#ifndef FILTER_NFC_H #define FILTER_NFC_H struct NfcFilter1 { float base_gain, gain; float b1, a1; float z[1]; }; struct NfcFilter2 { float base_gain, gain; float b1, b2, a1, a2; float z[2]; }; struct NfcFilter3 { float base_gain, gain; float b1, b2, b3, a1, a2, a3; float z[3]; }; typedef struct NfcFilter { struct NfcFilter1 first; struct NfcFilter2 second; struct NfcFilter3 third; } NfcFilter; /* NOTE: * w0 = speed_of_sound / (source_distance * sample_rate); * w1 = speed_of_sound / (control_distance * sample_rate); * * Generally speaking, the control distance should be approximately the average * speaker distance, or based on the reference delay if outputing NFC-HOA. It * must not be negative, 0, or infinite. The source distance should not be too * small relative to the control distance. */ void NfcFilterCreate(NfcFilter *nfc, const float w0, const float w1); void NfcFilterAdjust(NfcFilter *nfc, const float w0); /* Near-field control filter for first-order ambisonic channels (1-3). */ void NfcFilterProcess1(NfcFilter *nfc, float *restrict dst, const float *restrict src, const int count); /* Near-field control filter for second-order ambisonic channels (4-8). */ void NfcFilterProcess2(NfcFilter *nfc, float *restrict dst, const float *restrict src, const int count); /* Near-field control filter for third-order ambisonic channels (9-15). */ void NfcFilterProcess3(NfcFilter *nfc, float *restrict dst, const float *restrict src, const int count); #endif /* FILTER_NFC_H */