// Copyright (C) 2002-2009 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __IRR_LINE_2D_H_INCLUDED__ #define __IRR_LINE_2D_H_INCLUDED__ #include "irrTypes.h" #include "vector2d.h" namespace irr { namespace core { //! 2D line between two points with intersection methods. template class line2d { public: //! Default constructor for line going from (0,0) to (1,1). line2d() : start(0,0), end(1,1) {} //! Constructor for line between the two points. line2d(T xa, T ya, T xb, T yb) : start(xa, ya), end(xb, yb) {} //! Constructor for line between the two points given as vectors. line2d(const vector2d& start, const vector2d& end) : start(start), end(end) {} //! Copy constructor. line2d(const line2d& other) : start(other.start), end(other.end) {} // operators line2d operator+(const vector2d& point) const { return line2d(start + point, end + point); } line2d& operator+=(const vector2d& point) { start += point; end += point; return *this; } line2d operator-(const vector2d& point) const { return line2d(start - point, end - point); } line2d& operator-=(const vector2d& point) { start -= point; end -= point; return *this; } bool operator==(const line2d& other) const { return (start==other.start && end==other.end) || (end==other.start && start==other.end);} bool operator!=(const line2d& other) const { return !(start==other.start && end==other.end) || (end==other.start && start==other.end);} // functions //! Set this line to new line going through the two points. void setLine(const T& xa, const T& ya, const T& xb, const T& yb){start.set(xa, ya); end.set(xb, yb);} //! Set this line to new line going through the two points. void setLine(const vector2d& nstart, const vector2d& nend){start.set(nstart); end.set(nend);} //! Set this line to new line given as parameter. void setLine(const line2d& line){start.set(line.start); end.set(line.end);} //! Get length of line /** \return Length of the line. */ f64 getLength() const { return start.getDistanceFrom(end); } //! Get squared length of the line /** \return Squared length of line. */ T getLengthSQ() const { return start.getDistanceFromSQ(end); } //! Get middle of the line /** \return center of the line. */ vector2d getMiddle() const { return (start + end) * (T)0.5; } //! Get the vector of the line. /** \return The vector of the line. */ vector2d getVector() const { return vector2d(start.X - end.X, start.Y - end.Y); } //! Tests if this line intersects with another line. /** \param l: Other line to test intersection with. \param out: If there is an intersection, the location of the intersection will be stored in this vector. \return True if there is an intersection, false if not. */ bool intersectWith(const line2d& l, vector2d& out) const { // Uses the method given at: // http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/ const f32 commonDenominator = (l.end.Y - l.start.Y)*(end.X - start.X) - (l.end.X - l.start.X)*(end.Y - start.Y); const f32 numeratorA = (l.end.X - l.start.X)*(start.Y - l.start.Y) - (l.end.Y - l.start.Y)*(start.X -l.start.X); const f32 numeratorB = (end.X - start.X)*(start.Y - l.start.Y) - (end.Y - start.Y)*(start.X -l.start.X); if(equals(commonDenominator, 0.f)) { // The lines are either coincident or parallel if(equals(numeratorA, 0.f) && equals(numeratorB, 0.f)) { // Try and find a common endpoint if(l.start == start || l.end == start) out = start; else if(l.end == end || l.start == end) out = end; else // one line is contained in the other, so for lack of a better // answer, pick the average of both lines out = ((start + end + l.start + l.end) * 0.25f); return true; // coincident } return false; // parallel } // Get the point of intersection on this line, checking that // it is within the line segment. const f32 uA = numeratorA / commonDenominator; if(uA < 0.f || uA > 1.f) return false; // Outside the line segment const f32 uB = numeratorB / commonDenominator; if(uB < 0.f || uB > 1.f) return false; // Outside the line segment // Calculate the intersection point. out.X = start.X + uA * (end.X - start.X); out.Y = start.Y + uA * (end.Y - start.Y); return true; } //! Get unit vector of the line. /** \return Unit vector of this line. */ vector2d getUnitVector() const { T len = (T)(1.0 / getLength()); return vector2d((end.X - start.X) * len, (end.Y - start.Y) * len); } //! Get angle between this line and given line. /** \param l Other line for test. \return Angle in degrees. */ f64 getAngleWith(const line2d& l) const { vector2d vect = getVector(); vector2d vect2 = l.getVector(); return vect.getAngleWith(vect2); } //! Tells us if the given point lies to the left, right, or on the line. /** \return 0 if the point is on the line <0 if to the left, or >0 if to the right. */ T getPointOrientation(const vector2d& point) const { return ( (end.X - start.X) * (point.Y - start.Y) - (point.X - start.X) * (end.Y - start.Y) ); } //! Check if the given point is a member of the line /** \return True if point is between start and end, else false. */ bool isPointOnLine(const vector2d& point) const { T d = getPointOrientation(point); return (d == 0 && point.isBetweenPoints(start, end)); } //! Check if the given point is between start and end of the line. /** Assumes that the point is already somewhere on the line. */ bool isPointBetweenStartAndEnd(const vector2d& point) const { return point.isBetweenPoints(start, end); } //! Get the closest point on this line to a point vector2d getClosestPoint(const vector2d& point) const { vector2d c = point - start; vector2d v = end - start; T d = (T)v.getLength(); v /= d; T t = v.dotProduct(c); if (t < (T)0.0) return start; if (t > d) return end; v *= t; return start + v; } //! Start point of the line. vector2d start; //! End point of the line. vector2d end; }; //! Typedef for an f32 line. typedef line2d line2df; //! Typedef for an integer line. typedef line2d line2di; } // end namespace core } // end namespace irr #endif