--- A 3 component vector. -- @module vec3 local sqrt = math.sqrt local vec3 = {} -- Private constructor. local function new(x, y, z) local v = {} v.x, v.y, v.z = x, y, z return setmetatable(v, vec3_mt) end vec3.unit_x = new(1, 0, 0) vec3.unit_y = new(0, 1, 0) vec3.unit_z = new(0, 0, 1) vec3.zero = new(0, 0, 0) -- Do the check to see if JIT is enabled. If so use the optimized FFI structs. local status, ffi if type(jit) == "table" and jit.status() then status, ffi = pcall(require, "ffi") if status then ffi.cdef "typedef struct { double x, y, z;} cpml_vec3;" new = ffi.typeof("cpml_vec3") end end -- Statically allocate a temporary variable used in some of our functions. local tmp = new(0, 0, 0) --- The public constructor. -- @param x Can be of three types:
-- number x component -- table {x, y, z} or {x = x, y = y, z = z} -- scalar to fill the vector eg. {x, x, x} -- @tparam number y y component -- @tparam number z z component function vec3.new(x, y, z) -- number, number, number if x and y and z then assert(type(x) == "number", "new: Wrong argument type for x ( expected)") assert(type(y) == "number", "new: Wrong argument type for y ( expected)") assert(type(z) == "number", "new: Wrong argument type for z ( expected)") return new(x, y, z) -- {x=x, y=y, z=z} or {x, y, z} elseif type(x) == "table" then local x, y, z = x.x or x[1], x.y or x[2], x.z or x[3] assert(type(x) == "number", "new: Wrong argument type for x ( expected)") assert(type(y) == "number", "new: Wrong argument type for y ( expected)") assert(type(z) == "number", "new: Wrong argument type for z ( expected)") return new(x, y, z) -- {x, x, x} eh. {0, 0, 0}, {3, 3, 3} elseif type(x) == "number" then return new(x, x, x) else return new(0, 0, 0) end end --- Clone a vector. -- @tparam vec3 a vector to be cloned -- @treturn vec3 function vec3.clone(a) return new(a.x, a.y, a.z) end --- Add two vectors. -- @tparam vec3 out vector to store the result -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant function vec3.add(out, a, b) out.x = a.x + b.x out.y = a.y + b.y out.z = a.z + b.z return out end --- Subtract one vector from another. -- @tparam vec3 out vector to store the result -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant function vec3.sub(out, a, b) out.x = a.x - b.x out.y = a.y - b.y out.z = a.z - b.z return out end --- Multiply a vector by a scalar. -- @tparam vec3 out vector to store the result -- @tparam vec3 a Left hand operant -- @tparam number b Right hand operant function vec3.mul(out, a, b) out.x = a.x * b out.y = a.y * b out.z = a.z * b return out end --- Divide a vector by a scakar. -- @tparam vec3 out vector to store the result -- @tparam vec3 a Left hand operant -- @tparam number b Right hand operant function vec3.div(out, a, b) out.x = a.x / b out.y = a.y / b out.z = a.z / b return out end --- Get the normal of a vector. -- @tparam vec3 out vector to store the result -- @tparam vec3 a vector to normalize function vec3.normalize(out, a) local l = vec3.len(a) out.x = a.x / l out.y = a.y / l out.z = a.z / l return out end --- Trim a vector to a given length -- @tparam vec3 out vector to store the result -- @tparam vec3 a vector to be trimmed -- @tparam number len the length to trim the vector to function vec3.trim(out, a, len) len = math.min(vec3.len(a), len) vec3.normalize(out, a) vec3.mul(out, out, len) return out end --- Get the cross product of two vectors. -- @tparam vec3 out vector to store the result -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant function vec3.cross(out, a, b) out.x = a.y * b.z - a.z * b.y out.y = a.z * b.x - a.x * b.z out.z = a.x * b.y - a.y * b.x return out end --- Get the dot product of two vectors. -- @tparam vec3 a Left hand operant -- @tparam vec3 b Right hand operant -- @treturn number function vec3.dot(a, b) return a.x * b.x + a.y * b.y + a.z * b.z end --- Get the length of a vector. -- @tparam vec3 a vector to get the length of -- @treturn number function vec3.len(a) return sqrt(a.x * a.x + a.y * a.y + a.z * a.z) end --- Get the squared length of a vector. -- @tparam vec3 a vector to get the squared length of -- @treturn number function vec3.len2(a) return a.x * a.x + a.y * a.y + a.z * a.z end --- Get the distance between two vectors. -- @tparam vec3 a first vector -- @tparam vec3 b second vector -- @treturn number function vec3.dist(a, b) local dx = a.x - b.x local dy = a.y - b.y local dz = a.z - b.z return sqrt(dx * dx + dy * dy + dz * dz) end --- Get the squared distance between two vectors. -- @tparam vec3 a first vector -- @tparam vec3 b second vector -- @treturn number function vec3.dist2(a, b) local dx = a.x - b.x local dy = a.y - b.y local dz = a.z - b.z return dx * dx + dy * dy + dz * dz end --- Rotate vector about an axis. -- @param phi Amount to rotate, in radians -- @param axis Axis to rotate by -- @return vec3 function vec3.rotate(out, a, phi, axis) if not vec3.is_vec3(axis) then return a end local u = vec3.normalize(vec3(), axis) local c, s = cos(phi), sin(phi) -- Calculate generalized rotation matrix local m1 = new((c + u.x * u.x * (1 - c)), (u.x * u.y * (1 - c) - u.z * s), (u.x * u.z * (1 - c) + u.y * s)) local m2 = new((u.y * u.x * (1 - c) + u.z * s), (c + u.y * u.y * (1 - c)), (u.y * u.z * (1 - c) - u.x * s)) local m3 = new((u.z * u.x * (1 - c) - u.y * s), (u.z * u.y * (1 - c) + u.x * s), (c + u.z * u.z * (1 - c)) ) out.x = vec3.dot(a, m1) out.y = vec3.dot(a, m2) out.z = vec3.dot(a, m3) return out end function vec3.perpendicular(out, a) out.x = -a.y out.y = a.x out.z = 0 return out end --- Lerp between two vectors. -- @tparam vec3 out vector for result to be stored in -- @tparam vec3 a first vector -- @tparam vec3 b second vector -- @tparam number s step value -- @treturn vec3 function vec3.lerp(out, a, b, s) vec3.sub(out, b, a) vec3.mul(out, out, s) vec3.add(out, out, a) return out end --- Unpack a vector into form x,y,z -- @tparam vec3 a first vector -- @treturn number x component -- @treturn number y component -- @treturn number z component function vec3.unpack(a) return a.x, a.y, a.z end --- Return a boolean showing if a table is or is not a vec3 -- @param v the object to be tested -- @treturn boolean function vec3.is_vec3(a) return ( type(a) == "table" or type(a) == "cdata" ) and type(a.x) == "number" and type(a.y) == "number" and type(a.z) == "number" end --- Return a string formatted "{x, y, z}" -- @tparam vec3 a the vector to be turned into a string -- @treturn string function vec3.to_string(a) return string.format("(%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z) end local vec3_mt = {} vec3_mt.__index = vec3 vec3_mt.__tostring = vec3.to_string function vec3_mt.__call(self, x, y, z) return vec3.new(x, y, z) end function vec3_mt.__unm(a) return vec3.new(-a.x, -a.y, -a.z) end function vec3_mt.__eq(a,b) assert(vec3.is_vec3(a), "__eq: Wrong argument type for left hand operant. ( expected)") assert(vec3.is_vec3(b), "__eq: Wrong argument type for right hand operant. ( expected)") return a.x == b.x and a.y == b.y and a.z == b.z end function vec3_mt.__add(a, b) assert(vec3.is_vec3(a), "__add: Wrong argument type for left hand operant. ( expected)") assert(vec3.is_vec3(b), "__add: Wrong argument type for right hand operant. ( expected)") return vec3.add(new(), a, b) end function vec3_mt.__sub(a, b) assert(vec3.is_vec3(a), "__sub: Wrong argument type for left hand operant. ( expected)") assert(vec3.is_vec3(b), "__sub: Wrong argument type for right hand operant. ( expected)") return vec3.sub(new(), a, b) end function vec3_mt.__mul(a, b) assert(vec3.is_vec3(a), "__mul: Wrong argument type for left hand operant. ( expected)") assert(type(b) == "number", "__mul: Wrong argument type for right hand operant. ( expected)") return vec3.mul(new(), a, b) end function vec3_mt.__div(a, b) assert(vec3.is_vec3(a), "__div: Wrong argument type for left hand operant. ( expected)") assert(type(b) == "number", "__div: Wrong argument type for right hand operant. ( expected)") return vec3.div(new(), a, b) end if status then ffi.metatype(new, vec3_mt) end return setmetatable({}, vec3_mt)