--[[ Copyright (c) 2010-2013 Matthias Richter Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. Except as contained in this notice, the name(s) of the above copyright holders shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ]]-- -- Modified to include 3D capabilities by Bill Shillito, April 2014 -- Various bug fixes by Colby Klein, October 2014 --- 3 dimensional vectors. -- @module vec3 -- @alias vector local assert = assert local sqrt, cos, sin, atan2, acos = math.sqrt, math.cos, math.sin, math.atan2, math.acos local vector = {} vector.__index = vector --- Instance a new vec3. -- @param x X value, table containing 3 elements, or another vector. -- @param y Y value -- @param z Z value -- @return vec3 local function new(x,y,z) -- allow construction via vec3(a, b, c), vec3 { a, b, c } or vec3 { x = a, y = b, z = c } if type(x) == "table" then return setmetatable({x=x.x or x[1] or 0, y=x.y or x[2] or 0, z=x.z or x[3] or 0}, vector) end return setmetatable({x = x or 0, y = y or 0, z = z or 0}, vector) end local function isvector(v) return getmetatable(v) == vector or (type(v) == "table" and type(v.x) == "number" and type(v.y) == "number" and type(v.z) == "number") end local zero = new(0,0,0) local unit_x = new(1,0,0) local unit_y = new(0,1,0) local unit_z = new(0,0,1) --- Create a new vector containing the same data. -- @return vec3 function vector:clone() return new(self.x, self.y, self.z) end --- Unpack the vector into its components. -- @return number -- @return number -- @return number function vector:unpack() return self.x, self.y, self.z end function vector:__tostring() return string.format("(%+0.3f,%+0.3f,%+0.3f)", self.x, self.y, self.z) end function vector.__unm(a) return new(-a.x, -a.y, -a.z) end function vector.__add(a,b) if type(a) == "number" then return new(a+b.x, a+b.y, a+b.z) elseif type(b) == "number" then return new(a.x+b, a.y+b, a.z+b) else assert(isvector(a) and isvector(b), "Add: wrong argument types ( expected)") return new(a.x+b.x, a.y+b.y, a.z+b.z) end end function vector.__sub(a,b) if type(a) == "number" then return new(a-b.x, a-b.y, a-b.z) elseif type(b) == "number" then return new(a.x-b, a.y-b, a.z-b) else assert(isvector(a) and isvector(b), "Sub: wrong argument types ( expected)") return new(a.x-b.x, a.y-b.y, a.z-b.z) end end function vector.__mul(a,b) if type(a) == "number" then return new(a*b.x, a*b.y, a*b.z) elseif type(b) == "number" then return new(b*a.x, b*a.y, b*a.z) else assert(isvector(a) and isvector(b), "Mul: wrong argument types ( or expected)") return new(a.x*b.x, a.y*b.y, a.z*b.z) end end function vector.__div(a,b) if type(a) == "number" then return new(a / b.x, a / b.y, a / b.z) elseif type(b) == "number" then return new(a.x / b, a.y / b, a.z / b) else assert(isvector(a) and isvector(b), "Div: wrong argument types ( or expected)") return new(a.x/b.x, a.y/b.y, a.z/b.z) end end function vector.__eq(a,b) return a.x == b.x and a.y == b.y and a.z == b.z end function vector.__lt(a,b) -- This is a lexicographical order. return a.x < b.x or (a.x == b.x and a.y < b.y) or (a.x == b.x and a.y == b.y and a.z < b.z) end function vector.__le(a,b) -- This is a lexicographical order. return a.x <= b.x and a.y <= b.y and a.z <= b.z end --- Dot product. -- @param a first vec3 to dot with -- @param b second vec3 to dot with -- @return number function vector.dot(a,b) assert(isvector(a) and isvector(b), "dot: wrong argument types ( expected)") return a.x*b.x + a.y*b.y + a.z*b.z end function vector:len2() return self.x * self.x + self.y * self.y + self.z * self.z end --- Vector length/magnitude. -- @return number function vector:len() return sqrt(self.x * self.x + self.y * self.y + self.z * self.z) end --- Distance between two points. -- @param a first point -- @param b second point -- @return number function vector.dist(a, b) assert(isvector(a) and isvector(b), "dist: wrong argument types ( expected)") local dx = a.x - b.x local dy = a.y - b.y local dz = a.z - b.z return sqrt(dx * dx + dy * dy + dz * dz) end --- Squared distance between two points. -- @param a first point -- @param b second point -- @return number function vector.dist2(a, b) assert(isvector(a) and isvector(b), "dist: wrong argument types ( expected)") local dx = a.x - b.x local dy = a.y - b.y local dz = a.z - b.z return (dx * dx + dy * dy + dz * dz) end --- Normalize vector. -- Scales the vector in place such that its length is 1. -- @return vec3 function vector:normalize_inplace() local l = self:len() if l > 0 then self.x, self.y, self.z = self.x / l, self.y / l, self.z / l end return self end --- Normalize vector. -- Returns a copy of the vector scaled such that its length is 1. -- @return vec3 function vector:normalize() return self:clone():normalize_inplace() end --- Rotate vector about an axis. -- @param phi Amount to rotate, in radians -- @param axis Axis to rotate by -- @return vec3 function vector:rotate(phi, axis) if axis == nil then return self end local u = axis:normalize() or Vector(0,0,1) -- default is to rotate in the xy plane local c, s = cos(phi), sin(phi) -- Calculate generalized rotation matrix local m1 = new((c + u.x * u.x * (1-c)), (u.x * u.y * (1-c) - u.z * s), (u.x * u.z * (1-c) + u.y * s)) local m2 = new((u.y * u.x * (1-c) + u.z * s), (c + u.y * u.y * (1-c)), (u.y * u.z * (1-c) - u.x * s)) local m3 = new((u.z * u.x * (1-c) - u.y * s), (u.z * u.y * (1-c) + u.x * s), (c + u.z * u.z * (1-c)) ) -- Return rotated vector return new( m1:dot(self), m2:dot(self), m3:dot(self) ) end function vector:rotate_inplace(phi, axis) self = self:rotated(phi, axis) end function vector:perpendicular() return new(-self.y, self.x, 0) end function vector:project_on(v) assert(isvector(v), "invalid argument: cannot project vector on " .. type(v)) -- (self * v) * v / v:len2() local s = (self.x * v.x + self.y * v.y + self.z * v.z) / (v.x * v.x + v.y * v.y + v.z * v.z) return new(s * v.x, s * v.y, s * v.z) end function vector:project_from(v) assert(isvector(v), "invalid argument: cannot project vector on " .. type(v)) -- Does the reverse of projectOn. local s = (v.x * v.x + v.y * v.y + v.z * v.z) / (self.x * v.x + self.y * v.y + self.z * v.z) return new(s * v.x, s * v.y, s * v.z) end function vector:mirror_on(v) assert(isvector(v), "invalid argument: cannot mirror vector on " .. type(v)) local s = 2 * (self.x * v.x + self.y * v.y + self.z * v.z) / (v.x * v.x + v.y * v.y + v.z * v.z) return new(s * v.x - self.x, s * v.y - self.y, s * v.z - self.z) end --- Cross product. -- @param v vec3 to cross with -- @return vec3 function vector:cross(v) assert(isvector(v), "cross: wrong argument types ( expected)") return new(self.y*v.z - self.z*v.y, self.z*v.x - self.x*v.z, self.x*v.y - self.y*v.x) end -- @return vec3 function vector:trim_inplace(maxLen) -- ref.: http://blog.signalsondisplay.com/?p=336 local s = maxLen * maxLen / self:len2() s = (s > 1 and 1) or math.sqrt(s) self.x, self.y, self.z = self.x * s, self.y * s, self.z * s return self end -- @return vec3 function vector:trim(maxLen) return self:clone():trim_inplace(maxLen) end -- @return number function vector:angle_to(other) -- Only makes sense in 2D. if other then return atan2(self.y-other.y, self.x-other.x) end return atan2(self.y, self.x) end -- @return number function vector:angle_between(other) if other then return acos(self:dot(other) / (self:len() * other:len())) end return 0 end -- @return vec3 function vector:orientation_to_direction(orientation) orientation = orientation or new(0, 1, 0) return orientation :rotated(self.z, unit_z) :rotated(self.y, unit_y) :rotated(self.x, unit_x) end -- http://keithmaggio.wordpress.com/2011/02/15/math-magician-lerp-slerp-and-nlerp/ function vector.lerp(a, b, s) return a + s * (b - a) end -- the module return setmetatable( { new = new, lerp = lerp, isvector = isvector, zero = zero, unit_x = unit_x, unit_y = unit_y, unit_z = unit_z }, { __call = function(_, ...) return new(...) end } )