// Copyright (C) 2002-2009 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "COpenGLDriver.h" // needed here also because of the create methods' parameters #include "CNullDriver.h" #ifdef _IRR_COMPILE_WITH_OPENGL_ #include "COpenGLTexture.h" #include "COpenGLMaterialRenderer.h" #include "COpenGLShaderMaterialRenderer.h" #include "COpenGLSLMaterialRenderer.h" #include "COpenGLNormalMapRenderer.h" #include "COpenGLParallaxMapRenderer.h" #include "CImage.h" #include "os.h" #ifdef _IRR_USE_SDL_DEVICE_ #include #endif namespace irr { namespace video { // ----------------------------------------------------------------------- // WINDOWS CONSTRUCTOR // ----------------------------------------------------------------------- #ifdef _IRR_USE_WINDOWS_DEVICE_ //! Windows constructor and init code COpenGLDriver::COpenGLDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io) : CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), LastSetLight(-1), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8), CurrentTarget(ERT_FRAME_BUFFER), Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer), HDc(0), Window(static_cast(params.WindowId)), HRc(0) { #ifdef _DEBUG setDebugName("COpenGLDriver"); #endif } //! inits the open gl driver bool COpenGLDriver::initDriver(irr::SIrrlichtCreationParameters params) { // Set up pixel format descriptor with desired parameters PIXELFORMATDESCRIPTOR pfd = { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL (params.Doublebuffer?PFD_DOUBLEBUFFER:0) | // Must Support Double Buffering (params.Stereobuffer?PFD_STEREO:0) | // Must Support Stereo Buffer PFD_TYPE_RGBA, // Request An RGBA Format params.Bits, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored 24, // Z-Buffer (Depth Buffer) params.Stencilbuffer ? 1 : 0, // Stencil Buffer Depth 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; GLuint PixelFormat; if (AntiAlias > 1) { // Create a window to test antialiasing support const c8* ClassName = "GLCIrrDeviceWin32"; HINSTANCE lhInstance = GetModuleHandle(0); // Register Class WNDCLASSEX wcex; wcex.cbSize = sizeof(WNDCLASSEX); wcex.style = CS_HREDRAW | CS_VREDRAW; wcex.lpfnWndProc = (WNDPROC)DefWindowProc; wcex.cbClsExtra = 0; wcex.cbWndExtra = 0; wcex.hInstance = lhInstance; wcex.hIcon = NULL; wcex.hCursor = LoadCursor(NULL, IDC_ARROW); wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); wcex.lpszMenuName = 0; wcex.lpszClassName = ClassName; wcex.hIconSm = 0; wcex.hIcon = 0; RegisterClassEx(&wcex); RECT clientSize; clientSize.top = 0; clientSize.left = 0; clientSize.right = params.WindowSize.Width; clientSize.bottom = params.WindowSize.Height; DWORD style = WS_POPUP; if (!params.Fullscreen) style = WS_SYSMENU | WS_BORDER | WS_CAPTION | WS_CLIPCHILDREN | WS_CLIPSIBLINGS; AdjustWindowRect(&clientSize, style, FALSE); const s32 realWidth = clientSize.right - clientSize.left; const s32 realHeight = clientSize.bottom - clientSize.top; const s32 windowLeft = (GetSystemMetrics(SM_CXSCREEN) - realWidth) / 2; const s32 windowTop = (GetSystemMetrics(SM_CYSCREEN) - realHeight) / 2; HWND temporary_wnd=CreateWindow(ClassName, "", style, windowLeft, windowTop, realWidth, realHeight, NULL, NULL, lhInstance, NULL); if (!temporary_wnd) { os::Printer::log("Cannot create a temporary window.", ELL_ERROR); return false; } HDc = GetDC(temporary_wnd); for (u32 i=0; i<5; ++i) { if (i == 1) { if (params.Stencilbuffer) { os::Printer::log("Cannot create a GL device with stencil buffer, disabling stencil shadows.", ELL_WARNING); params.Stencilbuffer = false; pfd.cStencilBits = 0; } else continue; } else if (i == 2) { pfd.cDepthBits = 24; } if (i == 3) { if (params.Bits!=16) pfd.cDepthBits = 16; else continue; } else if (i == 4) { // try single buffer if (params.Doublebuffer) pfd.dwFlags &= ~PFD_DOUBLEBUFFER; else continue; } else if (i == 5) { os::Printer::log("Cannot create a GL device context", "No suitable format for temporary window.", ELL_ERROR); ReleaseDC(temporary_wnd, HDc); DestroyWindow(temporary_wnd); return false; } // choose pixelformat PixelFormat = ChoosePixelFormat(HDc, &pfd); if (PixelFormat) break; } SetPixelFormat(HDc, PixelFormat, &pfd); HRc=wglCreateContext(HDc); if (!HRc) { os::Printer::log("Cannot create a temporary GL rendering context.", ELL_ERROR); ReleaseDC(temporary_wnd, HDc); DestroyWindow(temporary_wnd); return false; } if (!wglMakeCurrent(HDc, HRc)) { os::Printer::log("Cannot activate a temporary GL rendering context.", ELL_ERROR); wglDeleteContext(HRc); ReleaseDC(temporary_wnd, HDc); DestroyWindow(temporary_wnd); return false; } PFNWGLCHOOSEPIXELFORMATARBPROC wglChoosePixelFormat_ARB = (PFNWGLCHOOSEPIXELFORMATARBPROC)wglGetProcAddress("wglChoosePixelFormatARB"); if (wglChoosePixelFormat_ARB) { // This value determines the number of samples used for antialiasing // My experience is that 8 does not show a big // improvement over 4, but 4 shows a big improvement // over 2. if(AntiAlias > 32) AntiAlias = 32; f32 fAttributes[] = {0.0, 0.0}; s32 iAttributes[] = { WGL_DRAW_TO_WINDOW_ARB,GL_TRUE, WGL_SUPPORT_OPENGL_ARB,GL_TRUE, WGL_ACCELERATION_ARB,WGL_FULL_ACCELERATION_ARB, WGL_COLOR_BITS_ARB,(params.Bits==32) ? 24 : 15, WGL_ALPHA_BITS_ARB,(params.Bits==32) ? 8 : 1, WGL_DEPTH_BITS_ARB,params.ZBufferBits, WGL_STENCIL_BITS_ARB,(params.Stencilbuffer) ? 1 : 0, WGL_DOUBLE_BUFFER_ARB,(params.Doublebuffer) ? GL_TRUE : GL_FALSE, WGL_STEREO_ARB,(params.Stereobuffer) ? GL_TRUE : GL_FALSE, WGL_SAMPLE_BUFFERS_ARB, 1, WGL_SAMPLES_ARB,AntiAlias, 0,0 }; s32 rv=0; // Try to get an acceptable pixel format while(rv==0 && iAttributes[21]>1) { s32 pixelFormat=0; u32 numFormats=0; const s32 valid = wglChoosePixelFormat_ARB(HDc,iAttributes,fAttributes,1,&pixelFormat,&numFormats); if (valid && numFormats>0) rv = pixelFormat; else iAttributes[21] -= 1; } if (rv) { PixelFormat=rv; AntiAlias=iAttributes[21]; } } else AntiAlias=0; wglMakeCurrent(HDc, NULL); wglDeleteContext(HRc); ReleaseDC(temporary_wnd, HDc); DestroyWindow(temporary_wnd); } // get hdc HDc=GetDC(Window); if (!HDc) { os::Printer::log("Cannot create a GL device context.", ELL_ERROR); return false; } // search for pixel format the simple way if (AntiAlias < 2) { for (u32 i=0; i<5; ++i) { if (i == 1) { if (params.Stencilbuffer) { os::Printer::log("Cannot create a GL device with stencil buffer, disabling stencil shadows.", ELL_WARNING); params.Stencilbuffer = false; pfd.cStencilBits = 0; } else continue; } else if (i == 2) { pfd.cDepthBits = 24; } if (i == 3) { if (params.Bits!=16) pfd.cDepthBits = 16; else continue; } else if (i == 4) { os::Printer::log("Cannot create a GL device context", "No suitable format.", ELL_ERROR); return false; } // choose pixelformat PixelFormat = ChoosePixelFormat(HDc, &pfd); if (PixelFormat) break; } } // set pixel format if (!SetPixelFormat(HDc, PixelFormat, &pfd)) { os::Printer::log("Cannot set the pixel format.", ELL_ERROR); return false; } // create rendering context HRc=wglCreateContext(HDc); if (!HRc) { os::Printer::log("Cannot create a GL rendering context.", ELL_ERROR); return false; } // activate rendering context if (!wglMakeCurrent(HDc, HRc)) { os::Printer::log("Cannot activate GL rendering context", ELL_ERROR); wglDeleteContext(HRc); return false; } int pf = GetPixelFormat(HDc); DescribePixelFormat(HDc, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd); if (pfd.cAlphaBits != 0) { if (pfd.cRedBits == 8) ColorFormat = ECF_A8R8G8B8; else ColorFormat = ECF_A1R5G5B5; } else { if (pfd.cRedBits == 8) ColorFormat = ECF_R8G8B8; else ColorFormat = ECF_R5G6B5; } genericDriverInit(params.WindowSize, params.Stencilbuffer); // set vsync if (wglSwapIntervalEXT) wglSwapIntervalEXT(params.Vsync ? 1 : 0); // set exposed data ExposedData.OpenGLWin32.HDc = HDc; ExposedData.OpenGLWin32.HRc = HRc; ExposedData.OpenGLWin32.HWnd = Window; return true; } #endif //IRR_USE_WINDOWS_DEVICE_ // ----------------------------------------------------------------------- // MacOSX CONSTRUCTOR // ----------------------------------------------------------------------- #ifdef _IRR_USE_OSX_DEVICE_ //! Windows constructor and init code COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceMacOSX *device) : CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8), CurrentTarget(ERT_FRAME_BUFFER), Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer), _device(device) { #ifdef _DEBUG setDebugName("COpenGLDriver"); #endif genericDriverInit(params.WindowSize, params.Stencilbuffer); } #endif // ----------------------------------------------------------------------- // LINUX CONSTRUCTOR // ----------------------------------------------------------------------- #ifdef _IRR_USE_LINUX_DEVICE_ //! Linux constructor and init code COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io) : CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8), CurrentTarget(ERT_FRAME_BUFFER), Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer) { #ifdef _DEBUG setDebugName("COpenGLDriver"); #endif ExposedData.OpenGLLinux.X11Context = glXGetCurrentContext(); ExposedData.OpenGLLinux.X11Display = glXGetCurrentDisplay(); ExposedData.OpenGLLinux.X11Window = (unsigned long)params.WindowId; Drawable = glXGetCurrentDrawable(); genericDriverInit(params.WindowSize, params.Stencilbuffer); // set vsync #ifdef GLX_SGI_swap_control #ifdef _IRR_OPENGL_USE_EXTPOINTER_ if (params.Vsync && glxSwapIntervalSGI) glxSwapIntervalSGI(1); #else if (params.Vsync) glXSwapIntervalSGI(1); #endif #endif } #endif // _IRR_USE_LINUX_DEVICE_ // ----------------------------------------------------------------------- // SDL CONSTRUCTOR // ----------------------------------------------------------------------- #ifdef _IRR_USE_SDL_DEVICE_ //! SDL constructor and init code COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io) : CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8), CurrentTarget(ERT_FRAME_BUFFER), Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer) { #ifdef _DEBUG setDebugName("COpenGLDriver"); #endif genericDriverInit(params.WindowSize, params.Stencilbuffer); } #endif // _IRR_USE_SDL_DEVICE_ //! destructor COpenGLDriver::~COpenGLDriver() { RequestedLights.clear(); deleteMaterialRenders(); // I get a blue screen on my laptop, when I do not delete the // textures manually before releasing the dc. Oh how I love this. deleteAllTextures(); #ifdef _IRR_USE_WINDOWS_DEVICE_ if (HRc) { if (!wglMakeCurrent(0, 0)) os::Printer::log("Release of dc and rc failed.", ELL_WARNING); if (!wglDeleteContext(HRc)) os::Printer::log("Release of rendering context failed.", ELL_WARNING); } if (HDc) ReleaseDC(Window, HDc); #endif } // ----------------------------------------------------------------------- // METHODS // ----------------------------------------------------------------------- bool COpenGLDriver::genericDriverInit(const core::dimension2d& screenSize, bool stencilBuffer) { Name=L"OpenGL "; Name.append(glGetString(GL_VERSION)); s32 pos=Name.findNext(L' ', 7); if (pos != -1) Name=Name.subString(0, pos); printVersion(); // print renderer information const GLubyte* renderer = glGetString(GL_RENDERER); const GLubyte* vendor = glGetString(GL_VENDOR); if (renderer && vendor) { os::Printer::log(reinterpret_cast(renderer), reinterpret_cast(vendor), ELL_INFORMATION); vendorName = reinterpret_cast(vendor); } u32 i; for (i=0; i101) || FeatureAvailable[IRR_EXT_rescale_normal]) // glEnable(GL_RESCALE_NORMAL_EXT); glClearDepth(1.0); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glHint(GL_LINE_SMOOTH_HINT, GL_NICEST); glHint(GL_POINT_SMOOTH_HINT, GL_FASTEST); glDepthFunc(GL_LEQUAL); glFrontFace(GL_CW); UserClipPlane.reallocate(MaxUserClipPlanes); UserClipPlaneEnabled.reallocate(MaxUserClipPlanes); for (i=0; idrop(); // add remaining material renderer addAndDropMaterialRenderer(new COpenGLMaterialRenderer_DETAIL_MAP(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SPHERE_MAP(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_REFLECTION_2_LAYER(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ADD_COLOR(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_VERTEX_ALPHA(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_REFLECTION_2_LAYER(this)); // add normal map renderers s32 tmp = 0; video::IMaterialRenderer* renderer = 0; renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_SOLID].Renderer); renderer->drop(); renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer); renderer->drop(); renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer); renderer->drop(); // add parallax map renderers renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_SOLID].Renderer); renderer->drop(); renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer); renderer->drop(); renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer); renderer->drop(); // add basic 1 texture blending addAndDropMaterialRenderer(new COpenGLMaterialRenderer_ONETEXTURE_BLEND(this)); } //! presents the rendered scene on the screen, returns false if failed bool COpenGLDriver::endScene() { CNullDriver::endScene(); glFlush(); #ifdef _IRR_USE_WINDOWS_DEVICE_ return SwapBuffers(HDc) == TRUE; #elif defined(_IRR_USE_LINUX_DEVICE_) glXSwapBuffers((Display*)ExposedData.OpenGLLinux.X11Display, Drawable); return true; #elif defined(_IRR_USE_OSX_DEVICE_) _device->flush(); return true; #elif defined(_IRR_USE_SDL_DEVICE_) SDL_GL_SwapBuffers(); return true; #else return false; #endif } //! clears the zbuffer and color buffer void COpenGLDriver::clearBuffers(bool backBuffer, bool zBuffer, bool stencilBuffer, SColor color) { GLbitfield mask = 0; if (backBuffer) { const f32 inv = 1.0f / 255.0f; glClearColor(color.getRed() * inv, color.getGreen() * inv, color.getBlue() * inv, color.getAlpha() * inv); mask |= GL_COLOR_BUFFER_BIT; } if (zBuffer) { glDepthMask(GL_TRUE); LastMaterial.ZWriteEnable=true; mask |= GL_DEPTH_BUFFER_BIT; } if (stencilBuffer) mask |= GL_STENCIL_BUFFER_BIT; glClear(mask); } //! init call for rendering start bool COpenGLDriver::beginScene(bool backBuffer, bool zBuffer, SColor color, void* windowId, core::rect* sourceRect) { CNullDriver::beginScene(backBuffer, zBuffer, color, windowId, sourceRect); clearBuffers(backBuffer, zBuffer, false, color); return true; } //! Returns the transformation set by setTransform const core::matrix4& COpenGLDriver::getTransform(E_TRANSFORMATION_STATE state) const { return Matrices[state]; } //! sets transformation void COpenGLDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) { Matrices[state] = mat; Transformation3DChanged = true; switch (state) { case ETS_VIEW: case ETS_WORLD: { // OpenGL only has a model matrix, view and world is not existent. so lets fake these two. glMatrixMode(GL_MODELVIEW); glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer()); // we have to update the clip planes to the latest view matrix for (u32 i=0; iisRenderTarget(); if (MultiTextureExtension) extGlActiveTexture(GL_TEXTURE0_ARB + i); glMatrixMode(GL_TEXTURE); if (!isRTT && mat.isIdentity() ) glLoadIdentity(); else { GLfloat glmat[16]; if (isRTT) createGLTextureMatrix(glmat, mat * TextureFlipMatrix); else createGLTextureMatrix(glmat, mat); glLoadMatrixf(glmat); } break; } default: break; } } bool COpenGLDriver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; if (!FeatureAvailable[IRR_ARB_vertex_buffer_object]) return false; #if defined(GL_ARB_vertex_buffer_object) const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void* vertices=mb->getVertices(); const u32 vertexCount=mb->getVertexCount(); const E_VERTEX_TYPE vType=mb->getVertexType(); const u32 vertexSize = getVertexPitchFromType(vType); //buffer vertex data, and convert colours... core::array buffer(vertexSize * vertexCount); memcpy(buffer.pointer(), vertices, vertexSize * vertexCount); // in order to convert the colors into opengl format (RGBA) switch (vType) { case EVT_STANDARD: { S3DVertex* pb = reinterpret_cast(buffer.pointer()); const S3DVertex* po = static_cast(vertices); for (u32 i=0; i(buffer.pointer()); const S3DVertex2TCoords* po = static_cast(vertices); for (u32 i=0; i(buffer.pointer()); const S3DVertexTangents* po = static_cast(vertices); for (u32 i=0; ivbo_verticesID) { extGlGenBuffers(1, &HWBuffer->vbo_verticesID); if (!HWBuffer->vbo_verticesID) return false; newBuffer=true; } else if (HWBuffer->vbo_verticesSize < vertexCount*vertexSize) { newBuffer=true; } extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); //copy data to graphics card glGetError(); // clear error storage if (!newBuffer) extGlBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * vertexSize, buffer.const_pointer()); else { HWBuffer->vbo_verticesSize = vertexCount*vertexSize; if (HWBuffer->Mapped_Vertex==scene::EHM_STATIC) extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STATIC_DRAW); else if (HWBuffer->Mapped_Vertex==scene::EHM_DYNAMIC) extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_DYNAMIC_DRAW); else //scene::EHM_STREAM extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STREAM_DRAW); } extGlBindBuffer(GL_ARRAY_BUFFER, 0); return (glGetError() == GL_NO_ERROR); #else return false; #endif } bool COpenGLDriver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; if (!FeatureAvailable[IRR_ARB_vertex_buffer_object]) return false; #if defined(GL_ARB_vertex_buffer_object) const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void* indices=mb->getIndices(); u32 indexCount= mb->getIndexCount(); GLenum indexSize; switch (mb->getIndexType()) { case EIT_16BIT: { indexSize=sizeof(u16); break; } case EIT_32BIT: { indexSize=sizeof(u32); break; } default: { return false; } } //get or create buffer bool newBuffer=false; if (!HWBuffer->vbo_indicesID) { extGlGenBuffers(1, &HWBuffer->vbo_indicesID); if (!HWBuffer->vbo_indicesID) return false; newBuffer=true; } else if (HWBuffer->vbo_indicesSize < indexCount*indexSize) { newBuffer=true; } extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); //copy data to graphics card glGetError(); // clear error storage if (!newBuffer) extGlBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices); else { HWBuffer->vbo_indicesSize = indexCount*indexSize; if (HWBuffer->Mapped_Index==scene::EHM_STATIC) extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW); else if (HWBuffer->Mapped_Index==scene::EHM_DYNAMIC) extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW); else //scene::EHM_STREAM extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STREAM_DRAW); } extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); return (glGetError() == GL_NO_ERROR); #else return false; #endif } //! updates hardware buffer if needed bool COpenGLDriver::updateHardwareBuffer(SHWBufferLink *HWBuffer) { if (!HWBuffer) return false; if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER) { if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex() || !((SHWBufferLink_opengl*)HWBuffer)->vbo_verticesID) { HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); if (!updateVertexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer)) return false; } } if (HWBuffer->Mapped_Index!=scene::EHM_NEVER) { if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index() || !((SHWBufferLink_opengl*)HWBuffer)->vbo_indicesID) { HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); if (!updateIndexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer)) return false; } } return true; } //! Create hardware buffer from meshbuffer COpenGLDriver::SHWBufferLink *COpenGLDriver::createHardwareBuffer(const scene::IMeshBuffer* mb) { #if defined(GL_ARB_vertex_buffer_object) if (!mb || (mb->getHardwareMappingHint_Index()==scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex()==scene::EHM_NEVER)) return 0; SHWBufferLink_opengl *HWBuffer=new SHWBufferLink_opengl(mb); //add to map HWBufferMap.insert(HWBuffer->MeshBuffer, HWBuffer); HWBuffer->ChangedID_Vertex=HWBuffer->MeshBuffer->getChangedID_Vertex(); HWBuffer->ChangedID_Index=HWBuffer->MeshBuffer->getChangedID_Index(); HWBuffer->Mapped_Vertex=mb->getHardwareMappingHint_Vertex(); HWBuffer->Mapped_Index=mb->getHardwareMappingHint_Index(); HWBuffer->LastUsed=0; HWBuffer->vbo_verticesID=0; HWBuffer->vbo_indicesID=0; HWBuffer->vbo_verticesSize=0; HWBuffer->vbo_indicesSize=0; if (!updateHardwareBuffer(HWBuffer)) { deleteHardwareBuffer(HWBuffer); return 0; } return HWBuffer; #else return 0; #endif } void COpenGLDriver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; #if defined(GL_ARB_vertex_buffer_object) SHWBufferLink_opengl *HWBuffer=(SHWBufferLink_opengl*)_HWBuffer; if (HWBuffer->vbo_verticesID) { extGlDeleteBuffers(1, &HWBuffer->vbo_verticesID); HWBuffer->vbo_verticesID=0; } if (HWBuffer->vbo_indicesID) { extGlDeleteBuffers(1, &HWBuffer->vbo_indicesID); HWBuffer->vbo_indicesID=0; } #endif CNullDriver::deleteHardwareBuffer(_HWBuffer); } //! Draw hardware buffer void COpenGLDriver::drawHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; updateHardwareBuffer(_HWBuffer); //check if update is needed _HWBuffer->LastUsed=0; //reset count #if defined(GL_ARB_vertex_buffer_object) SHWBufferLink_opengl *HWBuffer=(SHWBufferLink_opengl*)_HWBuffer; const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void *vertices=mb->getVertices(); const void *indexList=mb->getIndices(); if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER) { extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); vertices=0; } if (HWBuffer->Mapped_Index!=scene::EHM_NEVER) { extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); indexList=0; } drawVertexPrimitiveList(vertices, mb->getVertexCount(), indexList, mb->getIndexCount()/3, mb->getVertexType(), scene::EPT_TRIANGLES, mb->getIndexType()); if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER) extGlBindBuffer(GL_ARRAY_BUFFER, 0); if (HWBuffer->Mapped_Index!=scene::EHM_NEVER) extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); #endif } // small helper function to create vertex buffer object adress offsets static inline u8* buffer_offset(const long offset) { return ((u8*)0 + offset); } //! draws a vertex primitive list void COpenGLDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!primitiveCount || !vertexCount) return; if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); if (vertices) { // convert colors to gl color format. vertexCount *= 4; //reused as color component count ColorBuffer.set_used(vertexCount); u32 i; switch (vType) { case EVT_STANDARD: { const S3DVertex* p = static_cast(vertices); for (i=0; iColor.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; case EVT_2TCOORDS: { const S3DVertex2TCoords* p = static_cast(vertices); for (i=0; iColor.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; case EVT_TANGENTS: { const S3DVertexTangents* p = static_cast(vertices); for (i=0; iColor.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; } } // draw everything setRenderStates3DMode(); if (MultiTextureExtension) extGlClientActiveTexture(GL_TEXTURE0_ARB); glEnableClientState(GL_COLOR_ARRAY); glEnableClientState(GL_VERTEX_ARRAY); if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES)) glEnableClientState(GL_TEXTURE_COORD_ARRAY); if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES)) glEnableClientState(GL_NORMAL_ARRAY); if (vertices) glColorPointer(4, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); switch (vType) { case EVT_STANDARD: if (vertices) { glNormalPointer(GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertex), buffer_offset(12)); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), 0); } if (MultiTextureExtension && CurrentTexture[1]) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast(vertices))[0].TCoords); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); } break; case EVT_2TCOORDS: if (vertices) { glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(12)); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0)); } if (MultiTextureExtension) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast(vertices))[0].TCoords2); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36)); } break; case EVT_TANGENTS: if (vertices) { glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].TCoords); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(12)); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0)); } if (MultiTextureExtension) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Tangent); else glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(36)); extGlClientActiveTexture(GL_TEXTURE2_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast(vertices))[0].Binormal); else glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(48)); } break; } GLenum indexSize=0; switch (iType) { case EIT_16BIT: { indexSize=GL_UNSIGNED_SHORT; break; } case EIT_32BIT: { indexSize=GL_UNSIGNED_INT; break; } } switch (pType) { case scene::EPT_POINTS: case scene::EPT_POINT_SPRITES: { #ifdef GL_ARB_point_sprite if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite]) glEnable(GL_POINT_SPRITE_ARB); #endif float quadratic[] = {0.0f, 0.0f, 10.01f}; extGlPointParameterfv(GL_POINT_DISTANCE_ATTENUATION_ARB, quadratic); float maxParticleSize=1.0f; glGetFloatv(GL_POINT_SIZE_MAX_ARB, &maxParticleSize); // maxParticleSize=maxParticleSize& pos, const core::rect& sourceRect, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!sourceRect.isValid()) return; core::position2d targetPos(pos); core::position2d sourcePos(sourceRect.UpperLeftCorner); // This needs to be signed as it may go negative. core::dimension2d sourceSize(sourceRect.getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) return; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) return; } } // clip these coordinates if (targetPos.X<0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X; targetPos.X = 0; } const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) return; } if (targetPos.Y<0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) return; } // ok, we've clipped everything. // now draw it. // texcoords need to be flipped horizontally for RTTs const bool isRTT = texture->isRenderTarget(); const core::dimension2d& ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::rect tcoords( sourcePos.X * invW, (isRTT?(sourcePos.Y + sourceSize.Height):sourcePos.Y) * invH, (sourcePos.X + sourceSize.Width) * invW, (isRTT?sourcePos.Y:(sourcePos.Y + sourceSize.Height)) * invH); const core::rect poss(targetPos, core::dimension2di(sourceSize)); disableTextures(1); if (!setTexture(0, texture)) return; setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glBegin(GL_QUADS); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.LowerRightCorner.Y)); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.LowerRightCorner.Y)); glEnd(); } //! The same, but with a four element array of colors, one for each vertex void COpenGLDriver::draw2DImage(const video::ITexture* texture, const core::rect& destRect, const core::rect& sourceRect, const core::rect* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { if (!texture) return; // texcoords need to be flipped horizontally for RTTs const bool isRTT = texture->isRenderTarget(); const core::dimension2d& ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); const core::rect tcoords( sourceRect.UpperLeftCorner.X * invW, (isRTT?sourceRect.LowerRightCorner.Y:sourceRect.UpperLeftCorner.Y) * invH, sourceRect.LowerRightCorner.X * invW, (isRTT?sourceRect.UpperLeftCorner.Y:sourceRect.LowerRightCorner.Y) *invH); const video::SColor temp[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; const video::SColor* const useColor = colors ? colors : temp; disableTextures(1); setTexture(0, texture); setRenderStates2DMode(useColor[0].getAlpha()<255 || useColor[1].getAlpha()<255 || useColor[2].getAlpha()<255 || useColor[3].getAlpha()<255, true, useAlphaChannelOfTexture); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y, clipRect->getWidth(), clipRect->getHeight()); } glBegin(GL_QUADS); glColor4ub(useColor[0].getRed(), useColor[0].getGreen(), useColor[0].getBlue(), useColor[0].getAlpha()); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(destRect.UpperLeftCorner.X), GLfloat(destRect.UpperLeftCorner.Y)); glColor4ub(useColor[3].getRed(), useColor[3].getGreen(), useColor[3].getBlue(), useColor[3].getAlpha()); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(destRect.LowerRightCorner.X), GLfloat(destRect.UpperLeftCorner.Y)); glColor4ub(useColor[2].getRed(), useColor[2].getGreen(), useColor[2].getBlue(), useColor[2].getAlpha()); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(destRect.LowerRightCorner.X), GLfloat(destRect.LowerRightCorner.Y)); glColor4ub(useColor[1].getRed(), useColor[1].getGreen(), useColor[1].getBlue(), useColor[1].getAlpha()); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(destRect.UpperLeftCorner.X), GLfloat(destRect.LowerRightCorner.Y)); glEnd(); if (clipRect) glDisable(GL_SCISSOR_TEST); } //! draws a set of 2d images, using a color and the alpha channel of the //! texture if desired. The images are drawn beginning at pos and concatenated //! in one line. All drawings are clipped against clipRect (if != 0). //! The subtextures are defined by the array of sourceRects and are chosen //! by the indices given. void COpenGLDriver::draw2DImage(const video::ITexture* texture, const core::position2d& pos, const core::array >& sourceRects, const core::array& indices, const core::rect* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; disableTextures(1); if (!setTexture(0, texture)) return; setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y, clipRect->getWidth(),clipRect->getHeight()); } const core::dimension2d& ss = texture->getOriginalSize(); core::position2d targetPos(pos); // texcoords need to be flipped horizontally for RTTs const bool isRTT = texture->isRenderTarget(); const f32 invW = 1.f / static_cast(ss.Width); const f32 invH = 1.f / static_cast(ss.Height); for (u32 i=0; i tcoords( sourceRects[currentIndex].UpperLeftCorner.X * invW, (isRTT?sourceRects[currentIndex].LowerRightCorner.Y:sourceRects[currentIndex].UpperLeftCorner.Y) * invH, sourceRects[currentIndex].LowerRightCorner.X * invW, (isRTT?sourceRects[currentIndex].UpperLeftCorner.Y:sourceRects[currentIndex].LowerRightCorner.Y) * invH); const core::rect poss(targetPos, sourceRects[currentIndex].getSize()); glBegin(GL_QUADS); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.LowerRightCorner.Y)); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.LowerRightCorner.Y)); glEnd(); targetPos.X += sourceRects[currentIndex].getWidth(); } if (clipRect) glDisable(GL_SCISSOR_TEST); } //! draw a 2d rectangle void COpenGLDriver::draw2DRectangle(SColor color, const core::rect& position, const core::rect* clip) { disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glRectf(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.UpperLeftCorner.Y), GLfloat(pos.LowerRightCorner.X), GLfloat(pos.LowerRightCorner.Y)); } //! draw an 2d rectangle void COpenGLDriver::draw2DRectangle(const core::rect& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect* clip) { core::rect pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; disableTextures(); setRenderStates2DMode(colorLeftUp.getAlpha() < 255 || colorRightUp.getAlpha() < 255 || colorLeftDown.getAlpha() < 255 || colorRightDown.getAlpha() < 255, false, false); glBegin(GL_QUADS); glColor4ub(colorLeftUp.getRed(), colorLeftUp.getGreen(), colorLeftUp.getBlue(), colorLeftUp.getAlpha()); glVertex2f(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.UpperLeftCorner.Y)); glColor4ub(colorRightUp.getRed(), colorRightUp.getGreen(), colorRightUp.getBlue(), colorRightUp.getAlpha()); glVertex2f(GLfloat(pos.LowerRightCorner.X), GLfloat(pos.UpperLeftCorner.Y)); glColor4ub(colorRightDown.getRed(), colorRightDown.getGreen(), colorRightDown.getBlue(), colorRightDown.getAlpha()); glVertex2f(GLfloat(pos.LowerRightCorner.X), GLfloat(pos.LowerRightCorner.Y)); glColor4ub(colorLeftDown.getRed(), colorLeftDown.getGreen(), colorLeftDown.getBlue(), colorLeftDown.getAlpha()); glVertex2f(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.LowerRightCorner.Y)); glEnd(); } //! Draws a 2d line. void COpenGLDriver::draw2DLine(const core::position2d& start, const core::position2d& end, SColor color) { disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); glBegin(GL_LINES); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glVertex2f(GLfloat(start.X), GLfloat(start.Y)); glVertex2f(GLfloat(end.X), GLfloat(end.Y)); glEnd(); } //! Draws a pixel void COpenGLDriver::drawPixel(u32 x, u32 y, const SColor &color) { const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); if (x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height) return; disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); glBegin(GL_POINTS); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glVertex2i(x, y); glEnd(); } bool COpenGLDriver::setTexture(u32 stage, const video::ITexture* texture) { if (stage >= MaxTextureUnits) return false; if (CurrentTexture[stage]==texture) return true; if (MultiTextureExtension) extGlActiveTexture(GL_TEXTURE0_ARB + stage); CurrentTexture[stage]=texture; if (!texture) { glDisable(GL_TEXTURE_2D); return true; } else { if (texture->getDriverType() != EDT_OPENGL) { glDisable(GL_TEXTURE_2D); os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR); return false; } glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, static_cast(texture)->getOpenGLTextureName()); } return true; } //! disables all textures beginning with the optional fromStage parameter. Otherwise all texture stages are disabled. //! Returns whether disabling was successful or not. bool COpenGLDriver::disableTextures(u32 fromStage) { bool result=true; for (u32 i=fromStage; i& name) { return new COpenGLTexture(surface, name, this); } //! Sets a material. All 3d drawing functions draw geometry now //! using this material. //! \param material: Material to be used from now on. void COpenGLDriver::setMaterial(const SMaterial& material) { Material = material; for (s32 i = MaxTextureUnits-1; i>= 0; --i) { setTransform ((E_TRANSFORMATION_STATE) (ETS_TEXTURE_0 + i), material.getTextureMatrix(i)); } } //! prints error if an error happened. bool COpenGLDriver::testGLError() { #ifdef _DEBUG GLenum g = glGetError(); switch (g) { case GL_NO_ERROR: return false; case GL_INVALID_ENUM: os::Printer::log("GL_INVALID_ENUM", ELL_ERROR); break; case GL_INVALID_VALUE: os::Printer::log("GL_INVALID_VALUE", ELL_ERROR); break; case GL_INVALID_OPERATION: os::Printer::log("GL_INVALID_OPERATION", ELL_ERROR); break; case GL_STACK_OVERFLOW: os::Printer::log("GL_STACK_OVERFLOW", ELL_ERROR); break; case GL_STACK_UNDERFLOW: os::Printer::log("GL_STACK_UNDERFLOW", ELL_ERROR); break; case GL_OUT_OF_MEMORY: os::Printer::log("GL_OUT_OF_MEMORY", ELL_ERROR); break; case GL_TABLE_TOO_LARGE: os::Printer::log("GL_TABLE_TOO_LARGE", ELL_ERROR); break; #if defined(GL_EXT_framebuffer_object) case GL_INVALID_FRAMEBUFFER_OPERATION_EXT: os::Printer::log("GL_INVALID_FRAMEBUFFER_OPERATION", ELL_ERROR); break; #endif }; return true; #else return false; #endif } //! sets the needed renderstates void COpenGLDriver::setRenderStates3DMode() { if (CurrentRenderMode != ERM_3D) { // Reset Texture Stages glDisable(GL_BLEND); glDisable(GL_ALPHA_TEST); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_COLOR); // switch back the matrices glMatrixMode(GL_MODELVIEW); glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer()); GLfloat glmat[16]; createGLMatrix(glmat, Matrices[ETS_PROJECTION]); glmat[12] *= -1.0f; glMatrixMode(GL_PROJECTION); glLoadMatrixf(glmat); ResetRenderStates = true; } if (ResetRenderStates || LastMaterial != Material) { // unset old material if (LastMaterial.MaterialType != Material.MaterialType && static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); // set new material. if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial( Material, LastMaterial, ResetRenderStates, this); LastMaterial = Material; ResetRenderStates = false; } if (static_cast(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD); CurrentRenderMode = ERM_3D; } void COpenGLDriver::setWrapMode(const SMaterial& material) { // texture address mode // Has to be checked always because it depends on the textures for (u32 u=0; u0) break; // stop loop GLint mode=GL_REPEAT; switch (material.TextureLayer[u].TextureWrap) { case ETC_REPEAT: mode=GL_REPEAT; break; case ETC_CLAMP: mode=GL_CLAMP; break; case ETC_CLAMP_TO_EDGE: #ifdef GL_VERSION_1_2 if (Version>101) mode=GL_CLAMP_TO_EDGE; else #endif #ifdef GL_SGIS_texture_edge_clamp if (FeatureAvailable[IRR_SGIS_texture_edge_clamp]) mode=GL_CLAMP_TO_EDGE_SGIS; else #endif // fallback mode=GL_CLAMP; break; case ETC_CLAMP_TO_BORDER: #ifdef GL_VERSION_1_3 if (Version>102) mode=GL_CLAMP_TO_BORDER; else #endif #ifdef GL_ARB_texture_border_clamp if (FeatureAvailable[IRR_ARB_texture_border_clamp]) mode=GL_CLAMP_TO_BORDER_ARB; else #endif #ifdef GL_SGIS_texture_border_clamp if (FeatureAvailable[IRR_SGIS_texture_border_clamp]) mode=GL_CLAMP_TO_BORDER_SGIS; else #endif // fallback mode=GL_CLAMP; break; case ETC_MIRROR: #ifdef GL_VERSION_1_4 if (Version>103) mode=GL_MIRRORED_REPEAT; else #endif #ifdef GL_ARB_texture_border_clamp if (FeatureAvailable[IRR_ARB_texture_mirrored_repeat]) mode=GL_MIRRORED_REPEAT_ARB; else #endif #ifdef GL_IBM_texture_mirrored_repeat if (FeatureAvailable[IRR_IBM_texture_mirrored_repeat]) mode=GL_MIRRORED_REPEAT_IBM; else #endif mode=GL_REPEAT; break; } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, mode); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, mode); } } //! Can be called by an IMaterialRenderer to make its work easier. void COpenGLDriver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial, bool resetAllRenderStates) { if (resetAllRenderStates || lastmaterial.AmbientColor != material.AmbientColor || lastmaterial.DiffuseColor != material.DiffuseColor || lastmaterial.EmissiveColor != material.EmissiveColor) { GLfloat color[4]; const f32 inv = 1.0f / 255.0f; color[0] = material.AmbientColor.getRed() * inv; color[1] = material.AmbientColor.getGreen() * inv; color[2] = material.AmbientColor.getBlue() * inv; color[3] = material.AmbientColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, color); color[0] = material.DiffuseColor.getRed() * inv; color[1] = material.DiffuseColor.getGreen() * inv; color[2] = material.DiffuseColor.getBlue() * inv; color[3] = material.DiffuseColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color); color[0] = material.EmissiveColor.getRed() * inv; color[1] = material.EmissiveColor.getGreen() * inv; color[2] = material.EmissiveColor.getBlue() * inv; color[3] = material.EmissiveColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, color); } if (resetAllRenderStates || lastmaterial.SpecularColor != material.SpecularColor || lastmaterial.Shininess != material.Shininess) { GLfloat color[4]={0.f,0.f,0.f,1.f}; const f32 inv = 1.0f / 255.0f; glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, material.Shininess); // disable Specular colors if no shininess is set if (material.Shininess != 0.0f) { #ifdef GL_EXT_separate_specular_color if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR); #endif color[0] = material.SpecularColor.getRed() * inv; color[1] = material.SpecularColor.getGreen() * inv; color[2] = material.SpecularColor.getBlue() * inv; color[3] = material.SpecularColor.getAlpha() * inv; } #ifdef GL_EXT_separate_specular_color else if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR); #endif glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, color); } // Texture filter // Has to be checked always because it depends on the textures // Filtering has to be set for each texture layer for (u32 i=0; i0) break; #ifdef EXT_texture_lod_bias if (FeatureAvailable[IRR_EXT_texture_lod_bias]) { if (material.TextureLayer[i].LODBias) { const float tmp = core::clamp(material.TextureLayer[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias); glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, tmp); } else glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, 0.f); } #endif glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, (material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST); if (material.getTexture(i) && material.getTexture(i)->hasMipMaps()) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, material.TextureLayer[i].TrilinearFilter ? GL_LINEAR_MIPMAP_LINEAR : material.TextureLayer[i].BilinearFilter ? GL_LINEAR_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_NEAREST); else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, (material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST); #ifdef GL_EXT_texture_filter_anisotropic if (FeatureAvailable[IRR_EXT_texture_filter_anisotropic]) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, material.TextureLayer[i].AnisotropicFilter>1 ? core::min_(MaxAnisotropy, material.TextureLayer[i].AnisotropicFilter) : 1); #endif } // fillmode if (resetAllRenderStates || (lastmaterial.Wireframe != material.Wireframe) || (lastmaterial.PointCloud != material.PointCloud)) glPolygonMode(GL_FRONT_AND_BACK, material.Wireframe ? GL_LINE : material.PointCloud? GL_POINT : GL_FILL); // shademode if (resetAllRenderStates || (lastmaterial.GouraudShading != material.GouraudShading)) { if (material.GouraudShading) glShadeModel(GL_SMOOTH); else glShadeModel(GL_FLAT); } // lighting if (resetAllRenderStates || (lastmaterial.Lighting != material.Lighting)) { if (material.Lighting) glEnable(GL_LIGHTING); else glDisable(GL_LIGHTING); } // zbuffer if (resetAllRenderStates || lastmaterial.ZBuffer != material.ZBuffer) { switch (material.ZBuffer) { case ECFN_NEVER: glDisable(GL_DEPTH_TEST); break; case ECFN_LESSEQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); break; case ECFN_EQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_EQUAL); break; case ECFN_LESS: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); break; case ECFN_NOTEQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_NOTEQUAL); break; case ECFN_GREATEREQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_GEQUAL); break; case ECFN_GREATER: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_GREATER); break; case ECFN_ALWAYS: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_ALWAYS); break; } } // zwrite // if (resetAllRenderStates || lastmaterial.ZWriteEnable != material.ZWriteEnable) { if (material.ZWriteEnable && (AllowZWriteOnTransparent || !material.isTransparent())) { glDepthMask(GL_TRUE); } else glDepthMask(GL_FALSE); } // back face culling if (resetAllRenderStates || (lastmaterial.FrontfaceCulling != material.FrontfaceCulling) || (lastmaterial.BackfaceCulling != material.BackfaceCulling)) { if ((material.FrontfaceCulling) && (material.BackfaceCulling)) { glCullFace(GL_FRONT_AND_BACK); glEnable(GL_CULL_FACE); } else if (material.BackfaceCulling) { glCullFace(GL_BACK); glEnable(GL_CULL_FACE); } else if (material.FrontfaceCulling) { glCullFace(GL_FRONT); glEnable(GL_CULL_FACE); } else glDisable(GL_CULL_FACE); } // fog if (resetAllRenderStates || lastmaterial.FogEnable != material.FogEnable) { if (material.FogEnable) glEnable(GL_FOG); else glDisable(GL_FOG); } // normalization if (resetAllRenderStates || lastmaterial.NormalizeNormals != material.NormalizeNormals) { if (material.NormalizeNormals) glEnable(GL_NORMALIZE); else glDisable(GL_NORMALIZE); } // Color Mask if (resetAllRenderStates || lastmaterial.ColorMask != material.ColorMask) { glColorMask( (material.ColorMask & ECP_RED)?GL_TRUE:GL_FALSE, (material.ColorMask & ECP_GREEN)?GL_TRUE:GL_FALSE, (material.ColorMask & ECP_BLUE)?GL_TRUE:GL_FALSE, (material.ColorMask & ECP_ALPHA)?GL_TRUE:GL_FALSE); } // thickness if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness) { glPointSize(material.Thickness); glLineWidth(material.Thickness); } // Anti aliasing if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing) { if (FeatureAvailable[IRR_ARB_multisample]) { if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB); else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB); if ((AntiAlias >= 2) && (material.AntiAliasing & (EAAM_SIMPLE|EAAM_QUALITY))) { glEnable(GL_MULTISAMPLE_ARB); #ifdef GL_NV_multisample_filter_hint if (FeatureAvailable[IRR_NV_multisample_filter_hint]) glHint(GL_MULTISAMPLE_FILTER_HINT_NV, (material.AntiAliasing & EAAM_QUALITY)?GL_NICEST:GL_FASTEST); #endif } else glDisable(GL_MULTISAMPLE_ARB); } if (AntiAlias >= 2) { if (material.AntiAliasing & EAAM_LINE_SMOOTH) glEnable(GL_LINE_SMOOTH); else if (lastmaterial.AntiAliasing & EAAM_LINE_SMOOTH) glDisable(GL_LINE_SMOOTH); if (material.AntiAliasing & EAAM_POINT_SMOOTH) // often in software, and thus very slow glEnable(GL_POINT_SMOOTH); else if (lastmaterial.AntiAliasing & EAAM_POINT_SMOOTH) glDisable(GL_POINT_SMOOTH); } } setWrapMode(material); // be sure to leave in texture stage 0 if (MultiTextureExtension) extGlActiveTexture(GL_TEXTURE0_ARB); } //! sets the needed renderstates void COpenGLDriver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel) { if (CurrentRenderMode != ERM_2D || Transformation3DChanged) { // unset last 3d material if (CurrentRenderMode == ERM_3D) { if (static_cast(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); SMaterial mat; mat.ZBuffer=ECFN_NEVER; mat.Lighting=false; mat.TextureLayer[0].BilinearFilter=false; setBasicRenderStates(mat, mat, true); LastMaterial = mat; glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } glMatrixMode(GL_PROJECTION); const core::dimension2d& renderTargetSize = getCurrentRenderTargetSize(); core::matrix4 m; m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0, 1.0); m.setTranslation(core::vector3df(-1,1,0)); glLoadMatrixf(m.pointer()); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.375, 0.375, 0.0); glMatrixMode(GL_TEXTURE); glLoadIdentity(); Transformation3DChanged = false; } if (alphaChannel || alpha) { glEnable(GL_BLEND); glEnable(GL_ALPHA_TEST); glAlphaFunc(GL_GREATER, 0.f); } else { glDisable(GL_BLEND); glDisable(GL_ALPHA_TEST); } if (texture) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); if (alphaChannel) { // if alpha and alpha texture just modulate, otherwise use only the alpha channel if (alpha) { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE); // rgb always modulates glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PRIMARY_COLOR_EXT); } } else { if (alpha) { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_PRIMARY_COLOR_EXT); // rgb always modulates glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PRIMARY_COLOR_EXT); } else { glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } } } CurrentRenderMode = ERM_2D; } //! \return Returns the name of the video driver. const wchar_t* COpenGLDriver::getName() const { return Name.c_str(); } //! deletes all dynamic lights there are void COpenGLDriver::deleteAllDynamicLights() { for (s32 i=0; i= (s32)RequestedLights.size()) return; RequestedLight & requestedLight = RequestedLights[lightIndex]; requestedLight.DesireToBeOn = turnOn; if(turnOn) { if(-1 == requestedLight.HardwareLightIndex) assignHardwareLight(lightIndex); } else { if(-1 != requestedLight.HardwareLightIndex) { // It's currently assigned, so free up the hardware light glDisable(requestedLight.HardwareLightIndex); requestedLight.HardwareLightIndex = -1; // Now let the first light that's waiting on a free hardware light grab it for(u32 requested = 0; requested < RequestedLights.size(); ++requested) if(RequestedLights[requested].DesireToBeOn && -1 == RequestedLights[requested].HardwareLightIndex) { assignHardwareLight(requested); break; } } } } //! returns the maximal amount of dynamic lights the device can handle u32 COpenGLDriver::getMaximalDynamicLightAmount() const { return MaxLights; } //! Sets the dynamic ambient light color. The default color is //! (0,0,0,0) which means it is dark. //! \param color: New color of the ambient light. void COpenGLDriver::setAmbientLight(const SColorf& color) { GLfloat data[4] = {color.r, color.g, color.b, color.a}; glLightModelfv(GL_LIGHT_MODEL_AMBIENT, data); } // this code was sent in by Oliver Klems, thank you! (I modified the glViewport // method just a bit. void COpenGLDriver::setViewPort(const core::rect& area) { core::rect vp = area; core::rect rendert(0,0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height); vp.clipAgainst(rendert); if (vp.getHeight()>0 && vp.getWidth()>0) glViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight()); ViewPort = vp; } //! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do //! this: First, draw all geometry. Then use this method, to draw the shadow //! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow. void COpenGLDriver::drawStencilShadowVolume(const core::vector3df* triangles, s32 count, bool zfail) { if (!StencilBuffer || !count) return; // unset last 3d material if (CurrentRenderMode == ERM_3D && static_cast(Material.MaterialType) < MaterialRenderers.size()) { MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial(); ResetRenderStates = true; } // store current OpenGL state glPushAttrib(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ENABLE_BIT | GL_POLYGON_BIT | GL_STENCIL_BUFFER_BIT); glDisable(GL_LIGHTING); glDisable(GL_FOG); glDepthFunc(GL_LEQUAL); glDepthMask(GL_FALSE); // no depth buffer writing glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); // no color buffer drawing glEnable(GL_STENCIL_TEST); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(0.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3,GL_FLOAT,sizeof(core::vector3df),&triangles[0]); glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); // The first parts are not correctly working, yet. #if 0 #ifdef GL_EXT_stencil_two_side if (FeatureAvailable[IRR_EXT_stencil_two_side]) { glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT); #ifdef GL_NV_depth_clamp if (FeatureAvailable[IRR_NV_depth_clamp]) glEnable(GL_DEPTH_CLAMP_NV); #endif glDisable(GL_CULL_FACE); if (!zfail) { // ZPASS Method extGlActiveStencilFace(GL_BACK); if (FeatureAvailable[IRR_EXT_stencil_wrap]) glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT); else glStencilOp(GL_KEEP, GL_KEEP, GL_DECR); glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); extGlActiveStencilFace(GL_FRONT); if (FeatureAvailable[IRR_EXT_stencil_wrap]) glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT); else glStencilOp(GL_KEEP, GL_KEEP, GL_INCR); glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); glDrawArrays(GL_TRIANGLES,0,count); } else { // ZFAIL Method extGlActiveStencilFace(GL_BACK); if (FeatureAvailable[IRR_EXT_stencil_wrap]) glStencilOp(GL_KEEP, GL_INCR_WRAP_EXT, GL_KEEP); else glStencilOp(GL_KEEP, GL_INCR, GL_KEEP); glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); extGlActiveStencilFace(GL_FRONT); if (FeatureAvailable[IRR_EXT_stencil_wrap]) glStencilOp(GL_KEEP, GL_DECR_WRAP_EXT, GL_KEEP); else glStencilOp(GL_KEEP, GL_DECR, GL_KEEP); glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); glDrawArrays(GL_TRIANGLES,0,count); } } else #endif if (FeatureAvailable[IRR_ATI_separate_stencil]) { glDisable(GL_CULL_FACE); if (!zfail) { // ZPASS Method extGlStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_DECR); extGlStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, GL_INCR); extGlStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, 0, ~0); glStencilMask(~0); glDrawArrays(GL_TRIANGLES,0,count); } else { // ZFAIL Method extGlStencilOpSeparate(GL_BACK, GL_KEEP, GL_INCR, GL_KEEP); extGlStencilOpSeparate(GL_FRONT, GL_KEEP, GL_DECR, GL_KEEP); extGlStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, 0, ~0); glDrawArrays(GL_TRIANGLES,0,count); } } else #endif { glEnable(GL_CULL_FACE); if (!zfail) { // ZPASS Method glCullFace(GL_BACK); glStencilOp(GL_KEEP, GL_KEEP, GL_INCR); glDrawArrays(GL_TRIANGLES,0,count); glCullFace(GL_FRONT); glStencilOp(GL_KEEP, GL_KEEP, GL_DECR); glDrawArrays(GL_TRIANGLES,0,count); } else { // ZFAIL Method glStencilOp(GL_KEEP, GL_INCR, GL_KEEP); glCullFace(GL_FRONT); glDrawArrays(GL_TRIANGLES,0,count); glStencilOp(GL_KEEP, GL_DECR, GL_KEEP); glCullFace(GL_BACK); glDrawArrays(GL_TRIANGLES,0,count); } } glDisableClientState(GL_VERTEX_ARRAY); //not stored on stack glPopAttrib(); } void COpenGLDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge, video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge) { if (!StencilBuffer) return; disableTextures(); // store attributes glPushAttrib(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ENABLE_BIT | GL_POLYGON_BIT | GL_STENCIL_BUFFER_BIT); glDisable(GL_LIGHTING); glDisable(GL_FOG); glDepthMask(GL_FALSE); glShadeModel(GL_FLAT); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_STENCIL_TEST); glStencilFunc(GL_NOTEQUAL, 0, ~0); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // draw a shadow rectangle covering the entire screen using stencil buffer glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); glBegin(GL_QUADS); glColor4ub(leftDownEdge.getRed(), leftDownEdge.getGreen(), leftDownEdge.getBlue(), leftDownEdge.getAlpha()); glVertex3f(-1.1f,-1.1f,0.9f); glColor4ub(leftUpEdge.getRed(), leftUpEdge.getGreen(), leftUpEdge.getBlue(), leftUpEdge.getAlpha()); glVertex3f(-1.1f, 1.1f,0.9f); glColor4ub(rightUpEdge.getRed(), rightUpEdge.getGreen(), rightUpEdge.getBlue(), rightUpEdge.getAlpha()); glVertex3f(1.1f, 1.1f,0.9f); glColor4ub(rightDownEdge.getRed(), rightDownEdge.getGreen(), rightDownEdge.getBlue(), rightDownEdge.getAlpha()); glVertex3f(1.1f,-1.1f,0.9f); glEnd(); clearBuffers(false, false, clearStencilBuffer, 0x0); // restore settings glPopMatrix(); glPopAttrib(); } //! Sets the fog mode. void COpenGLDriver::setFog(SColor c, bool linearFog, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) { CNullDriver::setFog(c, linearFog, start, end, density, pixelFog, rangeFog); glFogf(GL_FOG_MODE, GLfloat(linearFog ? GL_LINEAR : GL_EXP)); #ifdef GL_EXT_fog_coord if (FeatureAvailable[IRR_EXT_fog_coord]) glFogi(GL_FOG_COORDINATE_SOURCE, GL_FRAGMENT_DEPTH); #endif if (linearFog) { glFogf(GL_FOG_START, start); glFogf(GL_FOG_END, end); } else glFogf(GL_FOG_DENSITY, density); if (pixelFog) glHint(GL_FOG_HINT, GL_NICEST); else glHint(GL_FOG_HINT, GL_FASTEST); SColorf color(c); GLfloat data[4] = {color.r, color.g, color.b, color.a}; glFogfv(GL_FOG_COLOR, data); } //! Draws a 3d line. void COpenGLDriver::draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color) { setRenderStates3DMode(); glBegin(GL_LINES); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glVertex3f(start.X, start.Y, start.Z); glVertex3f(end.X, end.Y, end.Z); glEnd(); } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void COpenGLDriver::OnResize(const core::dimension2d& size) { CNullDriver::OnResize(size); glViewport(0, 0, size.Width, size.Height); Transformation3DChanged = true; } //! Returns type of video driver E_DRIVER_TYPE COpenGLDriver::getDriverType() const { return EDT_OPENGL; } //! returns color format ECOLOR_FORMAT COpenGLDriver::getColorFormat() const { return ColorFormat; } //! Sets a vertex shader constant. void COpenGLDriver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { #ifdef GL_ARB_vertex_program for (s32 i=0; isetPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } //! Adds a new material renderer to the VideoDriver, using pixel and/or //! vertex shaders to render geometry. s32 COpenGLDriver::addShaderMaterial(const c8* vertexShaderProgram, const c8* pixelShaderProgram, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 nr = -1; COpenGLShaderMaterialRenderer* r = new COpenGLShaderMaterialRenderer( this, nr, vertexShaderProgram, pixelShaderProgram, callback, getMaterialRenderer(baseMaterial), userData); r->drop(); return nr; } //! Adds a new material renderer to the VideoDriver, using GLSL to render geometry. s32 COpenGLDriver::addHighLevelShaderMaterial( const c8* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 nr = -1; COpenGLSLMaterialRenderer* r = new COpenGLSLMaterialRenderer( this, nr, vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget, pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget, callback,getMaterialRenderer(baseMaterial), userData); r->drop(); return nr; } //! Returns a pointer to the IVideoDriver interface. (Implementation for //! IMaterialRendererServices) IVideoDriver* COpenGLDriver::getVideoDriver() { return this; } //! Returns pointer to the IGPUProgrammingServices interface. IGPUProgrammingServices* COpenGLDriver::getGPUProgrammingServices() { return this; } ITexture* COpenGLDriver::addRenderTargetTexture(const core::dimension2d& size, const core::string& name) { //disable mip-mapping bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false); video::ITexture* rtt = 0; #if defined(GL_EXT_framebuffer_object) // if driver supports FrameBufferObjects, use them if (queryFeature(EVDF_FRAMEBUFFER_OBJECT)) { rtt = new COpenGLFBOTexture(size, name, this); if (rtt) { bool success = false; addTexture(rtt); ITexture* tex = createDepthTexture(rtt); if (tex) { success = static_cast(tex)->attach(rtt); tex->drop(); } rtt->drop(); if (!success) { removeTexture(rtt); rtt=0; } } } else #endif { // the simple texture is only possible for size <= screensize // we try to find an optimal size with the original constraints core::dimension2du destSize(core::min_(size.Width,ScreenSize.Width), core::min_(size.Height,ScreenSize.Height)); destSize = destSize.getOptimalSize((size==size.getOptimalSize()), false, false); rtt = addTexture(destSize, name, ECF_A8R8G8B8); if (rtt) { static_cast(rtt)->setIsRenderTarget(true); } } //restore mip-mapping setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels); return rtt; } //! Returns the maximum amount of primitives (mostly vertices) which //! the device is able to render with one drawIndexedTriangleList //! call. u32 COpenGLDriver::getMaximalPrimitiveCount() const { return 0x7fffffff; } //! set or reset render target bool COpenGLDriver::setRenderTarget(video::E_RENDER_TARGET target, bool clearTarget, bool clearZBuffer, SColor color) { if (target != CurrentTarget) setRenderTarget(0, false, false, 0x0); if (ERT_RENDER_TEXTURE == target) { os::Printer::log("Fatal Error: For render textures call setRenderTarget with the actual texture as first parameter.", ELL_ERROR); return false; } if (Stereo && (ERT_STEREO_RIGHT_BUFFER == target)) { if (Doublebuffer) glDrawBuffer(GL_BACK_RIGHT); else glDrawBuffer(GL_FRONT_RIGHT); } else if (Stereo && ERT_STEREO_BOTH_BUFFERS == target) { if (Doublebuffer) glDrawBuffer(GL_BACK); else glDrawBuffer(GL_FRONT); } else if ((target >= ERT_AUX_BUFFER0) && (target-ERT_AUX_BUFFER0 < MaxAuxBuffers)) { glDrawBuffer(GL_AUX0+target-ERT_AUX_BUFFER0); } else { if (Doublebuffer) glDrawBuffer(GL_BACK_LEFT); else glDrawBuffer(GL_FRONT_LEFT); // exit with false, but also with working color buffer if (target != ERT_FRAME_BUFFER) return false; } CurrentTarget=target; clearBuffers(clearTarget, clearZBuffer, false, color); return true; } //! set or reset render target bool COpenGLDriver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer, bool clearZBuffer, SColor color) { // check for right driver type if (texture && texture->getDriverType() != EDT_OPENGL) { os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR); return false; } // check if we should set the previous RT back setTexture(0, 0); ResetRenderStates=true; if (RenderTargetTexture!=0) { RenderTargetTexture->unbindRTT(); } if (texture) { // we want to set a new target. so do this. glViewport(0, 0, texture->getSize().Width, texture->getSize().Height); RenderTargetTexture = static_cast(texture); RenderTargetTexture->bindRTT(); CurrentRendertargetSize = texture->getSize(); CurrentTarget=ERT_RENDER_TEXTURE; } else { glViewport(0,0,ScreenSize.Width,ScreenSize.Height); RenderTargetTexture = 0; CurrentRendertargetSize = core::dimension2d(0,0); CurrentTarget=ERT_FRAME_BUFFER; } clearBuffers(clearBackBuffer, clearZBuffer, false, color); return true; } // returns the current size of the screen or rendertarget const core::dimension2d& COpenGLDriver::getCurrentRenderTargetSize() const { if (CurrentRendertargetSize.Width == 0) return ScreenSize; else return CurrentRendertargetSize; } //! Clears the ZBuffer. void COpenGLDriver::clearZBuffer() { clearBuffers(false, true, false, 0x0); } //! Returns an image created from the last rendered frame. IImage* COpenGLDriver::createScreenShot() { IImage* newImage = new CImage(ECF_R8G8B8, ScreenSize); u8* pixels = static_cast(newImage->lock()); if (!pixels) { newImage->drop(); return 0; } // allows to read pixels in top-to-bottom order #ifdef GL_MESA_pack_invert if (FeatureAvailable[IRR_MESA_pack_invert]) glPixelStorei(GL_PACK_INVERT_MESA, GL_TRUE); #endif // We want to read the front buffer to get the latest render finished. glReadBuffer(GL_FRONT); glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, GL_RGB, GL_UNSIGNED_BYTE, pixels); glReadBuffer(GL_BACK); #ifdef GL_MESA_pack_invert if (FeatureAvailable[IRR_MESA_pack_invert]) glPixelStorei(GL_PACK_INVERT_MESA, GL_FALSE); else #endif { // opengl images are horizontally flipped, so we have to fix that here. const s32 pitch=newImage->getPitch(); u8* p2 = pixels + (ScreenSize.Height - 1) * pitch; u8* tmpBuffer = new u8[pitch]; for (u32 i=0; i < ScreenSize.Height; i += 2) { memcpy(tmpBuffer, pixels, pitch); memcpy(pixels, p2, pitch); memcpy(p2, tmpBuffer, pitch); pixels += pitch; p2 -= pitch; } delete [] tmpBuffer; } newImage->unlock(); if (testGLError()) { newImage->drop(); return 0; } return newImage; } //! get depth texture for the given render target texture ITexture* COpenGLDriver::createDepthTexture(ITexture* texture, bool shared) { if ((texture->getDriverType() != EDT_OPENGL) || (!texture->isRenderTarget())) return 0; COpenGLTexture* tex = static_cast(texture); if (!tex->isFrameBufferObject()) return 0; if (shared) { for (u32 i=0; igetSize()==texture->getSize()) { DepthTextures[i]->grab(); return DepthTextures[i]; } } DepthTextures.push_back(new COpenGLFBODepthTexture(texture->getSize(), "depth1", this)); return DepthTextures.getLast(); } return (new COpenGLFBODepthTexture(texture->getSize(), "depth1", this)); } void COpenGLDriver::removeDepthTexture(ITexture* texture) { for (u32 i=0; i= MaxUserClipPlanes) return false; UserClipPlane[index]=plane; enableClipPlane(index, enable); return true; } void COpenGLDriver::uploadClipPlane(u32 index) { // opengl needs an array of doubles for the plane equation double clip_plane[4]; clip_plane[0] = UserClipPlane[index].Normal.X; clip_plane[1] = UserClipPlane[index].Normal.Y; clip_plane[2] = UserClipPlane[index].Normal.Z; clip_plane[3] = UserClipPlane[index].D; glClipPlane(GL_CLIP_PLANE0 + index, clip_plane); } //! Enable/disable a clipping plane. void COpenGLDriver::enableClipPlane(u32 index, bool enable) { if (index >= MaxUserClipPlanes) return; if (enable) { if (!UserClipPlaneEnabled[index]) { uploadClipPlane(index); glEnable(GL_CLIP_PLANE0 + index); } } else glDisable(GL_CLIP_PLANE0 + index); UserClipPlaneEnabled[index]=enable; } } // end namespace } // end namespace #endif // _IRR_COMPILE_WITH_OPENGL_ namespace irr { namespace video { // ----------------------------------- // WINDOWS VERSION // ----------------------------------- #ifdef _IRR_USE_WINDOWS_DEVICE_ IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io) { #ifdef _IRR_COMPILE_WITH_OPENGL_ COpenGLDriver* ogl = new COpenGLDriver(params, io); if (!ogl->initDriver(params)) { ogl->drop(); ogl = 0; } return ogl; #else return 0; #endif // _IRR_COMPILE_WITH_OPENGL_ } #endif // _IRR_USE_WINDOWS_DEVICE_ // ----------------------------------- // MACOSX VERSION // ----------------------------------- #if defined(_IRR_USE_OSX_DEVICE_) IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceMacOSX *device) { #ifdef _IRR_COMPILE_WITH_OPENGL_ return new COpenGLDriver(params, io, device); #else return 0; #endif // _IRR_COMPILE_WITH_OPENGL_ } #endif // _IRR_USE_OSX_DEVICE_ // ----------------------------------- // X11/SDL VERSION // ----------------------------------- #if defined(_IRR_USE_LINUX_DEVICE_) || defined(_IRR_USE_SDL_DEVICE_) IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io) { #ifdef _IRR_COMPILE_WITH_OPENGL_ return new COpenGLDriver(params, io); #else return 0; #endif // _IRR_COMPILE_WITH_OPENGL_ } #endif // _IRR_USE_LINUX_DEVICE_ } // end namespace } // end namespace