#include "config.h" #include "uhjfilter.h" #include #include #include "AL/al.h" #include "alnumeric.h" #include "opthelpers.h" namespace { /* This is the maximum number of samples processed for each inner loop * iteration. */ #define MAX_UPDATE_SAMPLES 128 constexpr ALfloat Filter1CoeffSqr[4] = { 0.479400865589f, 0.876218493539f, 0.976597589508f, 0.997499255936f }; constexpr ALfloat Filter2CoeffSqr[4] = { 0.161758498368f, 0.733028932341f, 0.945349700329f, 0.990599156685f }; void allpass_process(AllPassState *state, ALfloat *dst, const ALfloat *src, const ALfloat aa, ALsizei todo) { ALfloat z1{state->z[0]}; ALfloat z2{state->z[1]}; auto proc_sample = [aa,&z1,&z2](ALfloat input) noexcept -> ALfloat { ALfloat output = input*aa + z1; z1 = z2; z2 = output*aa - input; return output; }; std::transform(src, src+todo, dst, proc_sample); state->z[0] = z1; state->z[1] = z2; } } // namespace /* NOTE: There seems to be a bit of an inconsistency in how this encoding is * supposed to work. Some references, such as * * http://members.tripod.com/martin_leese/Ambisonic/UHJ_file_format.html * * specify a pre-scaling of sqrt(2) on the W channel input, while other * references, such as * * https://en.wikipedia.org/wiki/Ambisonic_UHJ_format#Encoding.5B1.5D * and * https://wiki.xiph.org/Ambisonics#UHJ_format * * do not. The sqrt(2) scaling is in line with B-Format decoder coefficients * which include such a scaling for the W channel input, however the original * source for this equation is a 1985 paper by Michael Gerzon, which does not * apparently include the scaling. Applying the extra scaling creates a louder * result with a narrower stereo image compared to not scaling, and I don't * know which is the intended result. */ void Uhj2Encoder::encode(FloatBufferLine &LeftOut, FloatBufferLine &RightOut, FloatBufferLine *InSamples, const size_t SamplesToDo) { alignas(16) ALfloat D[MAX_UPDATE_SAMPLES], S[MAX_UPDATE_SAMPLES]; alignas(16) ALfloat temp[MAX_UPDATE_SAMPLES]; ASSUME(SamplesToDo > 0); auto winput = InSamples[0].cbegin(); auto xinput = InSamples[1].cbegin(); auto yinput = InSamples[2].cbegin(); for(size_t base{0};base < SamplesToDo;) { const size_t todo{minz(SamplesToDo - base, MAX_UPDATE_SAMPLES)}; ASSUME(todo > 0); /* D = 0.6554516*Y */ std::transform(yinput, yinput+todo, std::begin(temp), [](const float y) noexcept -> float { return 0.6554516f*y; }); allpass_process(&mFilter1_Y[0], temp, temp, Filter1CoeffSqr[0], todo); allpass_process(&mFilter1_Y[1], temp, temp, Filter1CoeffSqr[1], todo); allpass_process(&mFilter1_Y[2], temp, temp, Filter1CoeffSqr[2], todo); allpass_process(&mFilter1_Y[3], temp, temp, Filter1CoeffSqr[3], todo); /* NOTE: Filter1 requires a 1 sample delay for the final output, so * take the last processed sample from the previous run as the first * output sample. */ D[0] = mLastY; for(size_t i{1};i < todo;i++) D[i] = temp[i-1]; mLastY = temp[todo-1]; /* D += j(-0.3420201*W + 0.5098604*X) */ std::transform(winput, winput+todo, xinput, std::begin(temp), [](const float w, const float x) noexcept -> float { return -0.3420201f*w + 0.5098604f*x; }); allpass_process(&mFilter2_WX[0], temp, temp, Filter2CoeffSqr[0], todo); allpass_process(&mFilter2_WX[1], temp, temp, Filter2CoeffSqr[1], todo); allpass_process(&mFilter2_WX[2], temp, temp, Filter2CoeffSqr[2], todo); allpass_process(&mFilter2_WX[3], temp, temp, Filter2CoeffSqr[3], todo); for(size_t i{0};i < todo;i++) D[i] += temp[i]; /* S = 0.9396926*W + 0.1855740*X */ std::transform(winput, winput+todo, xinput, std::begin(temp), [](const float w, const float x) noexcept -> float { return 0.9396926f*w + 0.1855740f*x; }); allpass_process(&mFilter1_WX[0], temp, temp, Filter1CoeffSqr[0], todo); allpass_process(&mFilter1_WX[1], temp, temp, Filter1CoeffSqr[1], todo); allpass_process(&mFilter1_WX[2], temp, temp, Filter1CoeffSqr[2], todo); allpass_process(&mFilter1_WX[3], temp, temp, Filter1CoeffSqr[3], todo); S[0] = mLastWX; for(size_t i{1};i < todo;i++) S[i] = temp[i-1]; mLastWX = temp[todo-1]; /* Left = (S + D)/2.0 */ ALfloat *RESTRICT left = al::assume_aligned<16>(LeftOut.data()+base); for(size_t i{0};i < todo;i++) left[i] += (S[i] + D[i]) * 0.5f; /* Right = (S - D)/2.0 */ ALfloat *RESTRICT right = al::assume_aligned<16>(RightOut.data()+base); for(size_t i{0};i < todo;i++) right[i] += (S[i] - D[i]) * 0.5f; winput += todo; xinput += todo; yinput += todo; base += todo; } }