--- A quaternion and associated utilities. -- @module quat local modules = (...):gsub('%.[^%.]+$', '') .. "." local constants = require(modules .. "constants") local vec3 = require(modules .. "vec3") local DOT_THRESHOLD = constants.DOT_THRESHOLD local DBL_EPSILON = constants.DBL_EPSILON local abs = math.abs local acos = math.acos local asin = math.asin local atan2 = math.atan2 local cos = math.cos local sin = math.sin local min = math.min local max = math.max local sqrt = math.sqrt local quat = {} local quat_mt = {} -- Private constructor. local function new(x, y, z, w) local q = {} q.x, q.y, q.z, q.w = x, y, z, w return setmetatable(q, quat_mt) end -- Statically allocate a temporary variable used in some of our functions. local tmp = new(0, 0, 0, 0) local uv, uuv = vec3(), vec3() -- Do the check to see if JIT is enabled. If so use the optimized FFI structs. local status, ffi if type(jit) == "table" and jit.status() then status, ffi = pcall(require, "ffi") if status then ffi.cdef "typedef struct { double x, y, z, w;} cpml_quat;" new = ffi.typeof("cpml_quat") end end --- Constants -- @table quat -- @field unit Unit quaternion -- @field zero Empty quaternion quat.unit = new(0, 0, 0, 1) quat.zero = new(0, 0, 0, 0) --- The public constructor. -- @param x Can be of two types:
-- number x X component -- table {x, y, z, w} or {x=x, y=y, z=z, w=w} -- @tparam number y Y component -- @tparam number z Z component -- @tparam number w W component -- @treturn quat out function quat.new(x, y, z, w) -- number, number, number, number if x and y and z and w then assert(type(x) == "number", "new: Wrong argument type for x ( expected)") assert(type(y) == "number", "new: Wrong argument type for y ( expected)") assert(type(z) == "number", "new: Wrong argument type for z ( expected)") assert(type(w) == "number", "new: Wrong argument type for w ( expected)") return new(x, y, z, w) -- {x, y, z, w} or {x=x, y=y, z=z, w=w} elseif type(x) == "table" then local x, y, z, w = x.x or x[1], x.y or x[2], x.z or x[3], x.w or x[4] assert(type(x) == "number", "new: Wrong argument type for x ( expected)") assert(type(y) == "number", "new: Wrong argument type for y ( expected)") assert(type(z) == "number", "new: Wrong argument type for z ( expected)") assert(type(w) == "number", "new: Wrong argument type for w ( expected)") return new(x, y, z, w) end return new(0, 0, 0, 1) end --- Create a quaternion from an angle/axis pair. -- @tparam number angle Angle (in radians) -- @tparam vec3 axis -- @treturn quat out function quat.from_angle_axis(angle, axis) local len = axis:len() local s = sin(angle * 0.5) local c = cos(angle * 0.5) return new(axis.x * s, axis.y * s, axis.z * s, c) end --- Create a quaternion from a normal/up vector pair. -- @tparam vec3 normal -- @tparam vec3 up -- @treturn quat out function quat.from_direction(normal, up) local a = vec3():cross(up, normal) local d = up:dot(normal) return new(a.x, a.y, a.z, d + 1) end --- Clone a quaternion. -- @tparam quat a Quaternion to clone -- @treturn quat out function quat.clone(a) return new(a.x, a.y, a.z, a.w) end --- Add two quaternions. -- @tparam quat out Quaternion to store the result -- @tparam quat a Left hand operant -- @tparam quat b Right hand operant -- @treturn quat out function quat.add(out, a, b) out.x = a.x + b.x out.y = a.y + b.y out.z = a.z + b.z out.w = a.w + b.w return out end --- Subtract a quaternion from another. -- @tparam quat out Quaternion to store the result -- @tparam quat a Left hand operant -- @tparam quat b Right hand operant -- @treturn quat out function quat.sub(out, a, b) out.x = a.x - b.x out.y = a.y - b.y out.z = a.z - b.z out.w = a.w - b.w return out end --- Multiply two quaternions. -- @tparam quat out Quaternion to store the result -- @tparam quat a Left hand operant -- @tparam quat b Right hand operant -- @treturn quat out function quat.mul(out, a, b) out.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y out.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z out.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x out.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z return out end --- Multiply a quaternion and a vec3. -- @tparam quat out Quaternion to store the result -- @tparam quat a Left hand operant -- @tparam vec3 b Right hand operant -- @treturn quat out function quat.mul_vec3(out, a, b) uv:cross(a, b) uuv:cross(a, uv) return out :mul(uv, a.w) :add(out, uuv) :mul(out, 2 ) :add(b, out) end --- Multiply a quaternion by an exponent. -- @tparam quat out Quaternion to store the result -- @tparam quat a Left hand operant -- @tparam number n Right hand operant -- @treturn quat out function quat.pow(out, a, n) if n == 0 then out.x = 0 out.y = 0 out.z = 0 out.w = 1 elseif n > 0 then out.x = a.x^(n-1) out.y = a.y^(n-1) out.z = a.z^(n-1) out.w = a.w^(n-1) out:mul(a, out) elseif n < 0 then out:reciprocal(a) out.x = out.x^(-n) out.y = out.y^(-n) out.z = out.z^(-n) out.w = out.w^(-n) end return out end --- Normalize a quaternion. -- @tparam quat out Quaternion to store the result -- @tparam quat a Quaternion to normalize -- @treturn quat out function quat.normalize(out, a) return out:scale(a, 1 / a:len()) end --- Get the dot product of two quaternions. -- @tparam quat a Left hand operant -- @tparam quat b Right hand operant -- @treturn number dot function quat.dot(a, b) return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w end --- Return the length of a quaternion. -- @tparam quat a Quaternion to get length of -- @treturn number len function quat.len(a) return sqrt(a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w) end --- Return the squared length of a quaternion. -- @tparam quat a Quaternion to get length of -- @treturn number len function quat.len2(a) return a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w end --- Multiply a quaternion by a scalar. -- @tparam quat out Quaternion to store the result -- @tparam quat a Left hand operant -- @tparam number s Right hand operant -- @treturn quat out function quat.scale(out, a, s) out.x = a.x * s out.y = a.y * s out.z = a.z * s out.w = a.w * s return out end --- Return the conjugate of a quaternion. -- @tparam quat out Quaternion to store the result -- @tparam quat a Quaternion to conjugate -- @treturn quat out function quat.conjugate(out, a) out.x = -a.x out.y = -a.y out.z = -a.z out.w = a.w return out end --- Return the inverse of a quaternion. -- @tparam quat out Quaternion to store the result -- @tparam quat a Quaternion to invert -- @treturn quat out function quat.inverse(out, a) return out :conjugate(a) :normalize(out) end --- Return the reciprocal of a quaternion. -- @tparam quat out Quaternion to store the result -- @tparam quat a Quaternion to reciprocate -- @treturn quat out function quat.reciprocal(out, a) assert(not a:is_zero(), "Cannot reciprocate a zero quaternion") return out :conjugate(a) :scale(out, 1 / a:len2()) end --- Lerp between two quaternions. -- @tparam quat out Quaternion to store the result -- @tparam quat a Left hand operant -- @tparam quat b Right hand operant -- @tparam number s Step value -- @treturn quat out function quat.lerp(out, a, b, s) return out :sub(b, a) :scale(out, s) :add(a, out) :normalize(out) end --- Slerp between two quaternions. -- @tparam quat out Quaternion to store the result -- @tparam quat a Left hand operant -- @tparam quat b Right hand operant -- @tparam number s Step value -- @treturn quat out function quat.slerp(out, a, b, s) local dot = a:dot(b) if dot < 0 then a:scale(a, -1) dot = -dot end if dot > DOT_THRESHOLD then return out:lerp(a, b, s) end dot = min(max(dot, -1), 1) local theta = acos(dot) * s tmp:scale(a, cos(theta)) return out :scale(a, dot) :sub(b, out) :normalize(out) :scale(out, sin(theta)) :add(tmp, out) end --- Unpack a quaternion into individual components. -- @tparam quat a Quaternion to unpack -- @treturn number x -- @treturn number y -- @treturn number z -- @treturn number w function quat.unpack(a) return a.x, a.y, a.z, a.w end --- Return a boolean showing if a table is or is not a quat. -- @tparam quat a Quaternion to be tested -- @treturn boolean is_quat function quat.is_quat(a) if type(a) == "cdata" then return ffi.istype("cpml_quat", a) end return type(a) == "table" and type(a.x) == "number" and type(a.y) == "number" and type(a.z) == "number" and type(a.w) == "number" end --- Return a boolean showing if a table is or is not a zero quat. -- @tparam quat a Quaternion to be tested -- @treturn boolean is_zero function quat.is_zero(a) return a.x == 0 and a.y == 0 and a.z == 0 and a.w == 0 end --- Return a boolean showing if a table is or is not a real quat. -- @tparam quat a Quaternion to be tested -- @treturn boolean is_real function quat.is_real(a) return a.x == 0 and a.y == 0 and a.z == 0 end --- Return a boolean showing if a table is or is not an imaginary quat. -- @tparam quat a Quaternion to be tested -- @treturn boolean is_imaginary function quat.is_imaginary(a) return a.w == 0 end --- Convert a quaternion into an angle/axis pair. -- @tparam quat a Quaternion to convert -- @treturn number angle -- @treturn vec3 axis function quat.to_angle_axis(a) if a.w > 1 or a.w < -1 then a:normalize(a) end local angle = 2 * acos(a.w) local s = sqrt(1 - a.w * a.w) local x, y, z if s < constants.DBL_EPSILON then x = a.x y = a.y z = a.z else x = a.x / s -- normalize axis y = a.y / s z = a.z / s end return angle, vec3(x, y, z) end --- Convert a quaternion into a vec3. -- @tparam quat a Quaternion to convert -- @treturn vec3 out function quat.to_vec3(a) local out = vec3() out.x = a.x out.y = a.y out.z = a.z return out end --- Return a formatted string. -- @tparam quat a Quaternion to be turned into a string -- @treturn string formatted function quat.to_string(a) return string.format("(%+0.3f,%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z, a.w) end quat_mt.__index = quat quat_mt.__tostring = quat.to_string function quat_mt.__call(_, x, y, z, w) return quat.new(x, y, z, w) end function quat_mt.__unm(a) return new():scale(a, -1) end function quat_mt.__eq(a,b) assert(quat.is_quat(a), "__eq: Wrong argument type for left hand operant. ( expected)") assert(quat.is_quat(b), "__eq: Wrong argument type for right hand operant. ( expected)") return a.x == b.x and a.y == b.y and a.z == b.z and a.w == b.w end function quat_mt.__add(a, b) assert(quat.is_quat(a), "__add: Wrong argument type for left hand operant. ( expected)") assert(quat.is_quat(b), "__add: Wrong argument type for right hand operant. ( expected)") return new():add(a, b) end function quat_mt.__sub(a, b) assert(quat.is_quat(a), "__sub: Wrong argument type for left hand operant. ( expected)") assert(quat.is_quat(b), "__sub: Wrong argument type for right hand operant. ( expected)") return new():sub(a, b) end function quat_mt.__mul(a, b) assert(quat.is_quat(a), "__mul: Wrong argument type for left hand operant. ( expected)") assert(quat.is_quat(b) or vec3.is_vec3(b) or type(b) == "number", "__mul: Wrong argument type for right hand operant. ( or or expected)") if quat.is_quat(b) then return new():mul(a, b) end if type(b) == "number" then return new():scale(a, b) end return quat.mul_vec3(vec3(), a, b) end function quat_mt.__pow(a, n) assert(quat.is_quat(a), "__pow: Wrong argument type for left hand operant. ( expected)") assert(type(n) == "number", "__pow: Wrong argument type for right hand operant. ( expected)") return new():pow(a, n) end if status then ffi.metatype(new, quat_mt) end return setmetatable({}, quat_mt)