/*
Copyright (c) 2013 yvt
This file is part of OpenSpades.
OpenSpades is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenSpades is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenSpades. If not, see .
*/
#include
#include
#include
#include "GLAmbientShadowRenderer.h"
#include "GLProfiler.h"
#include "GLRenderer.h"
#include
namespace spades {
namespace draw {
class GLAmbientShadowRenderer::UpdateDispatch : public ConcurrentDispatch {
GLAmbientShadowRenderer *renderer;
public:
std::atomic done {false};
UpdateDispatch(GLAmbientShadowRenderer *r) : renderer(r) { }
void Run() override {
SPADES_MARK_FUNCTION();
renderer->UpdateDirtyChunks();
done = true;
}
};
GLAmbientShadowRenderer::GLAmbientShadowRenderer(GLRenderer *r, client::GameMap *m)
: renderer(r), device(r->GetGLDevice()), map(m) {
SPADES_MARK_FUNCTION();
for (int i = 0; i < NumRays; i++) {
Vector3 dir = MakeVector3(SampleRandomFloat(), SampleRandomFloat(), SampleRandomFloat());
dir = dir.Normalize();
dir += 0.01f;
rays[i] = dir;
}
w = map->Width();
h = map->Height();
d = map->Depth();
chunkW = w / ChunkSize;
chunkH = h / ChunkSize;
chunkD = d / ChunkSize;
chunks = std::vector{static_cast(chunkW * chunkH * chunkD)};
for (size_t i = 0; i < chunks.size(); i++) {
Chunk &c = chunks[i];
float *data = (float *)c.data;
std::fill(data, data + ChunkSize * ChunkSize * ChunkSize, 1.f);
}
for (int x = 0; x < chunkW; x++)
for (int y = 0; y < chunkH; y++)
for (int z = 0; z < chunkD; z++) {
Chunk &c = GetChunk(x, y, z);
c.cx = x;
c.cy = y;
c.cz = z;
}
SPLog("Chunk buffer allocated (%d bytes)", (int) sizeof(Chunk) * chunkW * chunkH * chunkD);
// make texture
texture = device->GenTexture();
device->BindTexture(IGLDevice::Texture3D, texture);
device->TexParamater(IGLDevice::Texture3D, IGLDevice::TextureMagFilter,
IGLDevice::Linear);
device->TexParamater(IGLDevice::Texture3D, IGLDevice::TextureMinFilter,
IGLDevice::Linear);
device->TexParamater(IGLDevice::Texture3D, IGLDevice::TextureWrapS, IGLDevice::Repeat);
device->TexParamater(IGLDevice::Texture3D, IGLDevice::TextureWrapT, IGLDevice::Repeat);
device->TexParamater(IGLDevice::Texture3D, IGLDevice::TextureWrapR,
IGLDevice::ClampToEdge);
device->TexImage3D(IGLDevice::Texture3D, 0, IGLDevice::Red, w, h, d + 1, 0,
IGLDevice::Red, IGLDevice::FloatType, NULL);
SPLog("Chunk texture allocated");
std::vector v;
v.resize(w * h);
std::fill(v.begin(), v.end(), 1.f);
for (int i = 0; i < d + 1; i++) {
device->TexSubImage3D(IGLDevice::Texture3D, 0, 0, 0, i, w, h, 1, IGLDevice::Red,
IGLDevice::FloatType, v.data());
}
SPLog("Chunk texture initialized");
dispatch = NULL;
}
GLAmbientShadowRenderer::~GLAmbientShadowRenderer() {
SPADES_MARK_FUNCTION();
if (dispatch) {
dispatch->Join();
delete dispatch;
}
device->DeleteTexture(texture);
}
float GLAmbientShadowRenderer::Evaluate(IntVector3 ipos) {
SPADES_MARK_FUNCTION_DEBUG();
float sum = 0;
Vector3 pos = MakeVector3((float)ipos.x, (float)ipos.y, (float)ipos.z);
float muzzleDiff = 0.02f;
// check allowed ray direction
uint8_t directions[8] = {0, 1, 2, 3, 4, 5, 6, 7};
int numDirections = 0;
for (int x = -1; x <= 0; x++)
for (int y = -1; y <= 0; y++)
for (int z = -1; z <= 0; z++) {
if (!map->IsSolidWrapped(ipos.x + x, ipos.y + y, ipos.z + z)) {
unsigned int bits = 0;
if (x)
bits |= 1;
if (y)
bits |= 2;
if (z)
bits |= 4;
directions[numDirections++] = bits;
}
}
if (numDirections == 0)
numDirections = 8;
int dirId = 0;
for (int i = 0; i < NumRays; i++) {
Vector3 dir = rays[i];
unsigned int bits = directions[dirId];
if (bits & 1)
dir.x = -dir.x;
if (bits & 2)
dir.y = -dir.y;
if (bits & 4)
dir.z = -dir.z;
dirId++;
if (dirId >= numDirections)
dirId = 0;
Vector3 muzzle = pos + dir * muzzleDiff;
IntVector3 hitBlock;
float brightness = 1.f;
if (map->IsSolidWrapped((int)floorf(muzzle.x), (int)floorf(muzzle.y),
(int)floorf(muzzle.z))) {
if (numDirections < 8)
SPAssert(false);
continue;
}
if (map->CastRay(muzzle, dir, 18.f, hitBlock)) {
Vector3 centerPos =
MakeVector3(hitBlock.x + .5f, hitBlock.y + .5f, hitBlock.z + .5f);
float dist = (centerPos - muzzle).GetPoweredLength();
brightness = dist * 0.02f; // 1/7/7
if (brightness > 1.f)
brightness = 1.f;
}
sum += brightness;
}
sum *= 1.f / (float)NumRays;
sum *= (float)numDirections / 4.f;
return sum;
}
void GLAmbientShadowRenderer::GameMapChanged(int x, int y, int z, client::GameMap *map) {
SPADES_MARK_FUNCTION_DEBUG();
if (map != this->map)
return;
Invalidate(x - 8, y - 8, z - 8, x + 8, y + 8, z + 8);
}
void GLAmbientShadowRenderer::Invalidate(int minX, int minY, int minZ, int maxX, int maxY,
int maxZ) {
SPADES_MARK_FUNCTION_DEBUG();
if (minZ < 0)
minZ = 0;
if (maxZ > d - 1)
maxZ = d - 1;
if (minX > maxX || minY > maxY || minZ > maxZ)
return;
// these should be floor div
int cx1 = minX >> ChunkSizeBits;
int cy1 = minY >> ChunkSizeBits;
int cz1 = minZ >> ChunkSizeBits;
int cx2 = maxX >> ChunkSizeBits;
int cy2 = maxY >> ChunkSizeBits;
int cz2 = maxZ >> ChunkSizeBits;
for (int cx = cx1; cx <= cx2; cx++)
for (int cy = cy1; cy <= cy2; cy++)
for (int cz = cz1; cz <= cz2; cz++) {
Chunk &c = GetChunkWrapped(cx, cy, cz);
int originX = cx * ChunkSize;
int originY = cy * ChunkSize;
int originZ = cz * ChunkSize;
int inMinX = std::max(minX - originX, 0);
int inMinY = std::max(minY - originY, 0);
int inMinZ = std::max(minZ - originZ, 0);
int inMaxX = std::min(maxX - originX, ChunkSize - 1);
int inMaxY = std::min(maxY - originY, ChunkSize - 1);
int inMaxZ = std::min(maxZ - originZ, ChunkSize - 1);
if (!c.dirty) {
c.dirtyMinX = inMinX;
c.dirtyMinY = inMinY;
c.dirtyMinZ = inMinZ;
c.dirtyMaxX = inMaxX;
c.dirtyMaxY = inMaxY;
c.dirtyMaxZ = inMaxZ;
c.dirty = true;
} else {
c.dirtyMinX = std::min(inMinX, c.dirtyMinX);
c.dirtyMinY = std::min(inMinY, c.dirtyMinY);
c.dirtyMinZ = std::min(inMinZ, c.dirtyMinZ);
c.dirtyMaxX = std::max(inMaxX, c.dirtyMaxX);
c.dirtyMaxY = std::max(inMaxY, c.dirtyMaxY);
c.dirtyMaxZ = std::max(inMaxZ, c.dirtyMaxZ);
}
}
}
int GLAmbientShadowRenderer::GetNumDirtyChunks() {
int cnt = 0;
for (size_t i = 0; i < chunks.size(); i++) {
Chunk &c = chunks[i];
if (c.dirty)
cnt++;
}
return cnt;
}
void GLAmbientShadowRenderer::Update() {
if (GetNumDirtyChunks() > 0 && (dispatch == NULL || dispatch->done)) {
if (dispatch) {
dispatch->Join();
delete dispatch;
}
dispatch = new UpdateDispatch(this);
dispatch->Start();
}
// Count the number of chunks that need to be uploaded to GPU.
// This value is approximate but it should be okay for profiling use
int cnt = 0;
for (size_t i = 0; i < chunks.size(); i++) {
if (!chunks[i].transferDone.load())
cnt++;
}
GLProfiler::Context profiler(renderer->GetGLProfiler(), "Large Ambient Occlusion [>= %d chunk(s)]", cnt);
device->BindTexture(IGLDevice::Texture3D, texture);
for (size_t i = 0; i < chunks.size(); i++) {
Chunk &c = chunks[i];
if (!c.transferDone.exchange(true)) {
device->TexSubImage3D(IGLDevice::Texture3D, 0, c.cx * ChunkSize,
c.cy * ChunkSize, c.cz * ChunkSize + 1, ChunkSize,
ChunkSize, ChunkSize, IGLDevice::Red,
IGLDevice::FloatType, c.data);
}
}
}
void GLAmbientShadowRenderer::UpdateDirtyChunks() {
int dirtyChunkIds[256];
int numDirtyChunks = 0;
int nearDirtyChunks = 0;
// first, check only chunks in near range
Vector3 eyePos = renderer->GetSceneDef().viewOrigin;
int eyeX = (int)(eyePos.x) >> ChunkSizeBits;
int eyeY = (int)(eyePos.y) >> ChunkSizeBits;
int eyeZ = (int)(eyePos.z) >> ChunkSizeBits;
for (size_t i = 0; i < chunks.size(); i++) {
Chunk &c = chunks[i];
int dx = (c.cx - eyeX) & (chunkW - 1);
int dy = (c.cy - eyeY) & (chunkH - 1);
int dz = (c.cz - eyeZ);
if (dx >= 6 && dx <= chunkW - 6)
continue;
if (dy >= 6 && dy <= chunkW - 6)
continue;
if (dz >= 6 || dz <= -6)
continue;
if (c.dirty) {
dirtyChunkIds[numDirtyChunks++] = static_cast(i);
nearDirtyChunks++;
if (numDirtyChunks >= 256)
break;
}
}
// far chunks
if (numDirtyChunks == 0) {
for (size_t i = 0; i < chunks.size(); i++) {
Chunk &c = chunks[i];
if (c.dirty) {
dirtyChunkIds[numDirtyChunks++] = static_cast(i);
if (numDirtyChunks >= 256)
break;
}
}
}
// limit update count per frame
for (int i = 0; i < 8; i++) {
if (numDirtyChunks <= 0)
break;
int idx = SampleRandomInt(0, numDirtyChunks - 1);
Chunk &c = chunks[dirtyChunkIds[idx]];
// remove from list (fast)
if (idx < numDirtyChunks - 1) {
std::swap(dirtyChunkIds[idx], dirtyChunkIds[numDirtyChunks - 1]);
}
numDirtyChunks--;
UpdateChunk(c.cx, c.cy, c.cz);
}
/*
printf("%d (%d near) chunk update left\n",
GetNumDirtyChunks(), nearDirtyChunks);*/
}
void GLAmbientShadowRenderer::UpdateChunk(int cx, int cy, int cz) {
Chunk &c = GetChunk(cx, cy, cz);
if (!c.dirty)
return;
int originX = cx * ChunkSize;
int originY = cy * ChunkSize;
int originZ = cz * ChunkSize;
for (int z = c.dirtyMinZ; z <= c.dirtyMaxZ; z++)
for (int y = c.dirtyMinY; y <= c.dirtyMaxY; y++)
for (int x = c.dirtyMinX; x <= c.dirtyMaxX; x++) {
IntVector3 pos;
pos.x = (x + originX);
pos.y = (y + originY);
pos.z = (z + originZ);
c.data[z][y][x] = Evaluate(pos);
}
c.dirty = false;
c.transferDone = false;
}
}
}