// Copyright (C) 2002-2007 Nikolaus Gebhardt / Thomas Alten // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __S_4D_VERTEX_H_INCLUDED__ #define __S_4D_VERTEX_H_INCLUDED__ #include "SoftwareDriver2_compile_config.h" #include "SoftwareDriver2_helper.h" #include "irrAllocator.h" namespace irr { namespace video { struct sVec2 { f32 x; f32 y; sVec2 () {} sVec2 ( f32 _x, f32 _y ) : x ( _x ), y ( _y ) {} void set ( f32 _x, f32 _y ) { x = _x; y = _y; } // f = a * t + b * ( 1 - t ) void interpolate(const sVec2& a, const sVec2& b, const f32 t) { x = b.x + ( ( a.x - b.x ) * t ); y = b.y + ( ( a.y - b.y ) * t ); } sVec2 operator-(const sVec2& other) const { return sVec2(x - other.x, y - other.y); } sVec2 operator+(const sVec2& other) const { return sVec2(x + other.x, y + other.y); } void operator+=(const sVec2& other) { x += other.x; y += other.y; } sVec2 operator*(const f32 s) const { return sVec2(x * s , y * s); } void operator*=( const f32 s) { x *= s; y *= s; } void operator=(const sVec2& other) { x = other.x; y = other.y; } }; // A8R8G8B8 struct sVec4; struct sCompressedVec4 { u32 argb; void setA8R8G8B8 ( u32 value ) { argb = value; } void setColorf ( const irr::video::SColorf & color ) { argb = core::floor32 ( color.a * 255.f ) << 24 | core::floor32 ( color.r * 255.f ) << 16 | core::floor32 ( color.g * 255.f ) << 8 | core::floor32 ( color.b * 255.f ); } void setVec4 ( const sVec4 & v ); // f = a * t + b * ( 1 - t ) void interpolate(const sCompressedVec4& a, const sCompressedVec4& b, const f32 t) { argb = PixelBlend32 ( b.argb, a.argb, core::floor32 ( t * 256.f ) ); } }; struct sVec4 { f32 x, y, z, w; sVec4 () {} sVec4 ( f32 _x, f32 _y, f32 _z, f32 _w ) : x ( _x ), y ( _y ), z( _z ), w ( _w ){} void set ( f32 _x, f32 _y, f32 _z, f32 _w ) { x = _x; y = _y; z = _z; w = _w; } void setA8R8G8B8 ( u32 argb ) { x = ( ( argb & 0xFF000000 ) >> 24 ) * ( 1.f / 255.f ); y = ( ( argb & 0x00FF0000 ) >> 16 ) * ( 1.f / 255.f ); z = ( ( argb & 0x0000FF00 ) >> 8 ) * ( 1.f / 255.f ); w = ( ( argb & 0x000000FF ) ) * ( 1.f / 255.f ); } void setColorf ( const irr::video::SColorf & color ) { x = color.a; y = color.r; z = color.g; w = color.b; } void saturate () { x = core::clamp ( x, 0.f, 1.f ); y = core::clamp ( y, 0.f, 1.f ); z = core::clamp ( z, 0.f, 1.f ); w = core::clamp ( w, 0.f, 1.f ); } // f = a * t + b * ( 1 - t ) void interpolate(const sVec4& a, const sVec4& b, const f32 t) { x = b.x + ( ( a.x - b.x ) * t ); y = b.y + ( ( a.y - b.y ) * t ); z = b.z + ( ( a.z - b.z ) * t ); w = b.w + ( ( a.w - b.w ) * t ); } f32 dotProduct(const sVec4& other) const { return x*other.x + y*other.y + z*other.z + w*other.w; } f32 dot_xyz( const sVec4& other) const { return x*other.x + y*other.y + z*other.z; } f32 get_length_xyz () const { return sqrtf ( x * x + y * y + z * z ); } f32 get_inverse_length_xyz () const { return core::reciprocal_squareroot ( x * x + y * y + z * z ); } void normalize_xyz () { const f32 l = core::reciprocal_squareroot ( x * x + y * y + z * z ); x *= l; y *= l; z *= l; } void project_xyz () { w = core::reciprocal ( w ); x *= w; y *= w; z *= w; } sVec4 operator-(const sVec4& other) const { return sVec4(x - other.x, y - other.y, z - other.z,w - other.w); } sVec4 operator+(const sVec4& other) const { return sVec4(x + other.x, y + other.y, z + other.z,w + other.w); } void operator+=(const sVec4& other) { x += other.x; y += other.y; z += other.z; w += other.w; } sVec4 operator*(f32 s) const { return sVec4(x * s , y * s, z * s,w * s); } sVec4 operator*(const sVec4 &other) const { return sVec4(x * other.x , y * other.y, z * other.z,w * other.w); } void operator*=(f32 s) { x *= s; y *= s; z *= s; w *= s; } void operator*=(const sVec4 &other) { x *= other.x; y *= other.y; z *= other.z; w *= other.w; } void operator=(const sVec4& other) { x = other.x; y = other.y; z = other.z; w = other.w; } }; inline void sCompressedVec4::setVec4 ( const sVec4 & v ) { argb = core::floor32 ( v.x * 255.f ) << 24 | core::floor32 ( v.y * 255.f ) << 16 | core::floor32 ( v.z * 255.f ) << 8 | core::floor32 ( v.w * 255.f ); } enum e4DVertexFlag { VERTEX4D_INSIDE = 0x0000003F, VERTEX4D_CLIPMASK = 0x0000003F, VERTEX4D_PROJECTED = 0x00000100, VERTEX4D_FORMAT_MASK = 0xFFFF0000, VERTEX4D_FORMAT_0 = 0x00010000, VERTEX4D_FORMAT_1 = VERTEX4D_FORMAT_0 | 0x00020000, VERTEX4D_FORMAT_2 = VERTEX4D_FORMAT_1 | 0x00040000 }; // dummy Vertex struct __s4DVertex { sVec4 Pos; #ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR sVec4 Color[1]; #endif sVec2 Tex[2]; u32 flag; }; #define SIZEOF_SVERTEX 64 #define SIZEOF_SVERTEX_LOG2 6 struct s4DVertex { sVec4 Pos; #ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR sVec4 Color[1]; #endif sVec2 Tex[2]; u32 flag; u8 fill [ SIZEOF_SVERTEX - sizeof (__s4DVertex) ]; // f = a * t + b * ( 1 - t ) void interpolate(const s4DVertex& b, const s4DVertex& a, const f32 t) { Pos.interpolate ( a.Pos, b.Pos, t ); #ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR Color[0].interpolate ( a.Color[0], b.Color[0], t ); #endif Tex[0].interpolate ( a.Tex[0], b.Tex[0], t ); if ( (flag & VERTEX4D_FORMAT_1 ) == VERTEX4D_FORMAT_1 ) { Tex[1].interpolate ( a.Tex[1], b.Tex[1], t ); } } }; // ----------------- Vertex Cache --------------------------- struct SAlignedVertex { SAlignedVertex ( u32 element, u32 aligned ) : ElementSize ( element ) { u32 byteSize = (ElementSize << SIZEOF_SVERTEX_LOG2 ) + aligned; mem = new u8 [ byteSize ]; //data = (s4DVertex*) ((PointerAsValue ( mem ) + (aligned-1) ) & ~ ( aligned - 1 ) ); data = (s4DVertex*) mem; } virtual ~SAlignedVertex () { delete [] mem; } s4DVertex *data; u8 *mem; u32 ElementSize; }; // hold info for different Vertex Types struct SVSize { u32 Format; u32 Pitch; u32 TexSize; }; // a cache info struct SCacheInfo { u32 index; u32 hit; }; #define VERTEXCACHE_ELEMENT 16 #define VERTEXCACHE_MISS 0xFFFFFFFF struct SVertexCache { SVertexCache (): mem ( VERTEXCACHE_ELEMENT * 2, 128 ) {} SCacheInfo info[VERTEXCACHE_ELEMENT]; // Transformed and lite, clipping state // + Clipped, Projected SAlignedVertex mem; // source const void* vertices; u32 vertexCount; const u16* indices; u32 indexCount; u32 indicesIndex; u32 indicesRun; // primitives consist of x vertices u32 primitivePitch; u32 vType; //E_VERTEX_TYPE u32 pType; //scene::E_PRIMITIVE_TYPE }; // swap 2 pointer inline void swapVertexPointer(const s4DVertex** v1, const s4DVertex** v2) { const s4DVertex* b = *v1; *v1 = *v2; *v2 = b; } // ------------------------ Internal Scanline Rasterizer ----------------------------- // internal scan convert struct sScanConvertData { s32 left; // major edge left/right s32 right; // !left f32 invDeltaY[3]; // inverse edge delta y f32 x[2]; // x coordinate f32 slopeX[2]; // x slope along edges #if defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) || defined ( SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT ) f32 w[2]; // w coordinate fp24 slopeW[2]; // w slope along edges #else f32 z[2]; // z coordinate f32 slopeZ[2]; // z slope along edges #endif sVec4 c[2]; // color sVec4 slopeC[2]; // color slope along edges sVec2 t0[2]; // texture sVec2 slopeT0[2]; // texture slope along edges sVec2 t1[2]; // texture sVec2 slopeT1[2]; // texture slope along edges }; // passed to scan Line struct sScanLineData { s32 y; // y position of scanline f32 x[2]; // x start, x end of scanline #if defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) || defined ( SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT ) f32 w[2]; // w start, w end of scanline #else f32 z[2]; // z start, z end of scanline #endif #ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR sVec4 c[2]; // color start, color end of scanline #endif sVec2 t0[2]; // texture start, texture end of scanline sVec2 t1[2]; // texture start, texture end of scanline }; /* load a color value */ inline void getTexel_plain ( tFixPoint &r, tFixPoint &g, tFixPoint &b, const sVec4 &v ) { r = f32_to_fixPoint ( v.y ); g = f32_to_fixPoint ( v.z ); b = f32_to_fixPoint ( v.w ); } /* load a color value */ inline void getSample_color ( tFixPoint &a, tFixPoint &r, tFixPoint &g, tFixPoint &b, const sVec4 &v ) { a = f32_to_fixPoint ( v.x ); r = f32_to_fixPoint ( v.y, COLOR_MAX * FIX_POINT_F32_MUL); g = f32_to_fixPoint ( v.z, COLOR_MAX * FIX_POINT_F32_MUL); b = f32_to_fixPoint ( v.w, COLOR_MAX * FIX_POINT_F32_MUL); } /* load a color value */ inline void getSample_color ( tFixPoint &r, tFixPoint &g, tFixPoint &b, const sVec4 &v ) { r = f32_to_fixPoint ( v.y, COLOR_MAX * FIX_POINT_F32_MUL); g = f32_to_fixPoint ( v.z, COLOR_MAX * FIX_POINT_F32_MUL); b = f32_to_fixPoint ( v.w, COLOR_MAX * FIX_POINT_F32_MUL); } } } #endif