It is an excellent source if you are comfortable reading C
code but don't know much about data compression in general. The book's JPEG
sample code is far from industrial-strength, but when you are ready to look
at a full implementation, you've got one here...
The best currently available description of JPEG is the textbook "JPEG Still
Image Data Compression Standard" by William B. Pennebaker and Joan L.
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG
standards (DIS 10918-1 and draft DIS 10918-2).
The original JPEG standard is divided into two parts, Part 1 being the actual
specification, while Part 2 covers compliance testing methods. Part 1 is
titled "Digital Compression and Coding of Continuous-tone Still Images,
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of
Continuous-tone Still Images, Part 2: Compliance testing" and has document
numbers ISO/IEC IS 10918-2, ITU-T T.83.
The JPEG standard does not specify all details of an interchangeable file
format. For the omitted details, we follow the "JFIF" conventions, revision
1.02. JFIF version 1 has been adopted as ISO/IEC 10918-5 (05/2013) and
Recommendation ITU-T T.871 (05/2011): Information technology - Digital
compression and coding of continuous-tone still images: JPEG File Interchange
Format (JFIF). It is available as a free download in PDF file format from
https://www.iso.org/standard/54989.html and http://www.itu.int/rec/T-REC-T.871.
A PDF file of the older JFIF 1.02 specification is available at
http://www.w3.org/Graphics/JPEG/jfif3.pdf.
The TIFF 6.0 file format specification can be obtained from
http://mirrors.ctan.org/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation
scheme found in the TIFF 6.0 spec of 3-June-92 has a number of serious
problems. IJG does not recommend use of the TIFF 6.0 design (TIFF Compression
tag 6). Instead, we recommend the JPEG design proposed by TIFF Technical Note
#2 (Compression tag 7). Copies of this Note can be obtained from
http://www.ijg.org/files/. It is expected that the next revision
of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
Although IJG's own code does not support TIFF/JPEG, the free libtiff library
uses our library to implement TIFF/JPEG per the Note.
ARCHIVE LOCATIONS
=================
The "official" archive site for this software is www.ijg.org.
The most recent released version can always be found there in
directory "files".
The JPEG FAQ (Frequently Asked Questions) article is a source of some
general information about JPEG. It is available at
http://www.faqs.org/faqs/jpeg-faq.
FILE FORMAT COMPATIBILITY
=========================
This software implements ITU T.81 | ISO/IEC 10918 with some extensions from
ITU T.871 | ISO/IEC 10918-5 (JPEG File Interchange Format-- see REFERENCES).
Informally, the term "JPEG image" or "JPEG file" most often refers to JFIF or
a subset thereof, but there are other formats containing the name "JPEG" that
are incompatible with the DCT-based JPEG standard or with JFIF (for instance,
JPEG 2000 and JPEG XR). This software therefore does not support these
formats. Indeed, one of the original reasons for developing this free software
was to help force convergence on a common, interoperable format standard for
JPEG files.
JFIF is a minimal or "low end" representation. TIFF/JPEG (TIFF revision 6.0 as
modified by TIFF Technical Note #2) can be used for "high end" applications
that need to record a lot of additional data about an image.
TO DO
=====
Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org.

View File

@ -0,0 +1,132 @@
libjpeg-turbo Licenses
======================
libjpeg-turbo is covered by three compatible BSD-style open source licenses:
- The IJG (Independent JPEG Group) License, which is listed in
[README.ijg](README.ijg)
This license applies to the libjpeg API library and associated programs
(any code inherited from libjpeg, and any modifications to that code.)
- The Modified (3-clause) BSD License, which is listed below
This license covers the TurboJPEG API library and associated programs, as
well as the build system.
- The [zlib License](https://opensource.org/licenses/Zlib)
This license is a subset of the other two, and it covers the libjpeg-turbo
SIMD extensions.
Complying with the libjpeg-turbo Licenses
=========================================
This section provides a roll-up of the libjpeg-turbo licensing terms, to the
best of our understanding.
1. If you are distributing a modified version of the libjpeg-turbo source,
then:
1. You cannot alter or remove any existing copyright or license notices
from the source.
**Origin**
- Clause 1 of the IJG License
- Clause 1 of the Modified BSD License
- Clauses 1 and 3 of the zlib License
2. You must add your own copyright notice to the header of each source
file you modified, so others can tell that you modified that file (if
there is not an existing copyright header in that file, then you can
simply add a notice stating that you modified the file.)
**Origin**
- Clause 1 of the IJG License
- Clause 2 of the zlib License
3. You must include the IJG README file, and you must not alter any of the
copyright or license text in that file.
**Origin**
- Clause 1 of the IJG License
2. If you are distributing only libjpeg-turbo binaries without the source, or
if you are distributing an application that statically links with
libjpeg-turbo, then:
1. Your product documentation must include a message stating:
This software is based in part on the work of the Independent JPEG
Group.
**Origin**
- Clause 2 of the IJG license
2. If your binary distribution includes or uses the TurboJPEG API, then
your product documentation must include the text of the Modified BSD
License (see below.)
**Origin**
- Clause 2 of the Modified BSD License
3. You cannot use the name of the IJG or The libjpeg-turbo Project or the
contributors thereof in advertising, publicity, etc.
**Origin**
- IJG License
- Clause 3 of the Modified BSD License
4. The IJG and The libjpeg-turbo Project do not warrant libjpeg-turbo to be
free of defects, nor do we accept any liability for undesirable
consequences resulting from your use of the software.
**Origin**
- IJG License
- Modified BSD License
- zlib License
The Modified (3-clause) BSD License
===================================
Copyright (C)2009-2020 D. R. Commander. All Rights Reserved.
Copyright (C)2015 Viktor Szathmáry. All Rights Reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
- Neither the name of the libjpeg-turbo Project nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Why Three Licenses?
===================
The zlib License could have been used instead of the Modified (3-clause) BSD
License, and since the IJG License effectively subsumes the distribution
conditions of the zlib License, this would have effectively placed
libjpeg-turbo binary distributions under the IJG License. However, the IJG
License specifically refers to the Independent JPEG Group and does not extend
attribution and endorsement protections to other entities. Thus, it was
desirable to choose a license that granted us the same protections for new code
that were granted to the IJG for code derived from their software.

View File

@ -0,0 +1,34 @@
#define JPEG_LIB_VERSION 80
#define LIBJPEG_TURBO_VERSION 2.0.6
#define LIBJPEG_TURBO_VERSION_NUMBER 2000006
#define C_ARITH_CODING_SUPPORTED
#define D_ARITH_CODING_SUPPORTED
/* #undef MEM_SRCDST_SUPPORTED */
#define WITH_SIMD
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
#define HAVE_STDDEF_H
#define HAVE_STDLIB_H
#undef NEED_SYS_TYPES_H
#undef NEED_BSD_STRINGS
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
#undef INCOMPLETE_TYPES_BROKEN
#undef RIGHT_SHIFT_IS_UNSIGNED
#undef __CHAR_UNSIGNED__
/* Define "boolean" as unsigned char, not int, per Windows custom */
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
typedef unsigned char boolean;
#endif
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
/* Define "INT32" as int, not long, per Windows custom */
#if !(defined(_BASETSD_H_) || defined(_BASETSD_H)) /* don't conflict if basetsd.h already read */
typedef short INT16;
typedef signed int INT32;
#endif
#define XMD_H /* prevent jmorecfg.h from redefining it */

View File

@ -0,0 +1,316 @@
/*
* jerror.h
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1994-1997, Thomas G. Lane.
* Modified 1997-2009 by Guido Vollbeding.
* libjpeg-turbo Modifications:
* Copyright (C) 2014, 2017, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file defines the error and message codes for the JPEG library.
* Edit this file to add new codes, or to translate the message strings to
* some other language.
* A set of error-reporting macros are defined too. Some applications using
* the JPEG library may wish to include this file to get the error codes
* and/or the macros.
*/
/*
* To define the enum list of message codes, include this file without
* defining macro JMESSAGE. To create a message string table, include it
* again with a suitable JMESSAGE definition (see jerror.c for an example).
*/
#ifndef JMESSAGE
#ifndef JERROR_H
/* First time through, define the enum list */
#define JMAKE_ENUM_LIST
#else
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
#define JMESSAGE(code, string)
#endif /* JERROR_H */
#endif /* JMESSAGE */
#ifdef JMAKE_ENUM_LIST
typedef enum {
#define JMESSAGE(code, string) code,
#endif /* JMAKE_ENUM_LIST */
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
/* For maintenance convenience, list is alphabetical by message code name */
#if JPEG_LIB_VERSION < 70
JMESSAGE(JERR_ARITH_NOTIMPL, "Sorry, arithmetic coding is not implemented")
#endif
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
#if JPEG_LIB_VERSION >= 70
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
#endif
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
#if JPEG_LIB_VERSION >= 70
JMESSAGE(JERR_BAD_DROP_SAMPLING,
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
#endif
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
JMESSAGE(JERR_BAD_LIB_VERSION,
"Wrong JPEG library version: library is %d, caller expects %d")
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
JMESSAGE(JERR_BAD_PROGRESSION,
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
JMESSAGE(JERR_BAD_PROG_SCRIPT,
"Invalid progressive parameters at scan script entry %d")
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
JMESSAGE(JERR_BAD_STRUCT_SIZE,
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
JMESSAGE(JERR_FILE_READ, "Input file read error")
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
"Cannot transcode due to multiple use of quantization table %d")
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
#if JPEG_LIB_VERSION >= 70
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
#endif
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
JMESSAGE(JERR_QUANT_COMPONENTS,
"Cannot quantize more than %d color components")
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
JMESSAGE(JERR_TFILE_WRITE,
"Write failed on temporary file --- out of disk space?")
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT_SHORT)
JMESSAGE(JMSG_VERSION, JVERSION)
JMESSAGE(JTRC_16BIT_TABLES,
"Caution: quantization tables are too coarse for baseline JPEG")
JMESSAGE(JTRC_ADOBE,
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
JMESSAGE(JTRC_EOI, "End Of Image")
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
"Warning: thumbnail image size does not match data length %u")
JMESSAGE(JTRC_JFIF_EXTENSION, "JFIF extension marker: type 0x%02x, length %u")
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
JMESSAGE(JTRC_RST, "RST%d")
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
"Smoothing not supported with nonstandard sampling ratios")
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
JMESSAGE(JTRC_SOI, "Start of Image")
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
JMESSAGE(JTRC_THUMB_JPEG,
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_PALETTE,
"JFIF extension marker: palette thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_RGB,
"JFIF extension marker: RGB thumbnail image, length %u")
JMESSAGE(JTRC_UNKNOWN_IDS,
"Unrecognized component IDs %d %d %d, assuming YCbCr")
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
#if JPEG_LIB_VERSION >= 70
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
#endif
JMESSAGE(JWRN_BOGUS_PROGRESSION,
"Inconsistent progression sequence for component %d coefficient %d")
JMESSAGE(JWRN_EXTRANEOUS_DATA,
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
JMESSAGE(JWRN_MUST_RESYNC,
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
#if JPEG_LIB_VERSION < 70
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
#if defined(C_ARITH_CODING_SUPPORTED) || defined(D_ARITH_CODING_SUPPORTED)
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
#endif
#endif
JMESSAGE(JWRN_BOGUS_ICC, "Corrupt JPEG data: bad ICC marker")
#ifdef JMAKE_ENUM_LIST
JMSG_LASTMSGCODE
} J_MESSAGE_CODE;
#undef JMAKE_ENUM_LIST
#endif /* JMAKE_ENUM_LIST */
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
#undef JMESSAGE
#ifndef JERROR_H
#define JERROR_H
/* Macros to simplify using the error and trace message stuff */
/* The first parameter is either type of cinfo pointer */
/* Fatal errors (print message and exit) */
#define ERREXIT(cinfo, code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
#define ERREXIT1(cinfo, code, p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
#define ERREXIT2(cinfo, code, p1, p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
#define ERREXIT3(cinfo, code, p1, p2, p3) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
#define ERREXIT4(cinfo, code, p1, p2, p3, p4) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(cinfo)->err->msg_parm.i[3] = (p4), \
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
#define ERREXITS(cinfo, code, str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo)))
#define MAKESTMT(stuff) do { stuff } while (0)
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
#define WARNMS(cinfo, code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), -1))
#define WARNMS1(cinfo, code, p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), -1))
#define WARNMS2(cinfo, code, p1, p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), -1))
/* Informational/debugging messages */
#define TRACEMS(cinfo, lvl, code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)))
#define TRACEMS1(cinfo, lvl, code, p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)))
#define TRACEMS2(cinfo, lvl, code, p1, p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)))
#define TRACEMS3(cinfo, lvl, code, p1, p2, p3) \
MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); )
#define TRACEMS4(cinfo, lvl, code, p1, p2, p3, p4) \
MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); )
#define TRACEMS5(cinfo, lvl, code, p1, p2, p3, p4, p5) \
MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); )
#define TRACEMS8(cinfo, lvl, code, p1, p2, p3, p4, p5, p6, p7, p8) \
MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); )
#define TRACEMSS(cinfo, lvl, code, str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)))
#endif /* JERROR_H */

View File

@ -0,0 +1,88 @@
/*
* jinclude.h
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1994, Thomas G. Lane.
* It was modified by The libjpeg-turbo Project to include only code relevant
* to libjpeg-turbo.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file exists to provide a single place to fix any problems with
* including the wrong system include files. (Common problems are taken
* care of by the standard jconfig symbols, but on really weird systems
* you may have to edit this file.)
*
* NOTE: this file is NOT intended to be included by applications using the
* JPEG library. Most applications need only include jpeglib.h.
*/
/* Include auto-config file to find out which system include files we need. */
#include "jconfig.h" /* auto configuration options */
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
/*
* We need the NULL macro and size_t typedef.
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
* pull in <sys/types.h> as well.
* Note that the core JPEG library does not require <stdio.h>;
* only the default error handler and data source/destination modules do.
* But we must pull it in because of the references to FILE in jpeglib.h.
* You can remove those references if you want to compile without <stdio.h>.
*/
#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef NEED_SYS_TYPES_H
#include <sys/types.h>
#endif
#include <stdio.h>
/*
* We need memory copying and zeroing functions, plus strncpy().
* ANSI and System V implementations declare these in <string.h>.
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
* Some systems may declare memset and memcpy in <memory.h>.
*
* NOTE: we assume the size parameters to these functions are of type size_t.
* Change the casts in these macros if not!
*/
#ifdef NEED_BSD_STRINGS
#include <strings.h>
#define MEMZERO(target, size) \
bzero((void *)(target), (size_t)(size))
#define MEMCOPY(dest, src, size) \
bcopy((const void *)(src), (void *)(dest), (size_t)(size))
#else /* not BSD, assume ANSI/SysV string lib */
#include <string.h>
#define MEMZERO(target, size) \
memset((void *)(target), 0, (size_t)(size))
#define MEMCOPY(dest, src, size) \
memcpy((void *)(dest), (const void *)(src), (size_t)(size))
#endif
/*
* The modules that use fread() and fwrite() always invoke them through
* these macros. On some systems you may need to twiddle the argument casts.
* CAUTION: argument order is different from underlying functions!
*/
#define JFREAD(file, buf, sizeofbuf) \
((size_t)fread((void *)(buf), (size_t)1, (size_t)(sizeofbuf), (file)))
#define JFWRITE(file, buf, sizeofbuf) \
((size_t)fwrite((const void *)(buf), (size_t)1, (size_t)(sizeofbuf), (file)))

View File

@ -0,0 +1,429 @@
/*
* jmorecfg.h
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 1997-2009 by Guido Vollbeding.
* libjpeg-turbo Modifications:
* Copyright (C) 2009, 2011, 2014-2015, 2018, 2020, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains additional configuration options that customize the
* JPEG software for special applications or support machine-dependent
* optimizations. Most users will not need to touch this file.
*/
/* prevents conflicts */
#if defined(__MINGW32__)
#include <shlwapi.h> /* typedefs INT16 and INT32 */
#define HAVE_BOOLEAN
#endif
/*
* Maximum number of components (color channels) allowed in JPEG image.
* To meet the letter of Rec. ITU-T T.81 | ISO/IEC 10918-1, set this to 255.
* However, darn few applications need more than 4 channels (maybe 5 for CMYK +
* alpha mask). We recommend 10 as a reasonable compromise; use 4 if you are
* really short on memory. (Each allowed component costs a hundred or so
* bytes of storage, whether actually used in an image or not.)
*/
#define MAX_COMPONENTS 10 /* maximum number of image components */
/*
* Basic data types.
* You may need to change these if you have a machine with unusual data
* type sizes; for example, "char" not 8 bits, "short" not 16 bits,
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
* but it had better be at least 16.
*/
/* Representation of a single sample (pixel element value).
* We frequently allocate large arrays of these, so it's important to keep
* them small. But if you have memory to burn and access to char or short
* arrays is very slow on your hardware, you might want to change these.
*/
#if BITS_IN_JSAMPLE == 8
/* JSAMPLE should be the smallest type that will hold the values 0..255.
* You can use a signed char by having GETJSAMPLE mask it with 0xFF.
*/
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char JSAMPLE;
#define GETJSAMPLE(value) ((int)(value))
#else /* not HAVE_UNSIGNED_CHAR */
typedef char JSAMPLE;
#ifdef __CHAR_UNSIGNED__
#define GETJSAMPLE(value) ((int)(value))
#else
#define GETJSAMPLE(value) ((int)(value) & 0xFF)
#endif /* __CHAR_UNSIGNED__ */
#endif /* HAVE_UNSIGNED_CHAR */
#define MAXJSAMPLE 255
#define CENTERJSAMPLE 128
#endif /* BITS_IN_JSAMPLE == 8 */
#if BITS_IN_JSAMPLE == 12
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
* On nearly all machines "short" will do nicely.
*/
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int)(value))
#define MAXJSAMPLE 4095
#define CENTERJSAMPLE 2048
#endif /* BITS_IN_JSAMPLE == 12 */
/* Representation of a DCT frequency coefficient.
* This should be a signed value of at least 16 bits; "short" is usually OK.
* Again, we allocate large arrays of these, but you can change to int
* if you have memory to burn and "short" is really slow.
*/
typedef short JCOEF;
/* Compressed datastreams are represented as arrays of JOCTET.
* These must be EXACTLY 8 bits wide, at least once they are written to
* external storage. Note that when using the stdio data source/destination
* managers, this is also the data type passed to fread/fwrite.
*/
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char JOCTET;
#define GETJOCTET(value) (value)
#else /* not HAVE_UNSIGNED_CHAR */
typedef char JOCTET;
#ifdef __CHAR_UNSIGNED__
#define GETJOCTET(value) (value)
#else
#define GETJOCTET(value) ((value) & 0xFF)
#endif /* __CHAR_UNSIGNED__ */
#endif /* HAVE_UNSIGNED_CHAR */
#ifndef _BASETSD_H_ /* basestd.h from mingw-w64 defines UINT8, UINT16, INT16, INT32 */
/* These typedefs are used for various table entries and so forth.
* They must be at least as wide as specified; but making them too big
* won't cost a huge amount of memory, so we don't provide special
* extraction code like we did for JSAMPLE. (In other words, these
* typedefs live at a different point on the speed/space tradeoff curve.)
*/
/* UINT8 must hold at least the values 0..255. */
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char UINT8;
#else /* not HAVE_UNSIGNED_CHAR */
#ifdef __CHAR_UNSIGNED__
typedef char UINT8;
#else /* not __CHAR_UNSIGNED__ */
typedef short UINT8;
#endif /* __CHAR_UNSIGNED__ */
#endif /* HAVE_UNSIGNED_CHAR */
/* UINT16 must hold at least the values 0..65535. */
#ifdef HAVE_UNSIGNED_SHORT
typedef unsigned short UINT16;
#else /* not HAVE_UNSIGNED_SHORT */
typedef unsigned int UINT16;
#endif /* HAVE_UNSIGNED_SHORT */
/* INT16 must hold at least the values -32768..32767. */
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
typedef short INT16;
#endif
#endif
/* INT32 must hold at least signed 32-bit values.
*
* NOTE: The INT32 typedef dates back to libjpeg v5 (1994.) Integers were
* sometimes 16-bit back then (MS-DOS), which is why INT32 is typedef'd to
* long. It also wasn't common (or at least as common) in 1994 for INT32 to be
* defined by platform headers. Since then, however, INT32 is defined in
* several other common places:
*
* Xmd.h (X11 header) typedefs INT32 to int on 64-bit platforms and long on
* 32-bit platforms (i.e always a 32-bit signed type.)
*
* basetsd.h (Win32 header) typedefs INT32 to int (always a 32-bit signed type
* on modern platforms.)
*
* qglobal.h (Qt header) typedefs INT32 to int (always a 32-bit signed type on
* modern platforms.)
*
* This is a recipe for conflict, since "long" and "int" aren't always
* compatible types. Since the definition of INT32 has technically been part
* of the libjpeg API for more than 20 years, we can't remove it, but we do not
* use it internally any longer. We instead define a separate type (JLONG)
* for internal use, which ensures that internal behavior will always be the
* same regardless of any external headers that may be included.
*/
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */
#ifndef _BASETSD_H /* MinGW is slightly different */
#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */
typedef long INT32;
#endif
#endif
#endif
#endif
/* Datatype used for image dimensions. The JPEG standard only supports
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
* "unsigned int" is sufficient on all machines. However, if you need to
* handle larger images and you don't mind deviating from the spec, you
* can change this datatype. (Note that changing this datatype will
* potentially require modifying the SIMD code. The x86-64 SIMD extensions,
* in particular, assume a 32-bit JDIMENSION.)
*/
typedef unsigned int JDIMENSION;
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
/* These macros are used in all function definitions and extern declarations.
* You could modify them if you need to change function linkage conventions;
* in particular, you'll need to do that to make the library a Windows DLL.
* Another application is to make all functions global for use with debuggers
* or code profilers that require it.
*/
/* a function called through method pointers: */
#define METHODDEF(type) static type
/* a function used only in its module: */
#define LOCAL(type) static type
/* a function referenced thru EXTERNs: */
#define GLOBAL(type) type
/* a reference to a GLOBAL function: */
#define EXTERN(type) extern type
/* Originally, this macro was used as a way of defining function prototypes
* for both modern compilers as well as older compilers that did not support
* prototype parameters. libjpeg-turbo has never supported these older,
* non-ANSI compilers, but the macro is still included because there is some
* software out there that uses it.
*/
#define JMETHOD(type, methodname, arglist) type (*methodname) arglist
/* libjpeg-turbo no longer supports platforms that have far symbols (MS-DOS),
* but again, some software relies on this macro.
*/
#undef FAR
#define FAR
/*
* On a few systems, type boolean and/or its values FALSE, TRUE may appear
* in standard header files. Or you may have conflicts with application-
* specific header files that you want to include together with these files.
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
*/
#ifndef HAVE_BOOLEAN
typedef int boolean;
#endif
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
#define TRUE 1
#endif
/*
* The remaining options affect code selection within the JPEG library,
* but they don't need to be visible to most applications using the library.
* To minimize application namespace pollution, the symbols won't be
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
*/
#ifdef JPEG_INTERNALS
#define JPEG_INTERNAL_OPTIONS
#endif
#ifdef JPEG_INTERNAL_OPTIONS
/*
* These defines indicate whether to include various optional functions.
* Undefining some of these symbols will produce a smaller but less capable
* library. Note that you can leave certain source files out of the
* compilation/linking process if you've #undef'd the corresponding symbols.
* (You may HAVE to do that if your compiler doesn't like null source files.)
*/
/* Capability options common to encoder and decoder: */
#define DCT_ISLOW_SUPPORTED /* accurate integer method */
#define DCT_IFAST_SUPPORTED /* less accurate int method [legacy feature] */
#define DCT_FLOAT_SUPPORTED /* floating-point method [legacy feature] */
/* Encoder capability options: */
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
* precision, so jchuff.c normally uses entropy optimization to compute
* usable tables for higher precision. If you don't want to do optimization,
* you'll have to supply different default Huffman tables.
* The exact same statements apply for progressive JPEG: the default tables
* don't work for progressive mode. (This may get fixed, however.)
*/
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
/* Decoder capability options: */
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
/* more capability options later, no doubt */
/*
* The RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE macros are a vestigial
* feature of libjpeg. The idea was that, if an application developer needed
* to compress from/decompress to a BGR/BGRX/RGBX/XBGR/XRGB buffer, they could
* change these macros, rebuild libjpeg, and link their application statically
* with it. In reality, few people ever did this, because there were some
* severe restrictions involved (cjpeg and djpeg no longer worked properly,
* compressing/decompressing RGB JPEGs no longer worked properly, and the color
* quantizer wouldn't work with pixel sizes other than 3.) Furthermore, since
* all of the O/S-supplied versions of libjpeg were built with the default
* values of RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE, many applications
* have come to regard these values as immutable.
*
* The libjpeg-turbo colorspace extensions provide a much cleaner way of
* compressing from/decompressing to buffers with arbitrary component orders
* and pixel sizes. Thus, we do not support changing the values of RGB_RED,
* RGB_GREEN, RGB_BLUE, or RGB_PIXELSIZE. In addition to the restrictions
* listed above, changing these values will also break the SIMD extensions and
* the regression tests.
*/
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
#define RGB_GREEN 1 /* Offset of Green */
#define RGB_BLUE 2 /* Offset of Blue */
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
#define JPEG_NUMCS 17
#define EXT_RGB_RED 0
#define EXT_RGB_GREEN 1
#define EXT_RGB_BLUE 2
#define EXT_RGB_PIXELSIZE 3
#define EXT_RGBX_RED 0
#define EXT_RGBX_GREEN 1
#define EXT_RGBX_BLUE 2
#define EXT_RGBX_PIXELSIZE 4
#define EXT_BGR_RED 2
#define EXT_BGR_GREEN 1
#define EXT_BGR_BLUE 0
#define EXT_BGR_PIXELSIZE 3
#define EXT_BGRX_RED 2
#define EXT_BGRX_GREEN 1
#define EXT_BGRX_BLUE 0
#define EXT_BGRX_PIXELSIZE 4
#define EXT_XBGR_RED 3
#define EXT_XBGR_GREEN 2
#define EXT_XBGR_BLUE 1
#define EXT_XBGR_PIXELSIZE 4
#define EXT_XRGB_RED 1
#define EXT_XRGB_GREEN 2
#define EXT_XRGB_BLUE 3
#define EXT_XRGB_PIXELSIZE 4
static const int rgb_red[JPEG_NUMCS] = {
-1, -1, RGB_RED, -1, -1, -1, EXT_RGB_RED, EXT_RGBX_RED,
EXT_BGR_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED,
EXT_RGBX_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED,
-1
};
static const int rgb_green[JPEG_NUMCS] = {
-1, -1, RGB_GREEN, -1, -1, -1, EXT_RGB_GREEN, EXT_RGBX_GREEN,
EXT_BGR_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN,
EXT_RGBX_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN,
-1
};
static const int rgb_blue[JPEG_NUMCS] = {
-1, -1, RGB_BLUE, -1, -1, -1, EXT_RGB_BLUE, EXT_RGBX_BLUE,
EXT_BGR_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE,
EXT_RGBX_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE,
-1
};
static const int rgb_pixelsize[JPEG_NUMCS] = {
-1, -1, RGB_PIXELSIZE, -1, -1, -1, EXT_RGB_PIXELSIZE, EXT_RGBX_PIXELSIZE,
EXT_BGR_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE,
EXT_RGBX_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE,
-1
};
/* Definitions for speed-related optimizations. */
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
* as short on such a machine. MULTIPLIER must be at least 16 bits wide.
*/
#ifndef MULTIPLIER
#ifndef WITH_SIMD
#define MULTIPLIER int /* type for fastest integer multiply */
#else
#define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */
#endif
#endif
/* FAST_FLOAT should be either float or double, whichever is done faster
* by your compiler. (Note that this type is only used in the floating point
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
*/
#ifndef FAST_FLOAT
#define FAST_FLOAT float
#endif
#endif /* JPEG_INTERNAL_OPTIONS */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,210 @@
/*
* transupp.h
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding.
* libjpeg-turbo Modifications:
* Copyright (C) 2017, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains declarations for image transformation routines and
* other utility code used by the jpegtran sample application. These are
* NOT part of the core JPEG library. But we keep these routines separate
* from jpegtran.c to ease the task of maintaining jpegtran-like programs
* that have other user interfaces.
*
* NOTE: all the routines declared here have very specific requirements
* about when they are to be executed during the reading and writing of the
* source and destination files. See the comments in transupp.c, or see
* jpegtran.c for an example of correct usage.
*/
/* If you happen not to want the image transform support, disable it here */
#ifndef TRANSFORMS_SUPPORTED
#define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */
#endif
/*
* Although rotating and flipping data expressed as DCT coefficients is not
* hard, there is an asymmetry in the JPEG format specification for images
* whose dimensions aren't multiples of the iMCU size. The right and bottom
* image edges are padded out to the next iMCU boundary with junk data; but
* no padding is possible at the top and left edges. If we were to flip
* the whole image including the pad data, then pad garbage would become
* visible at the top and/or left, and real pixels would disappear into the
* pad margins --- perhaps permanently, since encoders & decoders may not
* bother to preserve DCT blocks that appear to be completely outside the
* nominal image area. So, we have to exclude any partial iMCUs from the
* basic transformation.
*
* Transpose is the only transformation that can handle partial iMCUs at the
* right and bottom edges completely cleanly. flip_h can flip partial iMCUs
* at the bottom, but leaves any partial iMCUs at the right edge untouched.
* Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
* The other transforms are defined as combinations of these basic transforms
* and process edge blocks in a way that preserves the equivalence.
*
* The "trim" option causes untransformable partial iMCUs to be dropped;
* this is not strictly lossless, but it usually gives the best-looking
* result for odd-size images. Note that when this option is active,
* the expected mathematical equivalences between the transforms may not hold.
* (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
* followed by -rot 180 -trim trims both edges.)
*
* We also offer a lossless-crop option, which discards data outside a given
* image region but losslessly preserves what is inside. Like the rotate and
* flip transforms, lossless crop is restricted by the JPEG format: the upper
* left corner of the selected region must fall on an iMCU boundary. If this
* does not hold for the given crop parameters, we silently move the upper left
* corner up and/or left to make it so, simultaneously increasing the region
* dimensions to keep the lower right crop corner unchanged. (Thus, the
* output image covers at least the requested region, but may cover more.)
* The adjustment of the region dimensions may be optionally disabled.
*
* We also provide a lossless-resize option, which is kind of a lossless-crop
* operation in the DCT coefficient block domain - it discards higher-order
* coefficients and losslessly preserves lower-order coefficients of a
* sub-block.
*
* Rotate/flip transform, resize, and crop can be requested together in a
* single invocation. The crop is applied last --- that is, the crop region
* is specified in terms of the destination image after transform/resize.
*
* We also offer a "force to grayscale" option, which simply discards the
* chrominance channels of a YCbCr image. This is lossless in the sense that
* the luminance channel is preserved exactly. It's not the same kind of
* thing as the rotate/flip transformations, but it's convenient to handle it
* as part of this package, mainly because the transformation routines have to
* be aware of the option to know how many components to work on.
*/
/*
* Codes for supported types of image transformations.
*/
typedef enum {
JXFORM_NONE, /* no transformation */
JXFORM_FLIP_H, /* horizontal flip */
JXFORM_FLIP_V, /* vertical flip */
JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */
JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
JXFORM_ROT_90, /* 90-degree clockwise rotation */
JXFORM_ROT_180, /* 180-degree rotation */
JXFORM_ROT_270 /* 270-degree clockwise (or 90 ccw) */
} JXFORM_CODE;
/*
* Codes for crop parameters, which can individually be unspecified,
* positive or negative for xoffset or yoffset,
* positive or forced for width or height.
*/
typedef enum {
JCROP_UNSET,
JCROP_POS,
JCROP_NEG,
JCROP_FORCE
} JCROP_CODE;
/*
* Transform parameters struct.
* NB: application must not change any elements of this struct after
* calling jtransform_request_workspace.
*/
typedef struct {
/* Options: set by caller */
JXFORM_CODE transform; /* image transform operator */
boolean perfect; /* if TRUE, fail if partial MCUs are requested */
boolean trim; /* if TRUE, trim partial MCUs as needed */
boolean force_grayscale; /* if TRUE, convert color image to grayscale */
boolean crop; /* if TRUE, crop source image */
boolean slow_hflip; /* For best performance, the JXFORM_FLIP_H transform
normally modifies the source coefficients in place.
Setting this to TRUE will instead use a slower,
double-buffered algorithm, which leaves the source
coefficients in tact (necessary if other transformed
images must be generated from the same set of
coefficients. */
/* Crop parameters: application need not set these unless crop is TRUE.
* These can be filled in by jtransform_parse_crop_spec().
*/
JDIMENSION crop_width; /* Width of selected region */
JCROP_CODE crop_width_set; /* (forced disables adjustment) */
JDIMENSION crop_height; /* Height of selected region */
JCROP_CODE crop_height_set; /* (forced disables adjustment) */
JDIMENSION crop_xoffset; /* X offset of selected region */
JCROP_CODE crop_xoffset_set; /* (negative measures from right edge) */
JDIMENSION crop_yoffset; /* Y offset of selected region */
JCROP_CODE crop_yoffset_set; /* (negative measures from bottom edge) */
/* Internal workspace: caller should not touch these */
int num_components; /* # of components in workspace */
jvirt_barray_ptr *workspace_coef_arrays; /* workspace for transformations */
JDIMENSION output_width; /* cropped destination dimensions */
JDIMENSION output_height;
JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */
JDIMENSION y_crop_offset;
int iMCU_sample_width; /* destination iMCU size */
int iMCU_sample_height;
} jpeg_transform_info;
#if TRANSFORMS_SUPPORTED
/* Parse a crop specification (written in X11 geometry style) */
EXTERN(boolean) jtransform_parse_crop_spec(jpeg_transform_info *info,
const char *spec);
/* Request any required workspace */
EXTERN(boolean) jtransform_request_workspace(j_decompress_ptr srcinfo,
jpeg_transform_info *info);
/* Adjust output image parameters */
EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
(j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info);
/* Execute the actual transformation, if any */
EXTERN(void) jtransform_execute_transform(j_decompress_ptr srcinfo,
j_compress_ptr dstinfo,
jvirt_barray_ptr *src_coef_arrays,
jpeg_transform_info *info);
/* Determine whether lossless transformation is perfectly
* possible for a specified image and transformation.
*/
EXTERN(boolean) jtransform_perfect_transform(JDIMENSION image_width,
JDIMENSION image_height,
int MCU_width, int MCU_height,
JXFORM_CODE transform);
/* jtransform_execute_transform used to be called
* jtransform_execute_transformation, but some compilers complain about
* routine names that long. This macro is here to avoid breaking any
* old source code that uses the original name...
*/
#define jtransform_execute_transformation jtransform_execute_transform
#endif /* TRANSFORMS_SUPPORTED */
/*
* Support for copying optional markers from source to destination file.
*/
typedef enum {
JCOPYOPT_NONE, /* copy no optional markers */
JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */
JCOPYOPT_ALL, /* copy all optional markers */
JCOPYOPT_ALL_EXCEPT_ICC /* copy all optional markers except APP2 */
} JCOPY_OPTION;
#define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */
/* Setup decompression object to save desired markers in memory */
EXTERN(void) jcopy_markers_setup(j_decompress_ptr srcinfo,
JCOPY_OPTION option);
/* Copy markers saved in the given source object to the destination object */
EXTERN(void) jcopy_markers_execute(j_decompress_ptr srcinfo,
j_compress_ptr dstinfo,
JCOPY_OPTION option);

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.