--- A 3 component vector. -- @module vec3 local sqrt = math.sqrt local cos = math.cos local sin = math.sin local vec3 = {} local vec3_mt = {} -- Private constructor. local function new(x, y, z) local v = {} v.x, v.y, v.z = x, y, z return setmetatable(v, vec3_mt) end -- Do the check to see if JIT is enabled. If so use the optimized FFI structs. local status, ffi if type(jit) == "table" and jit.status() then status, ffi = pcall(require, "ffi") if status then ffi.cdef "typedef struct { double x, y, z;} cpml_vec3;" new = ffi.typeof("cpml_vec3") end end --- Constants -- @table vec3 -- @field unit_x X axis of rotation -- @field unit_y Y axis of rotation -- @field unit_z Z axis of rotation -- @field zero Empty vector vec3.unit_x = new(1, 0, 0) vec3.unit_y = new(0, 1, 0) vec3.unit_z = new(0, 0, 1) vec3.zero = new(0, 0, 0) -- Statically allocate a temporary variable used in some of our functions. local tmp = new(0, 0, 0) --- The public constructor. -- @param x Can be of three types:
-- number X component -- table {x, y, z} or {x=x, y=y, z=z} -- scalar To fill the vector eg. {x, x, x} -- @tparam number y Y component -- @tparam number z Z component -- @treturn vec3 function vec3.new(x, y, z) -- number, number, number if x and y and z then assert(type(x) == "number", "new: Wrong argument type for x ( expected)") assert(type(y) == "number", "new: Wrong argument type for y ( expected)") assert(type(z) == "number", "new: Wrong argument type for z ( expected)") return new(x, y, z) -- {x, y, z} or {x=x, y=y, z=z} elseif type(x) == "table" then local x, y, z = x.x or x[1], x.y or x[2], x.z or x[3] assert(type(x) == "number", "new: Wrong argument type for x ( expected)") assert(type(y) == "number", "new: Wrong argument type for y ( expected)") assert(type(z) == "number", "new: Wrong argument type for z ( expected)") return new(x, y, z) -- number elseif type(x) == "number" then return new(x, x, x) else return new(0, 0, 0) end end --- Clone a vector. -- @tparam vec3 a Vector to be cloned -- @treturn vec3 function vec3.clone(a) return new(a.x, a.y, a.z) end --- Add two vectors. -- @tparam vec3 out Vector to store the result -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant -- @treturn vec3 function vec3.add(out, a, b) out.x = a.x + b.x out.y = a.y + b.y out.z = a.z + b.z return out end --- Subtract one vector from another. -- @tparam vec3 out Vector to store the result -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant -- @treturn vec3 function vec3.sub(out, a, b) out.x = a.x - b.x out.y = a.y - b.y out.z = a.z - b.z return out end --- Multiply a vector by a scalar. -- @tparam vec3 out Vector to store the result -- @tparam vec3 a Left hand operant -- @tparam number b Right hand operant -- @treturn vec3 function vec3.mul(out, a, b) out.x = a.x * b out.y = a.y * b out.z = a.z * b return out end --- Divide a vector by a scalar. -- @tparam vec3 out Vector to store the result -- @tparam vec3 a Left hand operant -- @tparam number b Right hand operant -- @treturn vec3 function vec3.div(out, a, b) out.x = a.x / b out.y = a.y / b out.z = a.z / b return out end --- Get the normal of a vector. -- @tparam vec3 out Vector to store the result -- @tparam vec3 a Vector to normalize -- @treturn vec3 function vec3.normalize(out, a) local l = vec3.len(a) out.x = a.x / l out.y = a.y / l out.z = a.z / l return out end --- Trim a vector to a given length -- @tparam vec3 out Vector to store the result -- @tparam vec3 a Vector to be trimmed -- @tparam number len Length to trim the vector to -- @treturn vec3 function vec3.trim(out, a, len) return out :normalize(a) :mul(out, math.min(vec3.len(a), len)) end --- Get the cross product of two vectors. -- @tparam vec3 out Vector to store the result -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant -- @treturn vec3 function vec3.cross(out, a, b) out.x = a.y * b.z - a.z * b.y out.y = a.z * b.x - a.x * b.z out.z = a.x * b.y - a.y * b.x return out end --- Get the dot product of two vectors. -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant -- @treturn number function vec3.dot(a, b) return a.x * b.x + a.y * b.y + a.z * b.z end --- Get the length of a vector. -- @tparam vec3 a Vector to get the length of -- @treturn number function vec3.len(a) return sqrt(a.x * a.x + a.y * a.y + a.z * a.z) end --- Get the squared length of a vector. -- @tparam vec3 a Vector to get the squared length of -- @treturn number function vec3.len2(a) return a.x * a.x + a.y * a.y + a.z * a.z end --- Get the distance between two vectors. -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant -- @treturn number function vec3.dist(a, b) local dx = a.x - b.x local dy = a.y - b.y local dz = a.z - b.z return sqrt(dx * dx + dy * dy + dz * dz) end --- Get the squared distance between two vectors. -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant -- @treturn number function vec3.dist2(a, b) local dx = a.x - b.x local dy = a.y - b.y local dz = a.z - b.z return dx * dx + dy * dy + dz * dz end --- Rotate vector about an axis. -- @tparam vec3 out Vector to store the result -- @tparam vec3 a Vector to rotate -- @tparam number phi Amount to rotate, in radians -- @tparam vec3 axis Axis to rotate by -- @treturn vec3 function vec3.rotate(out, a, phi, axis) if not vec3.is_vec3(axis) then return a end local u = new():normalize(axis) local c = cos(phi) local s = sin(phi) -- Calculate generalized rotation matrix local m1 = new((c + u.x * u.x * (1 - c)), (u.x * u.y * (1 - c) - u.z * s), (u.x * u.z * (1 - c) + u.y * s)) local m2 = new((u.y * u.x * (1 - c) + u.z * s), (c + u.y * u.y * (1 - c)), (u.y * u.z * (1 - c) - u.x * s)) local m3 = new((u.z * u.x * (1 - c) - u.y * s), (u.z * u.y * (1 - c) + u.x * s), (c + u.z * u.z * (1 - c)) ) out.x = a:dot(m1) out.y = a:dot(m2) out.z = a:dot(m3) return out end function vec3.perpendicular(out, a) out.x = -a.y out.y = a.x out.z = 0 return out end --- Lerp between two vectors. -- @tparam vec3 out Vector to store the result -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant -- @tparam number s Step value -- @treturn vec3 function vec3.lerp(out, a, b, s) return out :sub(b, a) :mul(out, s) :add(out, a) end --- Unpack a vector into individual components. -- @tparam vec3 a Vector to unpack -- @treturn number x x component -- @treturn number y y component -- @treturn number z z component function vec3.unpack(a) return a.x, a.y, a.z end --- Return a boolean showing if a table is or is not a vec3. -- @tparam vec3 a Vector to be tested -- @treturn boolean function vec3.is_vec3(a) if type(a) == "cdata" then return ffi.istype("cpml_vec3", a) end return type(a) == "table" and type(a.x) == "number" and type(a.y) == "number" and type(a.z) == "number" end --- Return a boolean showing if a table is or is not a zero vec3. -- @tparam vec3 a Vector to be tested -- @treturn boolean function vec3.is_zero(a) return a.x == 0 and a.y == 0 and a.z == 0 end --- Return a formatted string. -- @tparam vec3 a Vector to be turned into a string -- @treturn string function vec3.to_string(a) return string.format("(%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z) end vec3_mt.__index = vec3 vec3_mt.__tostring = vec3.to_string function vec3_mt.__call(_, x, y, z) return vec3.new(x, y, z) end function vec3_mt.__unm(a) return new(-a.x, -a.y, -a.z) end function vec3_mt.__eq(a, b) assert(vec3.is_vec3(a), "__eq: Wrong argument type for left hand operant. ( expected)") assert(vec3.is_vec3(b), "__eq: Wrong argument type for right hand operant. ( expected)") return a.x == b.x and a.y == b.y and a.z == b.z end function vec3_mt.__add(a, b) assert(vec3.is_vec3(a), "__add: Wrong argument type for left hand operant. ( expected)") assert(vec3.is_vec3(b), "__add: Wrong argument type for right hand operant. ( expected)") return new():add(a, b) end function vec3_mt.__sub(a, b) assert(vec3.is_vec3(a), "__sub: Wrong argument type for left hand operant. ( expected)") assert(vec3.is_vec3(b), "__sub: Wrong argument type for right hand operant. ( expected)") return new():sub(a, b) end function vec3_mt.__mul(a, b) assert(vec3.is_vec3(a), "__mul: Wrong argument type for left hand operant. ( expected)") assert(type(b) == "number", "__mul: Wrong argument type for right hand operant. ( expected)") return new():mul(a, b) end function vec3_mt.__div(a, b) assert(vec3.is_vec3(a), "__div: Wrong argument type for left hand operant. ( expected)") assert(type(b) == "number", "__div: Wrong argument type for right hand operant. ( expected)") return new():div(a, b) end if status then ffi.metatype(new, vec3_mt) end return setmetatable({}, vec3_mt)