local current_folder = (...):gsub('%.[^%.]+$', '') .. "." local vec3 = require(current_folder .. "vec3") local constants = require(current_folder .. "constants") local intersect = {} -- *COMPLETELY* untested! function intersect.ray_aabb(ray, lb, rt) local min = math.min local max = math.max -- ray.direction is unit direction vector of ray local dir = ray.direction:normalize() local dirfrac = vec3(1/dir.x,1/dir.y,1/dir.z) -- lb is the corner of AABB with minimal coordinates - left bottom, rt is maximal corner -- ray.point is origin of ray local t1 = (lb.x - ray.point.x)*dirfrac.x local t2 = (rt.x - ray.point.x)*dirfrac.x local t3 = (lb.y - ray.point.y)*dirfrac.y local t4 = (rt.y - ray.point.y)*dirfrac.y local t5 = (lb.z - ray.point.z)*dirfrac.z local t6 = (rt.z - ray.point.z)*dirfrac.z local tmin = max(max(min(t1, t2), min(t3, t4)), min(t5, t6)) local tmax = min(min(max(t1, t2), max(t3, t4)), max(t5, t6)) -- if tmax < 0, ray (line) is intersecting AABB, but whole AABB is behing us if tmax < 0 then return false end -- if tmin > tmax, ray doesn't intersect AABB if tmin > tmax then return false end return true, tmin end -- ray = { point, direction } -- plane = { point, normal } -- https://www.cs.princeton.edu/courses/archive/fall00/cs426/lectures/raycast/sld017.htm function intersect.ray_plane(ray, plane) -- t = distance of direction -- d = distance from ray point to plane point -- p = point of intersection local d = ray.point:dist(plane.point) local r = ray.direction:dot(plane.normal) if r <= 0 then return false end local t = -(ray.point:dot(plane.normal) + d) / r local p = ray.point + t * ray.direction if p:dot(plane.normal) + d < constants.FLT_EPSILON then return p end return false end -- http://www.lighthouse3d.com/tutorials/maths/ray-triangle-intersection/ function intersect.ray_triangle(ray, triangle) assert(ray.point ~= nil) assert(ray.direction ~= nil) assert(#triangle == 3) local p, d = ray.point, ray.direction local h, s, q = vec3(), vec3(), vec3() local a, f, u, v local e1 = triangle[2] - triangle[1] local e2 = triangle[3] - triangle[1] h = d:cross(e2) a = (e1:dot(h)) if a > -0.00001 and a < 0.00001 then return false end f = 1/a s = p - triangle[1] u = f * (s:dot(h)) if u < 0 or u > 1 then return false end q = s:cross(e1) v = f * (d:dot(q)) if v < 0 or u + v > 1 then return false end -- at this stage we can compute t to find out where -- the intersection point is on the line t = f * (e2:dot(q)) if t > constants.FLT_EPSILON then return p + t * d -- we've got a hit! else return false -- the line intersects, but it's behind the point end end -- Algorithm is ported from the C algorithm of -- Paul Bourke at http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline3d/ -- Archive.org am hero \o/ function intersect.line_line(p1, p2, p3, p4) local epsilon = constants.FLT_EPSILON local resultSegmentPoint1 = vec3(0,0,0) local resultSegmentPoint2 = vec3(0,0,0) local p13 = p1 - p3 local p43 = p4 - p3 local p21 = p2 - p1 if p43:len2() < epsilon then return false end if p21:len2() < epsilon then return false end local d1343 = p13.x * p43.x + p13.y * p43.y + p13.z * p43.z local d4321 = p43.x * p21.x + p43.y * p21.y + p43.z * p21.z local d1321 = p13.x * p21.x + p13.y * p21.y + p13.z * p21.z local d4343 = p43.x * p43.x + p43.y * p43.y + p43.z * p43.z local d2121 = p21.x * p21.x + p21.y * p21.y + p21.z * p21.z local denom = d2121 * d4343 - d4321 * d4321 if math.abs(denom) < epsilon then return false end local numer = d1343 * d4321 - d1321 * d4343 local mua = numer / denom local mub = (d1343 + d4321 * (mua)) / d4343 resultSegmentPoint1.x = p1.x + mua * p21.x resultSegmentPoint1.y = p1.y + mua * p21.y resultSegmentPoint1.z = p1.z + mua * p21.z resultSegmentPoint2.x = p3.x + mub * p43.x resultSegmentPoint2.y = p3.y + mub * p43.y resultSegmentPoint2.z = p3.z + mub * p43.z return true, resultSegmentPoint1, resultSegmentPoint2 end function intersect.segment_segment(p1, p2, p3, p4) local collision, c1, c2 = intersect.line_line(p1, p2, p3, p4) if collision then if ((p1 <= c1 and c1 <= p2) or (p1 >= c1 and c1 >= p2)) and ((p3 <= c2 and c2 <= p4) or (p3 >= c2 and c2 >= p4)) then return true, c1, c2 end end end -- point is a vec3 -- box.position is a vec3 -- box.volume is a vec3 function intersect.point_AABB(point, box) if box.position.x <= point.x and box.position.x + box.volume.x >= point.x and box.position.y <= point.y and box.position.y + box.volume.y >= point.y and box.position.z <= point.z and box.position.z + box.volume.z >= point.z then return true end end function intersect.circle_circle(c1, c2) assert(type(c1.point) == "table", "c1 point must be a table") assert(type(c1.radius) == "number", "c1 radius must be a number") assert(type(c2.point) == "table", "c2 point must be a table") assert(type(c2.radius) == "number", "c2 radius must be a number") return c1.point:dist(c2.point) <= c1.radius + c2.radius end return intersect