--- A quaternion and associated utilities. -- @module quat local current_folder = (...):gsub('%.[^%.]+$', '') .. "." local constants = require(current_folder .. "constants") local vec3 = require(current_folder .. "vec3") local ffi = require "ffi" local DOT_THRESHOLD = constants.DOT_THRESHOLD local FLT_EPSILON = constants.FLT_EPSILON local abs, acos, asin, atan2 = math.abs, math.acos, math.asin, math.atan2 local cos, sin, min, max, pi = math.cos, math.sin, math.min, math.max, math.pi local sqrt = math.sqrt local quat = {} -- Private constructor. local function new(x, y, z, w) local q = {} q.x, q.y, q.z, q.w = x, y, z, w return setmetatable(q, quat_mt) end -- Do the check to see if JIT is enabled. If so use the optimized FFI structs. local status, ffi if type(jit) == "table" and jit.status() then status, ffi = pcall(require, "ffi") if status then ffi.cdef "typedef struct { double x, y, z, w;} cpml_quat;" new = ffi.typeof("cpml_quat") end end --- The public constructor. -- @param x Can be of two types:
-- number x component -- table {x, y, z, w} or {x = x, y = y, z = z, w = w} -- @tparam number y y component -- @tparam number z z component -- @tparam number w w component function quat.new(x, y, z, w) -- number, number, number, number if x and y and z and w then assert(type(x) == "number", "new: Wrong argument type for x ( expected)") assert(type(y) == "number", "new: Wrong argument type for y ( expected)") assert(type(z) == "number", "new: Wrong argument type for z ( expected)") assert(type(w) == "number", "new: Wrong argument type for w ( expected)") return new(x, y. z, w) -- {x=x, y=y, z=z, w=w} or {x, y, z, w} elseif type(x) == "table" then local x, y, z, w = x.x or x[1], x.y or x[2], x.z or x[3], x.w or x[4] assert(type(x) == "number", "new: Wrong argument type for x ( expected)") assert(type(y) == "number", "new: Wrong argument type for y ( expected)") assert(type(z) == "number", "new: Wrong argument type for z ( expected)") assert(type(w) == "number", "new: Wrong argument type for w ( expected)") return new(x, y, z, w) else return new(0, 0, 0, 1) end end --- Create a quaternion from an axis, angle pair. -- @tparam vec3 axis -- @tparam number angle -- @treturn quat function quat.from_axis_angle(axis, angle) local len = vec3.len(axis) local s = sin(angle * 0.5) local c = cos(angle * 0.5) return quat.new(axis.x*s, axis.y*s, axis.z*s, c) end --- Create a quaternion from a normalized, up vector pair. -- @tparam vec3 normal -- @tparam vec3 up -- @treturn quat function quat.from_direction(normal, up) local d = vec3.dot(up, normal) local a = vec3() vec3.cross(a, up, normal) return quat.new(a.x, a.y, a.z, d+1) end --- Clone a quaternion. -- @tparam quat a -- @treturn quat clone function quat.clone(a) new(a.x, a.y, a.z, a.w) end --- Component-wise add a quaternion. -- @tparam quat out -- @tparam quat a -- @tparam quat b -- @treturn quat out function quat.add(out, a, b) out.x = a.x + b.x out.y = a.y + b.y out.z = a.z + b.z out.w = a.w + b.w return out end --- Component-wise subtract a quaternion. -- @tparam quat out -- @tparam quat a -- @tparam quat b -- @treturn quat out function quat.sub(out, a, b) out.x = a.x - b.x out.y = a.y - b.y out.z = a.z - b.z out.w = a.w - b.w return out end --- Perform a quaternion multiplication. -- @tparam quat out -- @tparam quat a -- @tparam quat b -- @treturn quat out function quat.mul(out, a, b) out.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y out.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z out.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x out.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z return out end --- Perform a quaternion and vec3 multiplication. -- @tparam quat out -- @tparam quat a -- @tparam vec3 b -- @treturn vec3 out local uv, uuv = vec3(), vec3() function quat.mul_vec3(out, a, b) vec3.cross(uv, a, b) vec3.cross(uuv, a, uv) vec3.mul(out, uv, a.w) vec3.add(out, out, uuv) vec3.mul(out, out, 2) vec3.add(out, b, out) end --- Pow a quaternion by an exponent -- @tparam quat out -- @tparam quat a -- @tparam number n -- @treturn quat out function quat.pow(out, a, n) if n == 0 then out.x = 0 out.y = 0 out.z = 0 out.w = 1 elseif n > 0 then out.x = a.x^(n-1) out.y = a.y^(n-1) out.z = a.z^(n-1) out.w = a.w^(n-1) quat.mul(out, a, out) elseif n < 0 then quat.reciprocal(out, a) out.x = out.x^(-n) out.y = out.y^(-n) out.z = out.z^(-n) out.w = out.w^(-n) end return out end --- Component-wise scale a quaternion by a scalar. -- @tparam quat out -- @tparam quat a -- @tparam number s -- @treturn quat out function quat.scale(out, a, s) out.x = a.x * s out.y = a.y * s out.z = a.z * s out.w = a.w * s return out end --- Return the conjugate of a quaternion. -- @tparam quat out -- @tparam quat a -- @treturn quat out function quat.conjugate(out, a) out.x = -a.x out.y = -a.y out.z = -a.z out.w = a.w return out end --- Return the inverse of a quaternion. -- @tparam quat out -- @tparam quat a -- @treturn quat out function quat.inverse(out, a) quat.conjugate(out, a) quat.normalize(out, out) return out end --- Return the reciprocal of a quaternion. -- @tparam quat out -- @tparam quat a -- @treturn quat out function quat.reciprocal(out, a) local l = quat.len2(a) quat.conjugate(out, a) quat.scale(out, out, 1 / l) return out end --- Linearly interpolate from one quaternion to the next. -- @tparam quat out -- @tparam quat a -- @tparam quat b -- @tparam number s 0-1 range number; 0 = a 1 = b -- @treturn quat out function quat.lerp(out, a, b, s) quat.sub(out, b, a) quat.mul(out, out, s) quat.add(out, a, out) quat.normalize(out, out) return out end --- Slerp from one quaternion to the next. -- @tparam quat out -- @tparam quat a -- @tparam quat b -- @tparam number s 0-1 range number; 0 = a 1 = b -- @treturn quat out function quat.slerp(out, a, b, s) local dot = quat.dot(a, b) if dot < 0 then quat.scale(a, a, -1) dot = -dot end if dot > DOT_THRESHOLD then quat.lerp(out, a, b, s) return end dot = min(max(dot, -1), 1) local temp = quat.new() local theta = acos(dot) * s quat.scale(out, a, dot) quat.sub(out, b, out) quat.normalize(out, out) quat.scale(out, out, sin(theta)) quat.scale(temp, a, cos(theta)) quat.add(out, temp, out) return out end --- Normalize a quaternion. -- @tparam quat out -- @tparam quat a -- @treturn quat out function quat.normalize(out, a) local l = 1 / quat.len(a) quat.scale(out, a, l) return out end --- Return the imaginary part of the quaternion as a vec3. -- @tparam vec3 out -- @tparam quat a -- @treturn quat out function quat.imaginary(out, a) out.x = a.x out.y = a.y out.z = a.z return out end --- Return the real part of a quaternion. -- @tparam quat a -- @treturn number real function quat.real(a) return a.w end --- Return the inner angle between two quaternions. -- @tparam quat a -- @tparam quat b -- @treturn number angle function quat.dot(a, b) return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w end --- Return the length of a quaternion. -- @tparam quat a -- @treturn number len function quat.len(a) return sqrt(a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w) end --- Return the squared length of a quaternion. -- @tparam quat a -- @treturn number len function quat.len2(a) return a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w end --- Unpack a quaternion into form x,y,z,w. -- @tparam quat a -- @treturn number x -- @treturn number y -- @treturn number z -- @treturn number w function quat.unpack(a) return a.x, a.y, a.z, a.w end --- Return a string formatted "{x, y, z, w}" -- @tparam quat a -- @treturn string function quat.tostring(a) return string.format("(%+0.3f,%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z, a.w) end --- Return a boolean showing if a table is or is not a quat -- @param q object to be tested -- @treturn boolean function quat.isquat(q) return ( type(v) == "table" or type(v) == "cdata" ) and type(v.x) == "number" and type(v.y) == "number" and type(v.z) == "number" and type(v.w) == "number" end local quat_mt = {} quat_mt.__index = quat quat_mt.__tostring = quat.tostring function quat_mt.__call(self, x, y, z) return quat.new(x, y, z, w) end function quat_mt.__unm(a) local temp = quat.new() quat.scale(temp, a, -1) return temp end function quat_mt.__eq(a,b) assert(quat.isquat(a), "__eq: Wrong argument type for left hand operant. ( expected)") assert(quat.isquat(b), "__eq: Wrong argument type for right hand operant. ( expected)") return a.x == b.x and a.y == b.y and a.z == b.z and a.w == b.w end function quat_mt.__add(a, b) assert(quat.isquat(a), "__add: Wrong argument type for left hand operant. ( expected)") assert(quat.isquat(b), "__add: Wrong argument type for right hand operant. ( expected)") local temp = quat.new() quat.add(temp, a, b) return temp end function quat_mt.__sub(a, b) assert(quat.isquat(a), "__sub: Wrong argument type for left hand operant. ( expected)") assert(quat.isquat(b), "__sub: Wrong argument type for right hand operant. ( expected)") local temp = quat.new() quat.sub(temp, a, b) return temp end function quat_mt.__mul(a, b) assert(quat.isquat(a), "__mul: Wrong argument type for left hand operant. ( expected)") assert(quat.isquat(b) or vec3.isvec3(b), "__mul: Wrong argument type for right hand operant. ( or expected)") if quat.isquat(b) then local temp = quat.new() quat.mul(temp, a, b) return temp elseif vec3.isvec3(b) then local temp = vec3() quat.mul_vec3(temp, a, b) return temp end end function quat_mt.__pow(a, n) assert(quat.isquat(a), "__pow: Wrong argument type for left hand operant. ( expected)") assert(type(b) == "number", "__pow: Wrong argument type for right hand operant. ( expected)") local temp = quat.new() quat.pow(temp, a, n) return temp end if status then ffi.metatype(new, quat_mt) end return setmetatable({}, quat_mt)