// Copyright (C) 2002-2007 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __IRR_POINT_2D_H_INCLUDED__ #define __IRR_POINT_2D_H_INCLUDED__ #include "irrMath.h" namespace irr { namespace core { //! 2d vector template class with lots of operators and methods. template class vector2d { public: vector2d() : X(0), Y(0) {}; vector2d(T nx, T ny) : X(nx), Y(ny) {}; vector2d(const vector2d& other) : X(other.X), Y(other.Y) {}; // operators vector2d operator-() const { return vector2d(-X, -Y); } vector2d& operator=(const vector2d& other) { X = other.X; Y = other.Y; return *this; } vector2d operator+(const vector2d& other) const { return vector2d(X + other.X, Y + other.Y); } vector2d& operator+=(const vector2d& other) { X+=other.X; Y+=other.Y; return *this; } vector2d operator-(const vector2d& other) const { return vector2d(X - other.X, Y - other.Y); } vector2d& operator-=(const vector2d& other) { X-=other.X; Y-=other.Y; return *this; } vector2d operator*(const vector2d& other) const { return vector2d(X * other.X, Y * other.Y); } vector2d& operator*=(const vector2d& other) { X*=other.X; Y*=other.Y; return *this; } vector2d operator*(const T v) const { return vector2d(X * v, Y * v); } vector2d& operator*=(const T v) { X*=v; Y*=v; return *this; } vector2d operator/(const vector2d& other) const { return vector2d(X / other.X, Y / other.Y); } vector2d& operator/=(const vector2d& other) { X/=other.X; Y/=other.Y; return *this; } vector2d operator/(const T v) const { return vector2d(X / v, Y / v); } vector2d& operator/=(const T v) { X/=v; Y/=v; return *this; } bool operator<=(const vector2d&other) const { return X<=other.X && Y<=other.Y; } bool operator>=(const vector2d&other) const { return X>=other.X && Y>=other.Y; } bool operator<(const vector2d&other) const { return X(const vector2d&other) const { return X>other.X && Y>other.Y; } bool operator==(const vector2d& other) const { return other.X==X && other.Y==Y; } bool operator!=(const vector2d& other) const { return other.X!=X || other.Y!=Y; } // functions //! returns if this vector equals the other one, taking floating point rounding errors into account bool equals(const vector2d& other) const { return core::equals(X, other.X) && core::equals(Y, other.Y); } void set(T nx, T ny) {X=nx; Y=ny; } void set(const vector2d& p) { X=p.X; Y=p.Y;} //! Returns the length of the vector //! \return Returns the length of the vector. T getLength() const { return (T)sqrt(X*X + Y*Y); } //! Returns the squared length of this vector /** This is useful because it is much faster than getLength(). */ T getLengthSQ() const { return X*X + Y*Y; } //! Returns the dot product of this vector with another. T dotProduct(const vector2d& other) const { return X*other.X + Y*other.Y; } //! Returns distance from another point. Here, the vector is interpreted //! as a point in 2 dimensional space. T getDistanceFrom(const vector2d& other) const { return vector2d(X - other.X, Y - other.Y).getLength(); } //! Returns squared distance from another point. Here, the vector is //! interpreted as a point in 2 dimensional space. T getDistanceFromSQ(const vector2d& other) const { return vector2d(X - other.X, Y - other.Y).getLengthSQ(); } //! rotates the point around a center by an amount of degrees. void rotateBy(f64 degrees, const vector2d& center) { degrees *= DEGTORAD64; T cs = (T)cos(degrees); T sn = (T)sin(degrees); X -= center.X; Y -= center.Y; set(X*cs - Y*sn, X*sn + Y*cs); X += center.X; Y += center.Y; } //! normalizes the vector. vector2d& normalize() { T l = X*X + Y*Y; if (l == 0) return *this; l = core::reciprocal_squareroot ( (f32)l ); X *= l; Y *= l; return *this; } //! Calculates the angle of this vector in grad in the trigonometric sense. //! This method has been suggested by Pr3t3nd3r. //! \return Returns a value between 0 and 360. f64 getAngleTrig() const { if (X == 0) return Y < 0 ? 270 : 90; else if (Y == 0) return X < 0 ? 180 : 0; if ( Y > 0) if (X > 0) return atan(Y/X) * RADTODEG64; else return 180.0-atan(Y/-X) * RADTODEG64; else if (X > 0) return 360.0-atan(-Y/X) * RADTODEG64; else return 180.0+atan(-Y/-X) * RADTODEG64; } //! Calculates the angle of this vector in grad in the counter trigonometric sense. //! \return Returns a value between 0 and 360. inline f64 getAngle() const { if (Y == 0) // corrected thanks to a suggestion by Jox return X < 0 ? 180 : 0; else if (X == 0) return Y < 0 ? 90 : 270; f64 tmp = Y / getLength(); tmp = atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64; if (X>0 && Y>0) return tmp + 270; else if (X>0 && Y<0) return tmp + 90; else if (X<0 && Y<0) return 90 - tmp; else if (X<0 && Y>0) return 270 - tmp; return tmp; } //! Calculates the angle between this vector and another one in grad. //! \return Returns a value between 0 and 90. inline f64 getAngleWith(const vector2d& b) const { f64 tmp = X*b.X + Y*b.Y; if (tmp == 0.0) return 90.0; tmp = tmp / sqrt((X*X + Y*Y) * (b.X*b.X + b.Y*b.Y)); if (tmp < 0.0) tmp = -tmp; return atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64; } //! Returns if this vector interpreted as a point is on a line between two other points. /** It is assumed that the point is on the line. */ //! \param begin: Beginning vector to compare between. //! \param end: Ending vector to compare between. //! \return True if this vector is between begin and end. False if not. bool isBetweenPoints(const vector2d& begin, const vector2d& end) const { T f = (end - begin).getLengthSQ(); return getDistanceFromSQ(begin) < f && getDistanceFromSQ(end) < f; } //! returns interpolated vector //! \param other: other vector to interpolate between //! \param d: value between 0.0f and 1.0f. vector2d getInterpolated(const vector2d& other, f32 d) const { T inv = (T) 1.0 - d; return vector2d(other.X*inv + X*d, other.Y*inv + Y*d); } //! Returns (quadratically) interpolated vector between this and the two given ones. /** \param v2: second vector to interpolate with \param v3: third vector to interpolate with \param d: value between 0.0f and 1.0f. */ vector2d getInterpolated_quadratic(const vector2d& v2, const vector2d& v3, const T d) const { // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d; const T inv = (T) 1.0 - d; const T mul0 = inv * inv; const T mul1 = (T) 2.0 * d * inv; const T mul2 = d * d; return vector2d ( X * mul0 + v2.X * mul1 + v3.X * mul2, Y * mul0 + v2.Y * mul1 + v3.Y * mul2); } //! sets this vector to the linearly interpolated vector between a and b. /** \param a: first vector to interpolate with \param b: second vector to interpolate with \param t: value between 0.0f and 1.0f. */ void interpolate(const vector2d& a, const vector2d& b, const f32 t) { X = b.X + ( ( a.X - b.X ) * t ); Y = b.Y + ( ( a.Y - b.Y ) * t ); } // member variables T X, Y; }; //! Typedef for f32 2d vector. typedef vector2d vector2df; //! Typedef for integer 2d vector. typedef vector2d vector2di; template vector2d operator*(const S scalar, const vector2d& vector) { return vector*scalar; } } // end namespace core } // end namespace irr #endif