// Copyright (C) 2002-2007 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #include "CParticleMeshEmitter.h" #include "os.h" #include namespace irr { namespace scene { //! constructor CParticleMeshEmitter::CParticleMeshEmitter( IMesh* mesh, bool useNormalDirection, const core::vector3df& direction, f32 normalDirectionModifier, s32 mbNumber, bool everyMeshVertex, u32 minParticlesPerSecond, u32 maxParticlesPerSecond, const video::SColor& minStartColor, const video::SColor& maxStartColor, u32 lifeTimeMin, u32 lifeTimeMax, s32 maxAngleDegrees ) : Mesh(mesh), TotalVertices(0), MBCount(0), MBNumber(mbNumber), EveryMeshVertex(everyMeshVertex), UseNormalDirection(useNormalDirection), NormalDirectionModifier(normalDirectionModifier), Direction(direction), MinParticlesPerSecond(minParticlesPerSecond), MaxParticlesPerSecond(maxParticlesPerSecond), MinStartColor(minStartColor), MaxStartColor(maxStartColor), MinLifeTime(lifeTimeMin), MaxLifeTime(lifeTimeMax), Time(0), Emitted(0), MaxAngleDegrees(maxAngleDegrees) { MBCount = Mesh->getMeshBufferCount(); for( u32 i = 0; i < MBCount; ++i ) { VertexPerMeshBufferList.push_back( Mesh->getMeshBuffer(i)->getVertexCount() ); TotalVertices += Mesh->getMeshBuffer(i)->getVertexCount(); } } //! Prepares an array with new particles to emitt into the system //! and returns how much new particles there are. s32 CParticleMeshEmitter::emitt(u32 now, u32 timeSinceLastCall, SParticle*& outArray) { Time += timeSinceLastCall; u32 pps = (MaxParticlesPerSecond - MinParticlesPerSecond); f32 perSecond = pps ? (f32)MinParticlesPerSecond + (os::Randomizer::rand() % pps) : MinParticlesPerSecond; f32 everyWhatMillisecond = 1000.0f / perSecond; if(Time > everyWhatMillisecond) { Particles.set_used(0); u32 amount = (u32)((Time / everyWhatMillisecond) + 0.5f); Time = 0; SParticle p; if(amount > MaxParticlesPerSecond * 2) amount = MaxParticlesPerSecond * 2; for(u32 i=0; igetMeshBufferCount(); ++j ) { for( u32 k=0; kgetMeshBuffer(j)->getVertexCount(); ++k ) { switch( Mesh->getMeshBuffer(j)->getVertexType() ) { case video::EVT_STANDARD: p.pos = ((video::S3DVertex*)Mesh->getMeshBuffer(j)->getVertices())[k].Pos; if( UseNormalDirection ) p.vector = ((video::S3DVertex*)Mesh->getMeshBuffer(j)->getVertices())[k].Normal / NormalDirectionModifier; else p.vector = Direction; break; case video::EVT_TANGENTS: p.pos = ((video::S3DVertexTangents*)Mesh->getMeshBuffer(j)->getVertices())[k].Pos; if( UseNormalDirection ) p.vector = ((video::S3DVertexTangents*)Mesh->getMeshBuffer(j)->getVertices())[k].Normal / NormalDirectionModifier; else p.vector = Direction; break; } p.startTime = now; if( MaxAngleDegrees ) { core::vector3df tgt = p.vector; tgt.rotateXYBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0)); tgt.rotateYZBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0)); tgt.rotateXZBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0)); p.vector = tgt; } if(MaxLifeTime - MinLifeTime == 0) p.endTime = now + MinLifeTime; else p.endTime = now + MinLifeTime + (os::Randomizer::rand() % (MaxLifeTime - MinLifeTime)); p.color = MinStartColor.getInterpolated( MaxStartColor, (os::Randomizer::rand() % 100) / 100.0f); p.startColor = p.color; p.startVector = p.vector; Particles.push_back(p); } } } else { s32 randomMB = 0; if( MBNumber < 0 ) { randomMB = os::Randomizer::rand() % MBCount; } else { randomMB = MBNumber; } u32 vertexNumber = os::Randomizer::rand() % Mesh->getMeshBuffer(randomMB)->getVertexCount(); switch( Mesh->getMeshBuffer(randomMB)->getVertexType() ) { case video::EVT_STANDARD: p.pos = ((video::S3DVertex*)Mesh->getMeshBuffer(randomMB)->getVertices())[vertexNumber].Pos; if( UseNormalDirection ) p.vector = ((video::S3DVertex*)Mesh->getMeshBuffer(randomMB)->getVertices())[vertexNumber].Normal / NormalDirectionModifier; else p.vector = Direction; break; case video::EVT_TANGENTS: p.pos = ((video::S3DVertexTangents*)Mesh->getMeshBuffer(randomMB)->getVertices())[vertexNumber].Pos; if( UseNormalDirection ) p.vector = ((video::S3DVertexTangents*)Mesh->getMeshBuffer(randomMB)->getVertices())[vertexNumber].Normal / NormalDirectionModifier; else p.vector = Direction; break; } p.startTime = now; if( MaxAngleDegrees ) { core::vector3df tgt = Direction; tgt.rotateXYBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0)); tgt.rotateYZBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0)); tgt.rotateXZBy((os::Randomizer::rand()%(MaxAngleDegrees*2)) - MaxAngleDegrees, core::vector3df(0,0,0)); p.vector = tgt; } if(MaxLifeTime - MinLifeTime == 0) p.endTime = now + MinLifeTime; else p.endTime = now + MinLifeTime + (os::Randomizer::rand() % (MaxLifeTime - MinLifeTime)); p.color = MinStartColor.getInterpolated( MaxStartColor, (os::Randomizer::rand() % 100) / 100.0f); p.startColor = p.color; p.startVector = p.vector; Particles.push_back(p); } } outArray = Particles.pointer(); return Particles.size(); } return 0; } //! Set Mesh to emit particles from void CParticleMeshEmitter::setMesh( IMesh* mesh ) { Mesh = mesh; TotalVertices = 0; MBCount = Mesh->getMeshBufferCount(); for( u32 i = 0; i < MBCount; ++i ) { VertexPerMeshBufferList.push_back( Mesh->getMeshBuffer(i)->getVertexCount() ); TotalVertices += Mesh->getMeshBuffer(i)->getVertexCount(); } } } // end namespace scene } // end namespace irr