// Copyright (C) 2002-2011 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __IRR_QUATERNION_H_INCLUDED__ #define __IRR_QUATERNION_H_INCLUDED__ #include "irrTypes.h" #include "irrMath.h" #include "matrix4.h" #include "vector3d.h" namespace irr { namespace core { //! Quaternion class for representing rotations. /** It provides cheap combinations and avoids gimbal locks. Also useful for interpolations. */ class quaternion { public: //! Default Constructor quaternion() : X(0.0f), Y(0.0f), Z(0.0f), W(1.0f) {} //! Constructor quaternion(f32 x, f32 y, f32 z, f32 w) : X(x), Y(y), Z(z), W(w) { } //! Constructor which converts euler angles (radians) to a quaternion quaternion(f32 x, f32 y, f32 z); //! Constructor which converts euler angles (radians) to a quaternion quaternion(const vector3df& vec); //! Constructor which converts a matrix to a quaternion quaternion(const matrix4& mat); //! Equalilty operator bool operator==(const quaternion& other) const; //! inequality operator bool operator!=(const quaternion& other) const; //! Assignment operator inline quaternion& operator=(const quaternion& other); //! Matrix assignment operator inline quaternion& operator=(const matrix4& other); //! Add operator quaternion operator+(const quaternion& other) const; //! Multiplication operator quaternion operator*(const quaternion& other) const; //! Multiplication operator with scalar quaternion operator*(f32 s) const; //! Multiplication operator with scalar quaternion& operator*=(f32 s); //! Multiplication operator vector3df operator*(const vector3df& v) const; //! Multiplication operator quaternion& operator*=(const quaternion& other); //! Calculates the dot product inline f32 dotProduct(const quaternion& other) const; //! Sets new quaternion inline quaternion& set(f32 x, f32 y, f32 z, f32 w); //! Sets new quaternion based on euler angles (radians) inline quaternion& set(f32 x, f32 y, f32 z); //! Sets new quaternion based on euler angles (radians) inline quaternion& set(const core::vector3df& vec); //! Sets new quaternion from other quaternion inline quaternion& set(const core::quaternion& quat); //! returns if this quaternion equals the other one, taking floating point rounding errors into account inline bool equals(const quaternion& other, const f32 tolerance = ROUNDING_ERROR_f32 ) const; //! Normalizes the quaternion inline quaternion& normalize(); //! Creates a matrix from this quaternion matrix4 getMatrix() const; //! Creates a matrix from this quaternion void getMatrix( matrix4 &dest, const core::vector3df &translation ) const; /*! Creates a matrix from this quaternion Rotate about a center point shortcut for core::quaternion q; q.rotationFromTo ( vin[i].Normal, forward ); q.getMatrixCenter ( lookat, center, newPos ); core::matrix4 m2; m2.setInverseTranslation ( center ); lookat *= m2; core::matrix4 m3; m2.setTranslation ( newPos ); lookat *= m3; */ void getMatrixCenter( matrix4 &dest, const core::vector3df ¢er, const core::vector3df &translation ) const; //! Creates a matrix from this quaternion inline void getMatrix_transposed( matrix4 &dest ) const; //! Inverts this quaternion quaternion& makeInverse(); //! Set this quaternion to the result of the linear interpolation between two quaternions quaternion& lerp(quaternion q1, quaternion q2, f32 time); //! Set this quaternion to the result of the spherical interpolation between two quaternions quaternion& slerp( quaternion q1, quaternion q2, f32 interpolate ); //! Create quaternion from rotation angle and rotation axis. /** Axis must be unit length. The quaternion representing the rotation is q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k). \param angle Rotation Angle in radians. \param axis Rotation axis. */ quaternion& fromAngleAxis (f32 angle, const vector3df& axis); //! Fills an angle (radians) around an axis (unit vector) void toAngleAxis (f32 &angle, core::vector3df& axis) const; //! Output this quaternion to an euler angle (radians) void toEuler(vector3df& euler) const; //! Set quaternion to identity quaternion& makeIdentity(); //! Set quaternion to represent a rotation from one vector to another. quaternion& rotationFromTo(const vector3df& from, const vector3df& to); //! Quaternion elements. f32 X; // vectorial (imaginary) part f32 Y; f32 Z; f32 W; // real part }; // Constructor which converts euler angles to a quaternion inline quaternion::quaternion(f32 x, f32 y, f32 z) { set(x,y,z); } // Constructor which converts euler angles to a quaternion inline quaternion::quaternion(const vector3df& vec) { set(vec.X,vec.Y,vec.Z); } // Constructor which converts a matrix to a quaternion inline quaternion::quaternion(const matrix4& mat) { (*this) = mat; } // equal operator inline bool quaternion::operator==(const quaternion& other) const { return ((X == other.X) && (Y == other.Y) && (Z == other.Z) && (W == other.W)); } // inequality operator inline bool quaternion::operator!=(const quaternion& other) const { return !(*this == other); } // assignment operator inline quaternion& quaternion::operator=(const quaternion& other) { X = other.X; Y = other.Y; Z = other.Z; W = other.W; return *this; } // matrix assignment operator inline quaternion& quaternion::operator=(const matrix4& m) { const f32 diag = m(0,0) + m(1,1) + m(2,2) + 1; if( diag > 0.0f ) { const f32 scale = sqrtf(diag) * 2.0f; // get scale from diagonal // TODO: speed this up X = ( m(2,1) - m(1,2)) / scale; Y = ( m(0,2) - m(2,0)) / scale; Z = ( m(1,0) - m(0,1)) / scale; W = 0.25f * scale; } else { if ( m(0,0) > m(1,1) && m(0,0) > m(2,2)) { // 1st element of diag is greatest value // find scale according to 1st element, and double it const f32 scale = sqrtf( 1.0f + m(0,0) - m(1,1) - m(2,2)) * 2.0f; // TODO: speed this up X = 0.25f * scale; Y = (m(0,1) + m(1,0)) / scale; Z = (m(2,0) + m(0,2)) / scale; W = (m(2,1) - m(1,2)) / scale; } else if ( m(1,1) > m(2,2)) { // 2nd element of diag is greatest value // find scale according to 2nd element, and double it const f32 scale = sqrtf( 1.0f + m(1,1) - m(0,0) - m(2,2)) * 2.0f; // TODO: speed this up X = (m(0,1) + m(1,0) ) / scale; Y = 0.25f * scale; Z = (m(1,2) + m(2,1) ) / scale; W = (m(0,2) - m(2,0) ) / scale; } else { // 3rd element of diag is greatest value // find scale according to 3rd element, and double it const f32 scale = sqrtf( 1.0f + m(2,2) - m(0,0) - m(1,1)) * 2.0f; // TODO: speed this up X = (m(0,2) + m(2,0)) / scale; Y = (m(1,2) + m(2,1)) / scale; Z = 0.25f * scale; W = (m(1,0) - m(0,1)) / scale; } } return normalize(); } // multiplication operator inline quaternion quaternion::operator*(const quaternion& other) const { quaternion tmp; tmp.W = (other.W * W) - (other.X * X) - (other.Y * Y) - (other.Z * Z); tmp.X = (other.W * X) + (other.X * W) + (other.Y * Z) - (other.Z * Y); tmp.Y = (other.W * Y) + (other.Y * W) + (other.Z * X) - (other.X * Z); tmp.Z = (other.W * Z) + (other.Z * W) + (other.X * Y) - (other.Y * X); return tmp; } // multiplication operator inline quaternion quaternion::operator*(f32 s) const { return quaternion(s*X, s*Y, s*Z, s*W); } // multiplication operator inline quaternion& quaternion::operator*=(f32 s) { X*=s; Y*=s; Z*=s; W*=s; return *this; } // multiplication operator inline quaternion& quaternion::operator*=(const quaternion& other) { return (*this = other * (*this)); } // add operator inline quaternion quaternion::operator+(const quaternion& b) const { return quaternion(X+b.X, Y+b.Y, Z+b.Z, W+b.W); } // Creates a matrix from this quaternion inline matrix4 quaternion::getMatrix() const { core::matrix4 m; getMatrix_transposed(m); return m; } /*! Creates a matrix from this quaternion */ inline void quaternion::getMatrix( matrix4 &dest, const core::vector3df ¢er ) const { f32 * m = dest.pointer(); m[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z; m[1] = 2.0f*X*Y + 2.0f*Z*W; m[2] = 2.0f*X*Z - 2.0f*Y*W; m[3] = 0.0f; m[4] = 2.0f*X*Y - 2.0f*Z*W; m[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z; m[6] = 2.0f*Z*Y + 2.0f*X*W; m[7] = 0.0f; m[8] = 2.0f*X*Z + 2.0f*Y*W; m[9] = 2.0f*Z*Y - 2.0f*X*W; m[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y; m[11] = 0.0f; m[12] = center.X; m[13] = center.Y; m[14] = center.Z; m[15] = 1.f; //dest.setDefinitelyIdentityMatrix ( matrix4::BIT_IS_NOT_IDENTITY ); dest.setDefinitelyIdentityMatrix ( false ); } /*! Creates a matrix from this quaternion Rotate about a center point shortcut for core::quaternion q; q.rotationFromTo ( vin[i].Normal, forward ); q.getMatrix ( lookat, center ); core::matrix4 m2; m2.setInverseTranslation ( center ); lookat *= m2; */ inline void quaternion::getMatrixCenter(matrix4 &dest, const core::vector3df ¢er, const core::vector3df &translation) const { f32 * m = dest.pointer(); m[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z; m[1] = 2.0f*X*Y + 2.0f*Z*W; m[2] = 2.0f*X*Z - 2.0f*Y*W; m[3] = 0.0f; m[4] = 2.0f*X*Y - 2.0f*Z*W; m[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z; m[6] = 2.0f*Z*Y + 2.0f*X*W; m[7] = 0.0f; m[8] = 2.0f*X*Z + 2.0f*Y*W; m[9] = 2.0f*Z*Y - 2.0f*X*W; m[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y; m[11] = 0.0f; dest.setRotationCenter ( center, translation ); } // Creates a matrix from this quaternion inline void quaternion::getMatrix_transposed( matrix4 &dest ) const { dest[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z; dest[4] = 2.0f*X*Y + 2.0f*Z*W; dest[8] = 2.0f*X*Z - 2.0f*Y*W; dest[12] = 0.0f; dest[1] = 2.0f*X*Y - 2.0f*Z*W; dest[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z; dest[9] = 2.0f*Z*Y + 2.0f*X*W; dest[13] = 0.0f; dest[2] = 2.0f*X*Z + 2.0f*Y*W; dest[6] = 2.0f*Z*Y - 2.0f*X*W; dest[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y; dest[14] = 0.0f; dest[3] = 0.f; dest[7] = 0.f; dest[11] = 0.f; dest[15] = 1.f; //dest.setDefinitelyIdentityMatrix ( matrix4::BIT_IS_NOT_IDENTITY ); dest.setDefinitelyIdentityMatrix ( false ); } // Inverts this quaternion inline quaternion& quaternion::makeInverse() { X = -X; Y = -Y; Z = -Z; return *this; } // sets new quaternion inline quaternion& quaternion::set(f32 x, f32 y, f32 z, f32 w) { X = x; Y = y; Z = z; W = w; return *this; } // sets new quaternion based on euler angles inline quaternion& quaternion::set(f32 x, f32 y, f32 z) { f64 angle; angle = x * 0.5; const f64 sr = sin(angle); const f64 cr = cos(angle); angle = y * 0.5; const f64 sp = sin(angle); const f64 cp = cos(angle); angle = z * 0.5; const f64 sy = sin(angle); const f64 cy = cos(angle); const f64 cpcy = cp * cy; const f64 spcy = sp * cy; const f64 cpsy = cp * sy; const f64 spsy = sp * sy; X = (f32)(sr * cpcy - cr * spsy); Y = (f32)(cr * spcy + sr * cpsy); Z = (f32)(cr * cpsy - sr * spcy); W = (f32)(cr * cpcy + sr * spsy); return normalize(); } // sets new quaternion based on euler angles inline quaternion& quaternion::set(const core::vector3df& vec) { return set(vec.X, vec.Y, vec.Z); } // sets new quaternion based on other quaternion inline quaternion& quaternion::set(const core::quaternion& quat) { return (*this=quat); } //! returns if this quaternion equals the other one, taking floating point rounding errors into account inline bool quaternion::equals(const quaternion& other, const f32 tolerance) const { return core::equals(X, other.X, tolerance) && core::equals(Y, other.Y, tolerance) && core::equals(Z, other.Z, tolerance) && core::equals(W, other.W, tolerance); } // normalizes the quaternion inline quaternion& quaternion::normalize() { const f32 n = X*X + Y*Y + Z*Z + W*W; if (n == 1) return *this; //n = 1.0f / sqrtf(n); return (*this *= reciprocal_squareroot ( n )); } // set this quaternion to the result of the linear interpolation between two quaternions inline quaternion& quaternion::lerp(quaternion q1, quaternion q2, f32 time) { const f32 scale = 1.0f - time; const f32 invscale = time; return (*this = (q1*scale) + (q2*invscale)); } // set this quaternion to the result of the interpolation between two quaternions inline quaternion& quaternion::slerp(quaternion q1, quaternion q2, f32 time) { f32 angle = q1.dotProduct(q2); // make sure we use the short rotation if (angle < 0.0f) { q1 *= -1.0f; angle *= -1.0f; } if (angle <= 0.95f) // spherical interpolation { const f32 theta = acosf(angle); const f32 invsintheta = reciprocal(sinf(theta)); const f32 scale = sinf(theta * (1.0f-time)) * invsintheta; const f32 invscale = sinf(theta * time) * invsintheta; return (*this = (q1*scale) + (q2*invscale)); } else // linear interploation return lerp(q1,q2,time); } // calculates the dot product inline f32 quaternion::dotProduct(const quaternion& q2) const { return (X * q2.X) + (Y * q2.Y) + (Z * q2.Z) + (W * q2.W); } //! axis must be unit length //! angle in radians inline quaternion& quaternion::fromAngleAxis(f32 angle, const vector3df& axis) { const f32 fHalfAngle = 0.5f*angle; const f32 fSin = sinf(fHalfAngle); W = cosf(fHalfAngle); X = fSin*axis.X; Y = fSin*axis.Y; Z = fSin*axis.Z; return *this; } inline void quaternion::toAngleAxis(f32 &angle, core::vector3df &axis) const { const f32 scale = sqrtf(X*X + Y*Y + Z*Z); if (core::iszero(scale) || W > 1.0f || W < -1.0f) { angle = 0.0f; axis.X = 0.0f; axis.Y = 1.0f; axis.Z = 0.0f; } else { const f32 invscale = reciprocal(scale); angle = 2.0f * acosf(W); axis.X = X * invscale; axis.Y = Y * invscale; axis.Z = Z * invscale; } } inline void quaternion::toEuler(vector3df& euler) const { const f64 sqw = W*W; const f64 sqx = X*X; const f64 sqy = Y*Y; const f64 sqz = Z*Z; const f64 test = 2.0 * (Y*W - X*Z); if (core::equals(test, 1.0, 0.000001)) { // heading = rotation about z-axis euler.Z = (f32) (-2.0*atan2(X, W)); // bank = rotation about x-axis euler.X = 0; // attitude = rotation about y-axis euler.Y = (f32) (core::PI64/2.0); } else if (core::equals(test, -1.0, 0.000001)) { // heading = rotation about z-axis euler.Z = (f32) (2.0*atan2(X, W)); // bank = rotation about x-axis euler.X = 0; // attitude = rotation about y-axis euler.Y = (f32) (core::PI64/-2.0); } else { // heading = rotation about z-axis euler.Z = (f32) atan2(2.0 * (X*Y +Z*W),(sqx - sqy - sqz + sqw)); // bank = rotation about x-axis euler.X = (f32) atan2(2.0 * (Y*Z +X*W),(-sqx - sqy + sqz + sqw)); // attitude = rotation about y-axis euler.Y = (f32) asin( clamp(test, -1.0, 1.0) ); } } inline vector3df quaternion::operator* (const vector3df& v) const { // nVidia SDK implementation vector3df uv, uuv; vector3df qvec(X, Y, Z); uv = qvec.crossProduct(v); uuv = qvec.crossProduct(uv); uv *= (2.0f * W); uuv *= 2.0f; return v + uv + uuv; } // set quaternion to identity inline core::quaternion& quaternion::makeIdentity() { W = 1.f; X = 0.f; Y = 0.f; Z = 0.f; return *this; } inline core::quaternion& quaternion::rotationFromTo(const vector3df& from, const vector3df& to) { // Based on Stan Melax's article in Game Programming Gems // Copy, since cannot modify local vector3df v0 = from; vector3df v1 = to; v0.normalize(); v1.normalize(); const f32 d = v0.dotProduct(v1); if (d >= 1.0f) // If dot == 1, vectors are the same { return makeIdentity(); } else if (d <= -1.0f) // exactly opposite { core::vector3df axis(1.0f, 0.f, 0.f); axis = axis.crossProduct(core::vector3df(X,Y,Z)); if (axis.getLength()==0) { axis.set(0.f,1.f,0.f); axis.crossProduct(core::vector3df(X,Y,Z)); } return this->fromAngleAxis(core::PI, axis); } const f32 s = sqrtf( (1+d)*2 ); // optimize inv_sqrt const f32 invs = 1.f / s; const vector3df c = v0.crossProduct(v1)*invs; X = c.X; Y = c.Y; Z = c.Z; W = s * 0.5f; return *this; } } // end namespace core } // end namespace irr #endif