
LuaInterface: Scripting the .NET CLR with Lua

Fabio Mascarenhas1 , Roberto Ierusalimschy1

1Departamento de Inforḿatica, PUC-Rio
Rua Marqûes de S̃ao Vicente, 225 – 22453-900

Rio de Janeiro, RJ, Brasil

mascarenhas@acm.org, roberto@inf.puc-rio.br

Abstract. In this paper we present LuaInterface, a library for scripting the .NET CLR with Lua.

The .NET Common Language Runtime aims to provide interoperability among objects written

in several different languages. LuaInterface is a library for the CLR that lets Lua script objects

in any language that runs in the CLR. It gives Lua the capabilities of a full CLS consumer. The

Common Language Specification is a subset of the CLR with rules for language interoperability,

and languages that can use CLS-compliant libraries are called CLS consumers. Applications

may also use LuaInterface to embed a Lua interpreter and use Lua as a language for configu-

ration scripts or for extending the application. LuaInterface is part of the Lua.NET project for

integration of Lua into the .NET Common Language Infrastructure.

1. Introduction

The Microsoft .NET Framework aims to provide interoperability among several different languages through

its Common Language Runtime (CLR) [13]. The CLR specification is being turned into ISO and ECMA

standards [14], and implementations for non-Windows platforms already exist [17, 18]. Visual Basic,

JScript, C#, J#, and C++ already have compilers for the CLR, written by Microsoft, and compilers for

several other languages are under development [2].

Lua is a scripting language designed for to be simple, portable, to have a small footprint, and

to be easily embeddable into other languages [8, 10]. Scripting languages are often used for connecting

components written in other languages to form applications (“glue” code). They are also used for building

prototypes, and as languages for configuration files. The dynamic nature of these languages allows the

use of components without previous declaration of types and without the need for a compilation phase.

Nevertheless, they perform extensive type checking at runtime and provide detailed information in case of

errors. The combination of these features can increase developer productivity by a factor of two or more

[16].

This work presents LuaInterface, a library for the CLR that allows Lua scripts to access the object

model of the CLR, the Common Type System (CTS), turning Lua into a scripting language for components

written in any language that runs in the CLR. LuaInterface is part of the Lua.NET project for integration of

Lua into the CLR [9].



LuaInterface provides all the capabilities of a full CLS consumer. The Common Language Spec-

ification (CLS) is a subset of the CLR that establishes a set of rules to promote language interoperability.

Compilers that generate code capable of using CLS-compliant libraries are calledCLS consumers. Com-

pilers that can produce new libraries or extend existing ones are calledCLS extenders. A CLS consumer

should be able to call any CLS-compliant method or delegate, even methods named after keywords of the

language; to call distinct methods of a type with the same name and signature but from different interfaces;

to instantiate any CLS-compliant type, including nested types; and to read and write any CLS-compliant

property and access any CLS-compliant event [14, CLI Partition I Section 7.2.2].

With LuaInterface, Lua scripts can instantiate CTS types, access their fields, and call their methods

(both static and instance), all using the standard Lua syntax. CLR applications can run Lua code, acess Lua

data, call Lua functions, and register CLR methods as functions. Applications can use Lua as a language for

their configuration scripts or as an embedded scripting language, and Lua cripts can glue together different

components. Besides these consumer facilities there is also a limited support for dynamically creating new

CTS types, but it will not be covered in this paper.

Lua is dynamically typed, so it needs no type declarations to instantiate or use CLR objects. It

checks at runtime the correctness of each instantiation, field access, or method call. LuaInterface makes

extensive use of the reflexive features of the CLR, without the need of preprocessing or creating stubs

for each object that needs to be accessed. Its implementation required no changes to the Lua interpreter:

the interpreter is compiled to an unmanaged dynamic linked library and the CLR interfaces with it using

P/Invoke.

The rest of this paper is structured as follows: Section 2 shows how applications can use LuaIn-

terface and the methods it exposes, with examples. Section 3 describes particular issues of the implemen-

tation, with basic performance measurements. Section 4 presents some related work and comments on

their strengths and drawbacks relative to LuaInterface, and Section 5 presents some conclusions and future

developments.

2. Interfacing Lua and the CLR

As an embeddable language, Lua has an API that lets an application instantiate a Lua interpreter, run Lua

code, exchange data between the application and the interpreter, call Lua functions, and register functions

so they can be called from Lua [11]. LuaInterface wraps this API into a class namedLua , which provides

methods to execute Lua code, to read and write global variables, and to register CLR methods as Lua

functions. Auxiliary classes provide methods to access Lua tables’ (associative arrays) fields and to call

Lua functions. LuaInterface also has the capabilities of a full CLS consumer, so Lua code can instantiate

CLR objects and access their their properties and methods.

Functions are first-class values in Lua, so Lua objects are just tables, and functions stored in



fields are their methods. By convention, these functions receive a first argument calledself that holds a

reference to the table. There is syntactic sugar for accessing fields and methods. The dot (.) operator is

used for fields, withobj.field="foo" meaningobj["field"]="foo" , for example. The colon

(:) operator is used to call methods. A method call likeobj:foo(arg1,arg2) is syntactic sugar for

obj["foo"](obj,arg1,arg2) , that is, the object goes as the first argument to the call.

2.1. The API wrapper

Applications start a new Lua interpreter by instantiating an object of classLua . Multiple instances may

be created, and they are completely independent. MethodsDoFile andDoString execute a Lua source

file and a Lua chunk, respectively. Access to global variables is through the class indexer, indexed by vari-

able name. The indexer returns Lua values with the equivalent CTS value type:nil asnull , numbers as

System.Double (the Lua interpreter uses doubles to represent all numbers), strings asSystem.String ,

and booleans asSystem.Boolean . The following C# code shows the usage of these methods:

// Start a new Lua interpreter
Lua lua = new Lua();
// Run Lua chunks
lua.DoString("num = 2"); // create global variable ’num’
lua.DoString("str = ’a string’");
// Read global variables ’num’ and ’str’
double num = (double)lua["num"];
string str = (string)lua["str"];
// Write to global variable ’str’
lua["str"] = "another string";

The indexer returns Lua tables asLuaTable objects, which have their own indexers to read and

write table fields, indexed by name or by numbers (arrays in Lua are just tables indexed by numbers). They

work just like the indexers in classLua . Lua functions are returned asLuaFunction objects. Their

call method calls the corresponding function and returns an array with the function’s return values.

LuaInterface converts CLR values passed to Lua (either as a global or as an argument to a function)

into the appropriate Lua types: numeric values to Lua numbers, strings to Lua strings, booleans to Lua

booleans,null to nil , LuaTable objects to the wrapped table, andLuaFunction objects to the

wrapped function.

2.2. Loading CTS types and instantiating objects

Scripts need a type reference to instantiate new objects. They need two functions to get a type reference.

First they should useload assembly , which loads the specified assembly, making its types available to

be imported as type references. Then they should useimport type , which searches the loaded assemblies

for the specified type and returns a reference to it. The following excerpt shows how these functions work.

load_assembly("System.Windows.Forms")
load_assembly("System.Drawing")
Form = import_type("System.Windows.Forms.Form")
Button = import_type("System.Windows.Forms.Button")
Point = import_type("System.Drawing.Point")
StartPosition = import_type("System.Windows.Forms.FormStartPosition")



Notice how scripts can useimport type to get type references for structures (Point ) and

enumerations (FormStartPosition ), as well as classes.

Scripts call static methods through type references, using the same syntax of Lua objects. For

example,Form:GetAutoScaleSize(arg) calls theGetAutoScaleSize method of classForm.

LuaInterface does lookup of static methods dynamically by the number and type of arguments. Scripts also

read and write to static fields and non-indexed properties through type references, also with the same syntax

of Lua objects. For example,var=Form.ActiveForm assigns the value of theActiveForm property

of classForm to the variablevar . LuaInterface treats enumeration values as fields of the corresponding

enumeration type.

LuaInteface converts arguments to the parameter type not the original Lua type. For example, a

number passed to a C# method expecting aSystem.Int32 value is converted toSystem.Int32 , not

to System.Double . LuaInterface coerces numerical strings into numbers, numbers into strings and Lua

functions into delegates. The same conversions apply to fields and non-indexed properties, with values

converted to the field type or property type, respectively.

To instantiate a new CTS object a script calls the respective type reference as a function. The first

constructor that matches the number and type of the parameters is used. The following example extends the

previous example to show some of the discussed features:

form1 = Form()
button1 = Button()
button2 = Button()
position = Point(10,10)
start_position = StartPosition.CenterScreen

2.3. Accessing other CTS types

Only numeric values, strings, booleans,null , LuaTable instances andLuaFunction instances have

a mapping to a basic Lua type that LuaInterface uses when passing them from the CLR to Lua. LuaIn-

terface passes all other objects as references stored inside an userdata value (an userdata is a Lua type for

application-specific data). Scripts read and write an object’s fields and non-indexed properties as fields of

Lua objects, and call methods as methods Lua objects. To read and write indexed properties (including

indexers) they must use their respectiveget andset methods (usually calledget PropertyName and

set PropertyName ).

The same considerations about method matching and type coercion that apply for accessing static

members apply for accessing instance members. The following Lua code extends the previous examples to

show how to access properties and methods:

button1.Text = "OK"
button2.Text = "Cancel"
button1.Location = position
button2.Location = Point(button1.Left,button1.Height+button1.Top+10)
form1.Controls:Add(button1)
form1.Controls:Add(button2)



form1.StartPosition = start_position
form1:ShowDialog()

The three previous examples combined, when run, show a form with two buttons, on the center of

the screen.

Scripts can register Lua functions as event handlers by calling the event’sAdd pseudo-method. The

call takes a Lua function as the sole argument, and automatically converts this function to aDelegate

instance with the appropriate signature. It also returns the created delegate, allowing deregistration through

the event’sRemove pseudo-method. The following Lua code extends the previous examples to add event

handlers to both buttons:

function handle_mouseup(sender,args)
print(sender:ToString() .. " MouseUp!")
button1.MouseUp:Remove(handler1)

end
handler1 = button1.MouseUp:Add(handle_mouseup)
handler2 = button2.Click:Add(exit) -- exit is a standard Lua function

Scripts can also register and deregister handlers by calling the object’sadd andremove methods

for the event (usually calledadd EventName andremove EventName ).

LuaInterface passes any exception that occurs during execution of a CLR method to Lua as an

error, with the exception object as the error message (Lua error messages are not restricted to strings). Lua

has mechanisms for capturing and treating those errors.

LuaInterface also provides a shortcut for indexing single-dimension arrays (either to get or set

values), by indexing the array reference with a number, for example,arr[3] . For multidimensional

arrays scripts should use the methods of classArray instead.

2.4. Additional full CLS consumer capabilities

The features already presented cover most uses of LuaInterface, and most of the capabilities of a full CLS

consumer. The following paragraphs present the features that cover the rest of the needed capabilities.

Lua offers only call-by-value parameters, so LuaInterface supportsout andref parameters using

multiple return values (functions in Lua can return any number of values). LuaInterface returns the values

of outandref parameters after the method’s return value, in the order they appear in the method’s signature.

The method call should ommitout parameters.

The standard method selection of LuaInterface uses the first method that matches the number

and type of the call’s arguments, so some methods of an object may never be selected. For those cases,

LuaInterface provides the functionget method bysig . It takes an object or type reference, the method

name, and a list of type references corresponding to the method parameters. It returns a function that, when

called, executes the desired method. If it is an instance method the first argument to the call must be the

receiver of the method. Scripts can also useget method bysig to call instance methods of the CLR

numeric and string types. There is also aget constructor bysig function that does the same thing



for constructors. It takes as parameters a type reference that will be searched for the constructor and zero or

more type references, one for each parameter. It returns a function that, when called, instantiates an object

of the desired type with the matching constructor.

If a script wants to call a method with a Lua keyword as its name theobj:method(...)

syntax cannot be used. For a method namedfunction , for example, the script should call it using

obj["function"](obj,...) .

To call distinct methods with the same name and signature, but belonging to different interfaces,

scripts can prefix the method name with the interface name. If the method is calledfoo , for example, and

its interface isIFoo , the method call should beobj["IFoo.foo"](obj,...) .

Finally, to get a reference to a nested type a script can callimport type with the nested type’s

name following the containing type’s name, like inimport_type("ContainingType+NestedType") .

3. Implementation of LuaInterface

We wrote LuaInterface mostly in C#, with a tiny (less than 30 lines) stub in C. The current version uses

Lua version 5.0. The C# code is platform-neutral, but the stub must be changed depending on the standard

calling convention used by the CLR on a specific platform. The implementation assumes the existence of a

DLL or shared library namedlua.dll containing the implementation of the Lua API plus the stub code,

and a library namedlualib.dll containing the implementation of the Lua library API.

3.1. Wrapping the Lua API

LuaInterface accesses the Lua API functions through Platform/Invoke (P/Invoke for short), the CLR’s native

code interface. Access is straightforward, with each function exported by the Lua libraries corresponding

to a static method in LuaInterface’s C# code. For example, the following C prototype:

void lua_pushstring(lua_State *L, const char* s);

when translated to C# is:

static extern void lua_pushstring(IntPtr L, string s);

P/Invoke automatically marshalls basic types from the CLR to C. It marshalls delegates as function

pointers, so passing methods to Lua is almost straightforward, for care must be taken so the CLR garbage

collector will not collect the delegates. In Windows there is also a conflict of function calling conventions.

The C compilers use CDECL calling convention by default (caller cleans the stack) while the Microsoft

.NET compilers use STDCALL as default (callee cleans the stack), so we wrote a tiny stub C stub which

exports a function that receives an explicit STDCALL function pointer and passes it to the Lua interpreter

wrapped inside a CDECL function.

Implementing theLua wrapper class and its methods that deal with Lua standard types was easy

once the Lua API was fully available to C# programs. The API has functions to convert Lua numbers to C



doubles and C doubles to Lua numbers. It also has functions to convert Lua strings to C strings (char*) and

C strings to Lua strings, and functions to convert Lua booleans to C booleans (integers) and C booleans to

Lua booleans. TheLua class’ indexer just calls these functions when numbers, strings and booleans are

involved.

The indexer returns tables and functions asLuaTable andLuaFunction instances, respec-

tively, containing a Lua reference (an integer), and CLR applications access or call them through the ap-

propriate API functions. When the CLR garbage collector collects the instances LuaInterface removes their

Lua references so the interpreter may collect them.

3.2. Passing CLR objects to Lua

Lua has a data type called userdata that lets an application pass arbitrary data to the interpreter and later

retrieve it. When an application creates a new userdata the intrepreter allocates space for it and returns a

pointer to the allocated space. The application can attach functions to an userdata to be called when it is

garbage-collected, indexed as a table, called as a function, or compared to other values.

When LuaInterface needs to pass a CLR object to Lua it stores the object inside a list (to keep the

CLR from collecting it), creates a new userdata, stores the index (in the list) of the object inside this userdata,

and passes the userdata instead. A reference to the userdata is also stored, with the same index, inside a

Lua table. This table is used if the object was already passed earlier, to reuse the already created userdata

instead of creating another one (avoiding aliasing). This table stores weak references so the interpreter can

eventually collect the userdata. When the interpreter collects it the original object must be removed from

the list. This is done by the userdata’s finalizer function.

3.3. Using CLR objects from Lua

When a script calls a CLR method, such asobj:foo(arg1,arg2) , the Lua interpreter first converts the

call to obj["foo"](arg1,arg2) , which is an indexing operation (obj["foo"] ) followed by a call

to the value returned by it.

The indexing operation for CLR objects is implemented by a Lua function. It checks if the method

is already in the object type’s method cache. If it is not, the function calls a C# function which returns a

delegate to represent the method and stores it in the object type’s method cache.

When the interpreter calls the delegate for a method it first checks another cache to see if this

method has been called before. This cache stores theMethodBase object representing the method (or one

of its overloaded versions), along with a pre-allocated array of arguments, an array of functions to get the

arguments’ values from Lua with the correct types, and an array with the positions ofoutandref parameters

(so the delegate can return their values). If there is a method in the cache the delegate tries this method first.

If the cache is empty or the call fails due to a wrong signature, the delegate checks all overloaded versions

of the method one by one to find a match. If it finds one it stores the method in the cache and calls it,

otherwise it throws an exception.



To read fields LuaInterface uses the same C# function that returns the method delegate, but now it

returns the value of the field. Non-indexed properties and events use this same technique, but events return

an object used for registration/deregistration of event handlers. This object implements the event’sAdd and

Removepseudo-methods.

LuaInterface uses another C# function to treat assignment to fields and non-indexed properties. It

retrieves the object from the userdata, uses reflection to try to find a property or field with the given name

and, if found, converts the assigned value to the property type or field type and stores it.

Type references returned by theimport type function are instances of classType , with their

own assignment and indexing functions. They search for static members only, but otherwise work just like

the assignment and indexing functions of normal object instances. When a script calls a type reference to

instantiate a new object, LuaInterface calls a function which searches the type’s constructors for a matching

one, instantiating an object of that type if it finds a match.

3.4. Performance of CLR method calls

We ran simple performance tests to gauge the overhead of calling a CLR method from a Lua script. On

average the calls were five times slower than calling the same method from C# using reflection (with

MethodBase.Invoke ). Most of the overhead is from P/Invoke: each P/Invoke call generates from

ten to thirty CPU instructions plus what is needed for security checking and argument marshalling [15].

One call is needed for each argument of the method plus one for the receiver, one for the delegate, one for

each returned value, and one call to get the number of arguments passed to the method.

The rest of the overhead (a fifth of the call’s time, approximately) is from Lua itself, as each

method call is also a Lua function call which checks a Lua table (the method cache). Implementing this

cache in C# just makes performance worse (by a factor of 2.5), as three more P/Invoke calls are needed to

get the receiver of the method, the method’s name and then returning the delegate.

Removing the second level of caching so every method call needs to match the arguments against

the method’s overloaded versions and their parameters worsens the performance by a factor of three. The

naive implementation (no caching at all) is much worse (by about two orders of magnitude), as each method

call involves the creation of a new delegate.

4. Related Work

The LuaPlus distribution [12] has some of the features of LuaInterface. It provides a managed C++ wrapper

to the Lua API that is similar to LuaInterface’s API wrapper, with methods to run Lua code, to read and

write Lua globals, and to register delegates (with a specific signature) as Lua functions. Arbitrary CLR

objects may be passed to the interpreter as userdata, but Lua scripts cannot access their properties and

methods, and applications cannot register methods with arbitrary signatures as Lua functions.



LuaOrb is a library, implemented in C++, for scripting CORBA objects and implementing CORBA

interfaces [5, 6]. As LuaInterface, LuaOrb uses reflection to access properties and to call methods of

CORBA objects. Registering Lua tables as implementations of CORBA interfaces is done through CORBA’s

Dynamic Server Interface, which has no similar in CLR, although a similar feature was implemented for

LuaInterface by runtime code generation throughReflection.Emit .

LuaJava is a scripting tool for Java that allows Lua scripts to access Java objects and create Java

objects from Lua tables [3, 4]. LuaJava uses an approach very similar to the one in LuaInterface to access

Java objects, using Java reflection to find properties and methods and Java’s native code API to acess the

Lua C API. It uses dynamic generation of bytecodes to create Java objects from tables, generating a class

that delegates attribute access and method calling to the Lua table. This class is loaded by a custom class

loader. The CLR’sReflection.Emit interface made this task much easier, with its utility classes and

methods for generating and loading Intermediate Language (IL) code.

Microsoft’s Script for the .NET Framework [7] is a set of script engines that a CLR application

can host. It provides two engines by default, a Visual Basic engine and a JScript engine. Scripts have full

access to CTS classes and the application can make its objects available to them. The scripts are compiled

to CLR’s Intermediate Language (IL) before they are executed, instead of being directly executed by a

separate interpreter like LuaInterface does with Lua scripts.

ActiveState’s PerlNET [1] gives access to Perl code from the CLR. It packages Perl classes and

modules as CTS classes, with their functions and methods visible to other objects. This is accomplished by

embedding the interpreter inside the runtime, and using proxies to interface the CLR objects with Perl code.

This is very similar to the approach used by LuaInterface, but the types generated by LuaInterface are kept

on memory and recreated on each execution instead of being exported to an autonomous assembly on disk.

Other scripting languages have compilers for the CLR in several stages of development, such as

SmallTalk (S#), Python, and Ruby [2]. When these compilers are ready these languages may also be used

to script CLR applications, but only prototypes are available yet.

5. Conclusions and Future Work

This paper presented LuaInterface, a library that gives Lua scripts full access to CLR types and objects

and allows CLR applications to run Lua Code, turning Lua into a glue language for CLR applications.

LuaInterface gives Lua the capabilities of a full CLS consumer.

We implemented the library in C# so it is platform-neutral, except for a small C stub. Users can

compile the C code (the Lua interpreter and the stub) in all the platforms where the CLR is available, with

minimal changes to the stub code.

The Lua interpreter was designed to be easily embeddable, and with the CLR’s P/Invoke library

access to the interpreter was straightforward. We created an object-oriented wrapper to the C API functions



to provide a more natural interface for CLR applications.

Performance of method calls from Lua is still poor when compared with reflection, although Lu-

aInterface caches method calls. They were about five times slower, on average. Most of the overhead comes

from costly P/Invoke function calls.

What we learned during the course of this project:

• The extensibility of Lua made it easy to implement the full CLS consumer capabilities without any

changes to the interpreter or language, and without the need for a preprocessor;

• Lua’s dynamic typing and the CLR’s reflection are crucial for the lightweight approach to integra-

tion that was used in this project, as the correctness of operations may be checked by the library at

runtime;

• Reflection is not the performance bottleneck for the library, as we initially thought it would be;

• P/Invoke is very easy to use and very clean, but much slower than we thought, and became the

bottleneck of the library. The CLR documentation could give more emphasis to the performance

penalties of using P/Invoke.

LuaInterface is an ongoing project. There is room for improvements with more CLR extension

features, as well as further optimization for method calls, reducing the use of P/Invoke or not using it at

all. One possible optimization is to reduce the number of P/Invoke calls necessary for each operation. This

requires extensions to the API (new C functions). Another optimization is to do a full port of the Lua

interpreter to managed code. Both are being considered for future work.

References

[1] ActiveState. PerlNET — Build .NET components using the Perl Dev Kit, 2002. Available athttp:

//aspn.activestate.com/ASPN/Downloads/PerlNET .

[2] J. Bock. .NET Languages, 2003. Available athttp://www.jasonbock.net/

dotnetlanguages.html .

[3] C. Cassino and R. Ierusalimschy. LuaJava — Uma Ferramenta de Scripting para Java. InSimṕosio

Brasileiro de Linguagens de Programação (SBLP’99), 1999.

[4] C. Cassino, R. Ierusalimschy, and N. Rodriguez. LuaJava — A Scripting Tool for Java. Techni-

cal report, 1999. Available athttp://www.tecgraf.puc-rio.br/˜cassino/luajava/

index.html .

[5] R. Cerqueira, C. Cassino, and R. Ierusalimschy. Dynamic Component Gluing Across Different Com-

ponentware Systems. InInternational Symposium on Distributed Objects and Applications (DOA’99),

1999.



[6] R. Cerqueira, L. Nogueira, and A. Moura.The LuaOrb Manual. TeCGraf Computer Science

Department, PUC-Rio, 2000. Available athttp://http://www.tecgraf.puc-rio.br/

luaorb/ .

[7] A. Clinick. Script Happens .NET, 2001. Available athttp://msdn.microsoft.com/

library/en-us/dnclinic/html/scripting06112001.asp .

[8] L. H. Figueiredo, R. Ierusalimschy, and W. Celes. Lua — An Extensible Embedded Language.Dr.

Dobb’s Journal, 21(12):26–33, 1996.

[9] R. Ierusalimschy and R. Cerqueira. Lua.NET: Integrating Lua with Rotor, 2002. Available athttp:

//www.tecgraf.puc-rio.br/˜rcerq/luadotnet/ .

[10] R. Ierusalimschy, L. H. Figueiredo, and W. Celes. Lua — An Extensible Extension Language.Soft-

ware: Practice and Experience, 26(6):635–652, 1996.

[11] R. Ierusalimschy, L. H. Figueiredo, and W. Celes. Lua 5.0 Reference Manual. Technical Report 14/03,

PUC-Rio, 2003. Available athttp://www.lua.org .

[12] J. C. Jensen. LuaPlus 5.0 Distribution, 2003. Available athttp://wwhiz.com/LuaPlus/

index.html .

[13] E. Meijer and J. Gough. Technical Overview of the Common Language Runtime. Technical report,

Microsoft Research, 2002. Available athttp://research.microsoft.com/˜emeijer/

Papers/CLR.pdf .

[14] Microsoft. ECMA C# and Common Language Infrastructure Standards, 2002. Available athttp:

//msdn.microsoft.com/net/ecma/ .

[15] Microsoft. Managed Extensions for C++ Migration Guide: Platform Invocation Services, 2003.

Available athttp://msdn.microsoft.com/library/en-us/vcmxspec/html/vcmg_

PlatformInvocationServices.asp .

[16] John K. Ousterhout. Scripting: Higher Level Programming for the 21st Century.IEEE Computer,

31(3):23–30, 1998.

[17] D. Stutz. The Microsoft Shared Source CLI Implementation, 2002. Available athttp://msdn.

microsoft.com/library/en-us/Dndotnet/html/mssharsourcecli.asp .

[18] Ximian. The Mono Project, 2003. Available athttp://www.go-mono.com/ .


