// Copyright (C) 2002-2007 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #ifndef __IRR_QUATERNION_H_INCLUDED__ #define __IRR_QUATERNION_H_INCLUDED__ #include "irrTypes.h" #include "irrMath.h" #include "matrix4.h" #include "vector3d.h" namespace irr { namespace core { //! Quaternion class. class quaternion { public: //! Default Constructor quaternion() : X(0.0f), Y(0.0f), Z(0.0f), W(1.0f) {} //! Constructor quaternion(f32 x, f32 y, f32 z, f32 w) : X(x), Y(y), Z(z), W(w) { } //! Constructor which converts euler angles (radians) to a quaternion quaternion(f32 x, f32 y, f32 z); //! Constructor which converts euler angles (radians) to a quaternion quaternion(const vector3df& vec); //! Constructor which converts a matrix to a quaternion quaternion(const matrix4& mat); //! equal operator bool operator==(const quaternion& other) const; //! assignment operator inline quaternion& operator=(const quaternion& other); //! matrix assignment operator inline quaternion& operator=(const matrix4& other); //! add operator quaternion operator+(const quaternion& other) const; //! multiplication operator quaternion operator*(const quaternion& other) const; //! multiplication operator quaternion operator*(f32 s) const; //! multiplication operator quaternion& operator*=(f32 s); //! multiplication operator vector3df operator* (const vector3df& v) const; //! multiplication operator quaternion& operator*=(const quaternion& other); //! calculates the dot product inline f32 getDotProduct(const quaternion& other) const; //! sets new quaternion inline void set(f32 x, f32 y, f32 z, f32 w); //! sets new quaternion based on euler angles (radians) inline void set(f32 x, f32 y, f32 z); //! sets new quaternion based on euler angles (radians) inline void set(const core::vector3df& vec); //! normalizes the quaternion inline quaternion& normalize(); //! Creates a matrix from this quaternion matrix4 getMatrix() const; //! Creates a matrix from this quaternion void getMatrix( matrix4 &dest ) const; //! Creates a matrix from this quaternion void getMatrix_transposed( matrix4 &dest ) const; //! Inverts this quaternion void makeInverse(); //! set this quaternion to the result of the interpolation between two quaternions void slerp( quaternion q1, quaternion q2, f32 interpolate ); //! axis must be unit length //! The quaternion representing the rotation is //! q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k) void fromAngleAxis (f32 angle, const vector3df& axis); //! Fills an angle (radians) around an axis (unit vector) void toAngleAxis (f32 &angle, vector3df& axis) const; //! Output this quaternion to an euler angle (radians) void toEuler(vector3df& euler) const; //! set quaternion to identity void makeIdentity(); //! sets quaternion to represent a rotation from one angle to another void rotationFromTo(const vector3df& from, const vector3df& to); f32 X, Y, Z, W; }; //! Constructor which converts euler angles to a quaternion inline quaternion::quaternion(f32 x, f32 y, f32 z) { set(x,y,z); } //! Constructor which converts euler angles to a quaternion inline quaternion::quaternion(const vector3df& vec) { set(vec.X,vec.Y,vec.Z); } //! Constructor which converts a matrix to a quaternion inline quaternion::quaternion(const matrix4& mat) { (*this) = mat; } //! equal operator inline bool quaternion::operator==(const quaternion& other) const { if(X != other.X) return false; if(Y != other.Y) return false; if(Z != other.Z) return false; if(W != other.W) return false; return true; } //! assignment operator inline quaternion& quaternion::operator=(const quaternion& other) { X = other.X; Y = other.Y; Z = other.Z; W = other.W; return *this; } //! matrix assignment operator inline quaternion& quaternion::operator=(const matrix4& m) { f32 diag = m(0,0) + m(1,1) + m(2,2) + 1; f32 scale = 0.0f; if( diag > 0.0f ) { scale = sqrtf(diag) * 2.0f; // get scale from diagonal // TODO: speed this up X = ( m(2,1) - m(1,2)) / scale; Y = ( m(0,2) - m(2,0)) / scale; Z = ( m(1,0) - m(0,1)) / scale; W = 0.25f * scale; } else { if ( m(0,0) > m(1,1) && m(0,0) > m(2,2)) { // 1st element of diag is greatest value // find scale according to 1st element, and double it scale = sqrtf( 1.0f + m(0,0) - m(1,1) - m(2,2)) * 2.0f; // TODO: speed this up X = 0.25f * scale; Y = (m(0,1) + m(1,0)) / scale; Z = (m(2,0) + m(0,2)) / scale; W = (m(2,1) - m(1,2)) / scale; } else if ( m(1,1) > m(2,2)) { // 2nd element of diag is greatest value // find scale according to 2nd element, and double it scale = sqrtf( 1.0f + m(1,1) - m(0,0) - m(2,2)) * 2.0f; // TODO: speed this up X = (m(0,1) + m(1,0) ) / scale; Y = 0.25f * scale; Z = (m(1,2) + m(2,1) ) / scale; W = (m(0,2) - m(2,0) ) / scale; } else { // 3rd element of diag is greatest value // find scale according to 3rd element, and double it scale = sqrtf( 1.0f + m(2,2) - m(0,0) - m(1,1)) * 2.0f; // TODO: speed this up X = (m(0,2) + m(2,0)) / scale; Y = (m(1,2) + m(2,1)) / scale; Z = 0.25f * scale; W = (m(1,0) - m(0,1)) / scale; } } normalize(); return *this; } //! multiplication operator inline quaternion quaternion::operator*(const quaternion& other) const { quaternion tmp; tmp.W = (other.W * W) - (other.X * X) - (other.Y * Y) - (other.Z * Z); tmp.X = (other.W * X) + (other.X * W) + (other.Y * Z) - (other.Z * Y); tmp.Y = (other.W * Y) + (other.Y * W) + (other.Z * X) - (other.X * Z); tmp.Z = (other.W * Z) + (other.Z * W) + (other.X * Y) - (other.Y * X); return tmp; } //! multiplication operator inline quaternion quaternion::operator*(f32 s) const { return quaternion(s*X, s*Y, s*Z, s*W); } //! multiplication operator inline quaternion& quaternion::operator*=(f32 s) { X *= s; Y*=s; Z*=s; W*=s; return *this; } //! multiplication operator inline quaternion& quaternion::operator*=(const quaternion& other) { *this = other * (*this); return *this; } //! add operator inline quaternion quaternion::operator+(const quaternion& b) const { return quaternion(X+b.X, Y+b.Y, Z+b.Z, W+b.W); } //! Creates a matrix from this quaternion inline matrix4 quaternion::getMatrix() const { core::matrix4 m; m(0,0) = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z; m(1,0) = 2.0f*X*Y + 2.0f*Z*W; m(2,0) = 2.0f*X*Z - 2.0f*Y*W; m(3,0) = 0.0f; m(0,1) = 2.0f*X*Y - 2.0f*Z*W; m(1,1) = 1.0f - 2.0f*X*X - 2.0f*Z*Z; m(2,1) = 2.0f*Z*Y + 2.0f*X*W; m(3,1) = 0.0f; m(0,2) = 2.0f*X*Z + 2.0f*Y*W; m(1,2) = 2.0f*Z*Y - 2.0f*X*W; m(2,2) = 1.0f - 2.0f*X*X - 2.0f*Y*Y; m(3,2) = 0.0f; m(0,3) = 0.0f; m(1,3) = 0.0f; m(2,3) = 0.0f; m(3,3) = 1.0f; return m; } //! Creates a matrix from this quaternion inline void quaternion::getMatrix( matrix4 &dest ) const { dest[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z; dest[1] = 2.0f*X*Y + 2.0f*Z*W; dest[2] = 2.0f*X*Z - 2.0f*Y*W; dest[3] = 0.0f; dest[4] = 2.0f*X*Y - 2.0f*Z*W; dest[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z; dest[6] = 2.0f*Z*Y + 2.0f*X*W; dest[7] = 0.0f; dest[8] = 2.0f*X*Z + 2.0f*Y*W; dest[9] = 2.0f*Z*Y - 2.0f*X*W; dest[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y; dest[11] = 0.0f; dest[12] = 0.f; dest[13] = 0.f; dest[14] = 0.f; dest[15] = 1.f; } //! Creates a matrix from this quaternion inline void quaternion::getMatrix_transposed( matrix4 &dest ) const { dest[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z; dest[4] = 2.0f*X*Y + 2.0f*Z*W; dest[8] = 2.0f*X*Z - 2.0f*Y*W; dest[12] = 0.0f; dest[1] = 2.0f*X*Y - 2.0f*Z*W; dest[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z; dest[9] = 2.0f*Z*Y + 2.0f*X*W; dest[13] = 0.0f; dest[2] = 2.0f*X*Z + 2.0f*Y*W; dest[6] = 2.0f*Z*Y - 2.0f*X*W; dest[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y; dest[14] = 0.0f; dest[3] = 0.f; dest[7] = 0.f; dest[11] = 0.f; dest[15] = 1.f; } //! Inverts this quaternion inline void quaternion::makeInverse() { X = -X; Y = -Y; Z = -Z; } //! sets new quaternion inline void quaternion::set(f32 x, f32 y, f32 z, f32 w) { X = x; Y = y; Z = z; W = w; } //! sets new quaternion based on euler angles inline void quaternion::set(f32 x, f32 y, f32 z) { f64 angle; angle = x * 0.5; f64 sr = (f32)sin(angle); f64 cr = (f32)cos(angle); angle = y * 0.5; f64 sp = (f32)sin(angle); f64 cp = (f32)cos(angle); angle = z * 0.5; f64 sy = (f32)sin(angle); f64 cy = (f32)cos(angle); f64 cpcy = cp * cy; f64 spcy = sp * cy; f64 cpsy = cp * sy; f64 spsy = sp * sy; X = (f32)(sr * cpcy - cr * spsy); Y = (f32)(cr * spcy + sr * cpsy); Z = (f32)(cr * cpsy - sr * spcy); W = (f32)(cr * cpcy + sr * spsy); normalize(); } //! sets new quaternion based on euler angles inline void quaternion::set(const core::vector3df& vec) { set(vec.X, vec.Y, vec.Z); } //! normalizes the quaternion inline quaternion& quaternion::normalize() { f32 n = X*X + Y*Y + Z*Z + W*W; if (n == 1) return *this; //n = 1.0f / sqrtf(n); n = reciprocal_squareroot ( n ); X *= n; Y *= n; Z *= n; W *= n; return *this; } // set this quaternion to the result of the interpolation between two quaternions inline void quaternion::slerp( quaternion q1, quaternion q2, f32 time) { f32 angle = q1.getDotProduct(q2); if (angle < 0.0f) { q1 *= -1.0f; angle *= -1.0f; } f32 scale; f32 invscale; if ((angle + 1.0f) > 0.05f) { if ((1.0f - angle) >= 0.05f) // spherical interpolation { f32 theta = (f32)acos(angle); f32 invsintheta = 1.0f / (f32)sin(theta); scale = (f32)sin(theta * (1.0f-time)) * invsintheta; invscale = (f32)sin(theta * time) * invsintheta; } else // linear interploation { scale = 1.0f - time; invscale = time; } } else { q2.set(-q1.Y, q1.X, -q1.W, q1.Z); scale = (f32)sin(PI * (0.5f - time)); invscale = (f32)sin(PI * time); } *this = (q1*scale) + (q2*invscale); } //! calculates the dot product inline f32 quaternion::getDotProduct(const quaternion& q2) const { return (X * q2.X) + (Y * q2.Y) + (Z * q2.Z) + (W * q2.W); } inline void quaternion::fromAngleAxis(f32 angle, const vector3df& axis) { f32 fHalfAngle = 0.5f*angle; f32 fSin = (f32)sin(fHalfAngle); W = (f32)cos(fHalfAngle); X = fSin*axis.X; Y = fSin*axis.Y; Z = fSin*axis.Z; } inline void quaternion::toAngleAxis(f32 &angle, core::vector3df &axis) const { f32 scale = sqrt (X*X + Y*Y + Z*Z); if (core::iszero(scale) || W > 1.0f || W < -1.0f) { angle = 0.0f; axis.X = 0.0f; axis.Y = 1.0f; axis.Z = 0.0f; } else { angle = 2.0f * acos(W); axis.X = X / scale; axis.Y = Y / scale; axis.Z = Z / scale; } } inline void quaternion::toEuler(vector3df& euler) const { double sqw = W*W; double sqx = X*X; double sqy = Y*Y; double sqz = Z*Z; // heading = rotation about z-axis euler.Z = (f32) (atan2(2.0 * (X*Y +Z*W),(sqx - sqy - sqz + sqw))); // bank = rotation about x-axis euler.X = (f32) (atan2(2.0 * (Y*Z +X*W),(-sqx - sqy + sqz + sqw))); // attitude = rotation about y-axis euler.Y = (f32) (asin( clamp(-2.0 * (X*Z - Y*W), -1.0, 1.0) )); } inline vector3df quaternion::operator* (const vector3df& v) const { // nVidia SDK implementation vector3df uv, uuv; vector3df qvec(X, Y, Z); uv = qvec.crossProduct(v); uuv = qvec.crossProduct(uv); uv *= (2.0f * W); uuv *= 2.0f; return v + uv + uuv; } //! set quaterion to identity inline void quaternion::makeIdentity() { W = 1.f; X = 0.f; Y = 0.f; Z = 0.f; } inline void quaternion::rotationFromTo(const vector3df& from, const vector3df& to) { // Based on Stan Melax's article in Game Programming Gems // Copy, since cannot modify local vector3df v0 = from; vector3df v1 = to; v0.normalize(); v1.normalize(); vector3df c = v0.crossProduct(v1); f32 d = v0.dotProduct(v1); if (d >= 1.0f) // If dot == 1, vectors are the same { *this=quaternion(0,0,0,1); //IDENTITY; } f32 s = sqrtf( (1+d)*2 ); // optimize inv_sqrt f32 invs = 1 / s; X = c.X * invs; Y = c.Y * invs; Z = c.Z * invs; W = s * 0.5f; } } // end namespace core } // end namespace irr #endif