/** * OpenAL cross platform audio library * Copyright (C) 2011 by Chris Robinson * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "hrtf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AL/al.h" #include "alcmain.h" #include "alconfig.h" #include "alfstream.h" #include "almalloc.h" #include "alnumeric.h" #include "aloptional.h" #include "alspan.h" #include "filters/splitter.h" #include "logging.h" #include "math_defs.h" #include "opthelpers.h" #include "polyphase_resampler.h" namespace { using namespace std::placeholders; struct HrtfEntry { std::string mDispName; std::string mFilename; }; struct LoadedHrtf { std::string mFilename; std::unique_ptr mEntry; }; /* Data set limits must be the same as or more flexible than those defined in * the makemhr utility. */ #define MIN_IR_SIZE (8) #define MOD_IR_SIZE (2) #define MIN_FD_COUNT (1) #define MAX_FD_COUNT (16) #define MIN_FD_DISTANCE (50) #define MAX_FD_DISTANCE (2500) #define MIN_EV_COUNT (5) #define MAX_EV_COUNT (181) #define MIN_AZ_COUNT (1) #define MAX_AZ_COUNT (255) #define MAX_HRIR_DELAY (HRTF_HISTORY_LENGTH-1) #define HRIR_DELAY_FRACBITS 2 #define HRIR_DELAY_FRACONE (1<>1) static_assert(MAX_HRIR_DELAY*HRIR_DELAY_FRACONE < 256, "MAX_HRIR_DELAY or DELAY_FRAC too large"); constexpr ALchar magicMarker00[8]{'M','i','n','P','H','R','0','0'}; constexpr ALchar magicMarker01[8]{'M','i','n','P','H','R','0','1'}; constexpr ALchar magicMarker02[8]{'M','i','n','P','H','R','0','2'}; /* First value for pass-through coefficients (remaining are 0), used for omni- * directional sounds. */ constexpr ALfloat PassthruCoeff{0.707106781187f/*sqrt(0.5)*/}; std::mutex LoadedHrtfLock; al::vector LoadedHrtfs; std::mutex EnumeratedHrtfLock; al::vector EnumeratedHrtfs; class databuf final : public std::streambuf { int_type underflow() override { return traits_type::eof(); } pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override { if((mode&std::ios_base::out) || !(mode&std::ios_base::in)) return traits_type::eof(); char_type *cur; switch(whence) { case std::ios_base::beg: if(offset < 0 || offset > egptr()-eback()) return traits_type::eof(); cur = eback() + offset; break; case std::ios_base::cur: if((offset >= 0 && offset > egptr()-gptr()) || (offset < 0 && -offset > gptr()-eback())) return traits_type::eof(); cur = gptr() + offset; break; case std::ios_base::end: if(offset > 0 || -offset > egptr()-eback()) return traits_type::eof(); cur = egptr() + offset; break; default: return traits_type::eof(); } setg(eback(), cur, egptr()); return cur - eback(); } pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override { // Simplified version of seekoff if((mode&std::ios_base::out) || !(mode&std::ios_base::in)) return traits_type::eof(); if(pos < 0 || pos > egptr()-eback()) return traits_type::eof(); setg(eback(), eback() + static_cast(pos), egptr()); return pos; } public: databuf(const char_type *start_, const char_type *end_) noexcept { setg(const_cast(start_), const_cast(start_), const_cast(end_)); } }; class idstream final : public std::istream { databuf mStreamBuf; public: idstream(const char *start_, const char *end_) : std::istream{nullptr}, mStreamBuf{start_, end_} { init(&mStreamBuf); } }; struct IdxBlend { ALuint idx; float blend; }; /* Calculate the elevation index given the polar elevation in radians. This * will return an index between 0 and (evcount - 1). */ IdxBlend CalcEvIndex(ALuint evcount, float ev) { ev = (al::MathDefs::Pi()*0.5f + ev) * static_cast(evcount-1) / al::MathDefs::Pi(); ALuint idx{float2uint(ev)}; return IdxBlend{minu(idx, evcount-1), ev-static_cast(idx)}; } /* Calculate the azimuth index given the polar azimuth in radians. This will * return an index between 0 and (azcount - 1). */ IdxBlend CalcAzIndex(ALuint azcount, float az) { az = (al::MathDefs::Tau()+az) * static_cast(azcount) / al::MathDefs::Tau(); ALuint idx{float2uint(az)}; return IdxBlend{idx%azcount, az-static_cast(idx)}; } } // namespace /* Calculates static HRIR coefficients and delays for the given polar elevation * and azimuth in radians. The coefficients are normalized. */ void GetHrtfCoeffs(const HrtfStore *Hrtf, float elevation, float azimuth, float distance, float spread, HrirArray &coeffs, ALuint (&delays)[2]) { const float dirfact{1.0f - (spread / al::MathDefs::Tau())}; const auto *field = Hrtf->field; const auto *field_end = field + Hrtf->fdCount-1; size_t ebase{0}; while(distance < field->distance && field != field_end) { ebase += field->evCount; ++field; } /* Claculate the elevation indinces. */ const auto elev0 = CalcEvIndex(field->evCount, elevation); const size_t elev1_idx{minu(elev0.idx+1, field->evCount-1)}; const size_t ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset}; const size_t ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset}; /* Calculate azimuth indices. */ const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth); const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth); /* Calculate the HRIR indices to blend. */ const size_t idx[4]{ ir0offset + az0.idx, ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount), ir1offset + az1.idx, ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount) }; /* Calculate bilinear blending weights, attenuated according to the * directional panning factor. */ const float blend[4]{ (1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact, (1.0f-elev0.blend) * ( az0.blend) * dirfact, ( elev0.blend) * (1.0f-az1.blend) * dirfact, ( elev0.blend) * ( az1.blend) * dirfact }; /* Calculate the blended HRIR delays. */ float d{Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] + Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]}; delays[0] = fastf2u(d * float{1.0f/HRIR_DELAY_FRACONE}); d = Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] + Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[1]; delays[1] = fastf2u(d * float{1.0f/HRIR_DELAY_FRACONE}); const ALuint irSize{Hrtf->irSize}; ASSUME(irSize >= MIN_IR_SIZE); /* Calculate the blended HRIR coefficients. */ float *coeffout{al::assume_aligned<16>(&coeffs[0][0])}; coeffout[0] = PassthruCoeff * (1.0f-dirfact); coeffout[1] = PassthruCoeff * (1.0f-dirfact); std::fill(coeffout+2, coeffout + HRIR_LENGTH*2, 0.0f); for(ALsizei c{0};c < 4;c++) { const float *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]][0].data())}; const float mult{blend[c]}; auto blend_coeffs = [mult](const ALfloat src, const ALfloat coeff) noexcept -> ALfloat { return src*mult + coeff; }; std::transform(srccoeffs, srccoeffs + irSize*2, coeffout, coeffout, blend_coeffs); } } std::unique_ptr DirectHrtfState::Create(size_t num_chans) { return std::unique_ptr{new (FamCount{num_chans}) DirectHrtfState{num_chans}}; } void BuildBFormatHrtf(const HrtfStore *Hrtf, DirectHrtfState *state, const al::span AmbiPoints, const ALfloat (*AmbiMatrix)[MAX_AMBI_CHANNELS], const ALfloat *AmbiOrderHFGain) { using double2 = std::array; struct ImpulseResponse { alignas(16) std::array hrir; ALuint ldelay, rdelay; }; static const int OrderFromChan[MAX_AMBI_CHANNELS]{ 0, 1,1,1, 2,2,2,2,2, 3,3,3,3,3,3,3, }; /* Set this to true for dual-band HRTF processing. May require better * calculation of the new IR length to deal with the head and tail * generated by the HF scaling. */ static constexpr bool DualBand{true}; ALuint min_delay{HRTF_HISTORY_LENGTH*HRIR_DELAY_FRACONE}; ALuint max_delay{0}; al::vector impres; impres.reserve(AmbiPoints.size()); auto calc_res = [Hrtf,&max_delay,&min_delay](const AngularPoint &pt) -> ImpulseResponse { ImpulseResponse res; auto &field = Hrtf->field[0]; /* Calculate the elevation indices. */ const auto elev0 = CalcEvIndex(field.evCount, pt.Elev.value); const size_t elev1_idx{minu(elev0.idx+1, field.evCount-1)}; const size_t ir0offset{Hrtf->elev[elev0.idx].irOffset}; const size_t ir1offset{Hrtf->elev[elev1_idx].irOffset}; /* Calculate azimuth indices. */ const auto az0 = CalcAzIndex(Hrtf->elev[elev0.idx].azCount, pt.Azim.value); const auto az1 = CalcAzIndex(Hrtf->elev[elev1_idx].azCount, pt.Azim.value); /* Calculate the HRIR indices to blend. */ const size_t idx[4]{ ir0offset + az0.idx, ir0offset + ((az0.idx+1) % Hrtf->elev[elev0.idx].azCount), ir1offset + az1.idx, ir1offset + ((az1.idx+1) % Hrtf->elev[elev1_idx].azCount)}; /* Calculate bilinear blending weights. */ const double blend[4]{ (1.0-elev0.blend) * (1.0-az0.blend), (1.0-elev0.blend) * ( az0.blend), ( elev0.blend) * (1.0-az1.blend), ( elev0.blend) * ( az1.blend)}; /* Calculate the blended HRIR delays (in fixed-point). */ double d{Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] + Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]}; res.ldelay = fastf2u(static_cast(d)); d = Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] + Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3]; res.rdelay = fastf2u(static_cast(d)); /* Calculate the blended HRIR coefficients. */ double *coeffout{al::assume_aligned<16>(&res.hrir[0][0])}; std::fill(coeffout, coeffout + HRIR_LENGTH*2, 0.0); for(ALsizei c{0};c < 4;c++) { const float *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]][0].data())}; const double mult{blend[c]}; auto blend_coeffs = [mult](const float src, const double coeff) noexcept -> double { return src*mult + coeff; }; std::transform(srccoeffs, srccoeffs + HRIR_LENGTH*2, coeffout, coeffout, blend_coeffs); } min_delay = minu(min_delay, minu(res.ldelay, res.rdelay)); max_delay = maxu(max_delay, maxu(res.ldelay, res.rdelay)); return res; }; std::transform(AmbiPoints.begin(), AmbiPoints.end(), std::back_inserter(impres), calc_res); auto hrir_delay_round = [](const ALuint d) noexcept -> ALuint { return (d+HRIR_DELAY_FRACHALF) >> HRIR_DELAY_FRACBITS; }; /* For dual-band processing, add a 16-sample delay to compensate for the HF * scale on the minimum-phase response. */ static constexpr ALuint base_delay{DualBand ? 16 : 0}; const double xover_norm{400.0 / Hrtf->sampleRate}; BandSplitterR splitter{xover_norm}; auto tmpres = al::vector>(state->Coeffs.size()); auto tmpflt = al::vector>(3); for(size_t c{0u};c < AmbiPoints.size();++c) { const al::span hrir{impres[c].hrir}; const ALuint ldelay{hrir_delay_round(impres[c].ldelay-min_delay) + base_delay}; const ALuint rdelay{hrir_delay_round(impres[c].rdelay-min_delay) + base_delay}; if /*constexpr*/(!DualBand) { /* For single-band decoding, apply the HF scale to the response. */ for(size_t i{0u};i < state->Coeffs.size();++i) { const double mult{double{AmbiOrderHFGain[OrderFromChan[i]]} * AmbiMatrix[c][i]}; const ALuint numirs{HRIR_LENGTH - maxu(ldelay, rdelay)}; ALuint lidx{ldelay}, ridx{rdelay}; for(ALuint j{0};j < numirs;++j) { tmpres[i][lidx++][0] += hrir[j][0] * mult; tmpres[i][ridx++][1] += hrir[j][1] * mult; } } continue; } /* For dual-band processing, the HRIR needs to be split into low and * high frequency responses. The band-splitter alone creates frequency- * dependent phase-shifts, which is not ideal. To counteract it, * combine it with a backwards phase-shift. */ /* Load the (left) HRIR backwards, into a temp buffer with padding. */ std::fill(tmpflt[2].begin(), tmpflt[2].end(), 0.0); std::transform(hrir.cbegin(), hrir.cend(), tmpflt[2].rbegin() + HRIR_LENGTH*3, [](const double2 &ir) noexcept -> double { return ir[0]; }); /* Apply the all-pass on the reversed signal and reverse the resulting * sample array. This produces the forward response with a backwards * phase-shift (+n degrees becomes -n degrees). */ splitter.applyAllpass(tmpflt[2].data(), tmpflt[2].size()); std::reverse(tmpflt[2].begin(), tmpflt[2].end()); /* Now apply the band-splitter. This applies the normal phase-shift, * which cancels out with the backwards phase-shift to get the original * phase on the split signal. */ splitter.clear(); splitter.process(tmpflt[0].data(), tmpflt[1].data(), tmpflt[2].data(), tmpflt[2].size()); /* Apply left ear response with delay and HF scale. */ for(size_t i{0u};i < state->Coeffs.size();++i) { const ALdouble mult{AmbiMatrix[c][i]}; const ALdouble hfgain{AmbiOrderHFGain[OrderFromChan[i]]}; ALuint j{HRIR_LENGTH*3 - ldelay}; for(ALuint lidx{0};lidx < HRIR_LENGTH;++lidx,++j) tmpres[i][lidx][0] += (tmpflt[0][j]*hfgain + tmpflt[1][j]) * mult; } /* Now run the same process on the right HRIR. */ std::fill(tmpflt[2].begin(), tmpflt[2].end(), 0.0); std::transform(hrir.cbegin(), hrir.cend(), tmpflt[2].rbegin() + HRIR_LENGTH*3, [](const double2 &ir) noexcept -> double { return ir[1]; }); splitter.applyAllpass(tmpflt[2].data(), tmpflt[2].size()); std::reverse(tmpflt[2].begin(), tmpflt[2].end()); splitter.clear(); splitter.process(tmpflt[0].data(), tmpflt[1].data(), tmpflt[2].data(), tmpflt[2].size()); for(size_t i{0u};i < state->Coeffs.size();++i) { const ALdouble mult{AmbiMatrix[c][i]}; const ALdouble hfgain{AmbiOrderHFGain[OrderFromChan[i]]}; ALuint j{HRIR_LENGTH*3 - rdelay}; for(ALuint ridx{0};ridx < HRIR_LENGTH;++ridx,++j) tmpres[i][ridx][1] += (tmpflt[0][j]*hfgain + tmpflt[1][j]) * mult; } } tmpflt.clear(); impres.clear(); for(size_t i{0u};i < state->Coeffs.size();++i) { auto copy_arr = [](const double2 &in) noexcept -> float2 { return float2{{static_cast(in[0]), static_cast(in[1])}}; }; std::transform(tmpres[i].cbegin(), tmpres[i].cend(), state->Coeffs[i].begin(), copy_arr); } tmpres.clear(); max_delay -= min_delay; ALuint max_length{HRIR_LENGTH}; /* Increase the IR size by double the base delay with dual-band processing * to account for the head and tail from the HF response scale. */ const ALuint irsize{minu(Hrtf->irSize + base_delay*2, max_length)}; max_length = minu(hrir_delay_round(max_delay) + irsize, max_length); /* Round up to the next IR size multiple. */ max_length += MOD_IR_SIZE-1; max_length -= max_length%MOD_IR_SIZE; TRACE("Skipped delay: %.2f, max delay: %.2f, new FIR length: %u\n", min_delay/double{HRIR_DELAY_FRACONE}, max_delay/double{HRIR_DELAY_FRACONE}, max_length); state->IrSize = max_length; } namespace { using ubyte2 = std::array; std::unique_ptr CreateHrtfStore(ALuint rate, ALushort irSize, const ALuint fdCount, const ALubyte *evCount, const ALushort *distance, const ALushort *azCount, const ALushort *irOffset, ALushort irCount, const float2 *coeffs, const ubyte2 *delays, const char *filename) { std::unique_ptr Hrtf; ALuint evTotal{std::accumulate(evCount, evCount+fdCount, 0u)}; size_t total{sizeof(HrtfStore)}; total = RoundUp(total, alignof(HrtfStore::Field)); /* Align for field infos */ total += sizeof(HrtfStore::Field)*fdCount; total = RoundUp(total, alignof(HrtfStore::Elevation)); /* Align for elevation infos */ total += sizeof(Hrtf->elev[0])*evTotal; total = RoundUp(total, 16); /* Align for coefficients using SIMD */ total += sizeof(Hrtf->coeffs[0])*irCount; total += sizeof(Hrtf->delays[0])*irCount; Hrtf.reset(new (al_calloc(16, total)) HrtfStore{}); if(!Hrtf) ERR("Out of memory allocating storage for %s.\n", filename); else { InitRef(Hrtf->mRef, 1u); Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->fdCount = fdCount; /* Set up pointers to storage following the main HRTF struct. */ char *base = reinterpret_cast(Hrtf.get()); uintptr_t offset = sizeof(HrtfStore); offset = RoundUp(offset, alignof(HrtfStore::Field)); /* Align for field infos */ auto field_ = reinterpret_cast(base + offset); offset += sizeof(field_[0])*fdCount; offset = RoundUp(offset, alignof(HrtfStore::Elevation)); /* Align for elevation infos */ auto elev_ = reinterpret_cast(base + offset); offset += sizeof(elev_[0])*evTotal; offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */ auto coeffs_ = reinterpret_cast(base + offset); offset += sizeof(coeffs_[0])*irCount; auto delays_ = reinterpret_cast(base + offset); offset += sizeof(delays_[0])*irCount; assert(offset == total); /* Copy input data to storage. */ for(ALuint i{0};i < fdCount;i++) { field_[i].distance = distance[i] / 1000.0f; field_[i].evCount = evCount[i]; } for(ALuint i{0};i < evTotal;i++) { elev_[i].azCount = azCount[i]; elev_[i].irOffset = irOffset[i]; } for(ALuint i{0};i < irCount;i++) { for(ALuint j{0};j < ALuint{irSize};j++) { coeffs_[i][j][0] = coeffs[i*irSize + j][0]; coeffs_[i][j][1] = coeffs[i*irSize + j][1]; } std::fill(coeffs_[i].begin()+irSize, coeffs_[i].end(), float2{}); } for(ALuint i{0};i < irCount;i++) { delays_[i][0] = delays[i][0]; delays_[i][1] = delays[i][1]; } /* Finally, assign the storage pointers. */ Hrtf->field = field_; Hrtf->elev = elev_; Hrtf->coeffs = coeffs_; Hrtf->delays = delays_; } return Hrtf; } ALubyte GetLE_ALubyte(std::istream &data) { return static_cast(data.get()); } ALshort GetLE_ALshort(std::istream &data) { int ret = data.get(); ret |= data.get() << 8; return static_cast((ret^32768) - 32768); } ALushort GetLE_ALushort(std::istream &data) { int ret = data.get(); ret |= data.get() << 8; return static_cast(ret); } ALint GetLE_ALint24(std::istream &data) { int ret = data.get(); ret |= data.get() << 8; ret |= data.get() << 16; return (ret^8388608) - 8388608; } ALuint GetLE_ALuint(std::istream &data) { int ret = data.get(); ret |= data.get() << 8; ret |= data.get() << 16; ret |= data.get() << 24; return static_cast(ret); } std::unique_ptr LoadHrtf00(std::istream &data, const char *filename) { ALuint rate{GetLE_ALuint(data)}; ALushort irCount{GetLE_ALushort(data)}; ALushort irSize{GetLE_ALushort(data)}; ALubyte evCount{GetLE_ALubyte(data)}; if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } ALboolean failed{AL_FALSE}; if(irSize < MIN_IR_SIZE || irSize > HRIR_LENGTH) { ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_SIZE, HRIR_LENGTH); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return nullptr; auto evOffset = al::vector(evCount); for(auto &val : evOffset) val = GetLE_ALushort(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{1};i < evCount;i++) { if(evOffset[i] <= evOffset[i-1]) { ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i, evOffset[i], evOffset[i-1]); failed = AL_TRUE; } } if(irCount <= evOffset.back()) { ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n", evOffset.size()-1, evOffset.back(), irCount); failed = AL_TRUE; } if(failed) return nullptr; auto azCount = al::vector(evCount); for(size_t i{1};i < evCount;i++) { azCount[i-1] = static_cast(evOffset[i] - evOffset[i-1]); if(azCount[i-1] < MIN_AZ_COUNT || azCount[i-1] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i-1, azCount[i-1], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } azCount.back() = static_cast(irCount - evOffset.back()); if(azCount.back() < MIN_AZ_COUNT || azCount.back() > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n", azCount.size()-1, azCount.back(), MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } if(failed) return nullptr; auto coeffs = al::vector(irSize*irCount); auto delays = al::vector(irCount); for(auto &val : coeffs) val[0] = GetLE_ALshort(data) / 32768.0f; for(auto &val : delays) val[0] = GetLE_ALubyte(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irCount;i++) { if(delays[i][0] > MAX_HRIR_DELAY) { ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } delays[i][0] <<= HRIR_DELAY_FRACBITS; } if(failed) return nullptr; /* Mirror the left ear responses to the right ear. */ for(size_t i{0};i < evCount;i++) { const ALushort evoffset{evOffset[i]}; const ALushort azcount{azCount[i]}; for(size_t j{0};j < azcount;j++) { const size_t lidx{evoffset + j}; const size_t ridx{evoffset + ((azcount-j) % azcount)}; for(size_t k{0};k < irSize;k++) coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; delays[ridx][1] = delays[lidx][0]; } } static const ALushort distance{0}; return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(), irCount, coeffs.data(), delays.data(), filename); } std::unique_ptr LoadHrtf01(std::istream &data, const char *filename) { ALuint rate{GetLE_ALuint(data)}; ALushort irSize{GetLE_ALubyte(data)}; ALubyte evCount{GetLE_ALubyte(data)}; if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } ALboolean failed{AL_FALSE}; if(irSize < MIN_IR_SIZE || irSize > HRIR_LENGTH) { ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_SIZE, HRIR_LENGTH); failed = AL_TRUE; } if(evCount < MIN_EV_COUNT || evCount > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return nullptr; auto azCount = al::vector(evCount); std::generate(azCount.begin(), azCount.end(), std::bind(GetLE_ALubyte, std::ref(data))); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < evCount;++i) { if(azCount[i] < MIN_AZ_COUNT || azCount[i] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i, azCount[i], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(failed) return nullptr; auto evOffset = al::vector(evCount); evOffset[0] = 0; ALushort irCount{azCount[0]}; for(size_t i{1};i < evCount;i++) { evOffset[i] = static_cast(evOffset[i-1] + azCount[i-1]); irCount = static_cast(irCount + azCount[i]); } auto coeffs = al::vector(irSize*irCount); auto delays = al::vector(irCount); for(auto &val : coeffs) val[0] = GetLE_ALshort(data) / 32768.0f; for(auto &val : delays) val[0] = GetLE_ALubyte(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irCount;i++) { if(delays[i][0] > MAX_HRIR_DELAY) { ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } delays[i][0] <<= HRIR_DELAY_FRACBITS; } if(failed) return nullptr; /* Mirror the left ear responses to the right ear. */ for(size_t i{0};i < evCount;i++) { const ALushort evoffset{evOffset[i]}; const ALushort azcount{azCount[i]}; for(size_t j{0};j < azcount;j++) { const size_t lidx{evoffset + j}; const size_t ridx{evoffset + ((azcount-j) % azcount)}; for(size_t k{0};k < irSize;k++) coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; delays[ridx][1] = delays[lidx][0]; } } static const ALushort distance{0}; return CreateHrtfStore(rate, irSize, 1, &evCount, &distance, azCount.data(), evOffset.data(), irCount, coeffs.data(), delays.data(), filename); } std::unique_ptr LoadHrtf02(std::istream &data, const char *filename) { constexpr ALubyte SampleType_S16{0}; constexpr ALubyte SampleType_S24{1}; constexpr ALubyte ChanType_LeftOnly{0}; constexpr ALubyte ChanType_LeftRight{1}; ALuint rate{GetLE_ALuint(data)}; ALubyte sampleType{GetLE_ALubyte(data)}; ALubyte channelType{GetLE_ALubyte(data)}; ALushort irSize{GetLE_ALubyte(data)}; ALubyte fdCount{GetLE_ALubyte(data)}; if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } ALboolean failed{AL_FALSE}; if(sampleType > SampleType_S24) { ERR("Unsupported sample type: %d\n", sampleType); failed = AL_TRUE; } if(channelType > ChanType_LeftRight) { ERR("Unsupported channel type: %d\n", channelType); failed = AL_TRUE; } if(irSize < MIN_IR_SIZE || irSize > HRIR_LENGTH) { ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MIN_IR_SIZE, HRIR_LENGTH); failed = AL_TRUE; } if(fdCount < 1 || fdCount > MAX_FD_COUNT) { ERR("Multiple field-depths not supported: fdCount=%d (%d to %d)\n", fdCount, MIN_FD_COUNT, MAX_FD_COUNT); failed = AL_TRUE; } if(failed) return nullptr; auto distance = al::vector(fdCount); auto evCount = al::vector(fdCount); auto azCount = al::vector{}; for(size_t f{0};f < fdCount;f++) { distance[f] = GetLE_ALushort(data); evCount[f] = GetLE_ALubyte(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } if(distance[f] < MIN_FD_DISTANCE || distance[f] > MAX_FD_DISTANCE) { ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance[f], MIN_FD_DISTANCE, MAX_FD_DISTANCE); failed = AL_TRUE; } if(f > 0 && distance[f] <= distance[f-1]) { ERR("Field distance[%zu] is not after previous (%d > %d)\n", f, distance[f], distance[f-1]); failed = AL_TRUE; } if(evCount[f] < MIN_EV_COUNT || evCount[f] > MAX_EV_COUNT) { ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount[f], MIN_EV_COUNT, MAX_EV_COUNT); failed = AL_TRUE; } if(failed) return nullptr; const size_t ebase{azCount.size()}; azCount.resize(ebase + evCount[f]); std::generate(azCount.begin()+static_cast(ebase), azCount.end(), std::bind(GetLE_ALubyte, std::ref(data))); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t e{0};e < evCount[f];e++) { if(azCount[ebase+e] < MIN_AZ_COUNT || azCount[ebase+e] > MAX_AZ_COUNT) { ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e, azCount[ebase+e], MIN_AZ_COUNT, MAX_AZ_COUNT); failed = AL_TRUE; } } if(failed) return nullptr; } auto evOffset = al::vector(azCount.size()); evOffset[0] = 0; std::partial_sum(azCount.cbegin(), azCount.cend()-1, evOffset.begin()+1); const auto irTotal = static_cast(evOffset.back() + azCount.back()); auto coeffs = al::vector(irSize*irTotal); auto delays = al::vector(irTotal); if(channelType == ChanType_LeftOnly) { if(sampleType == SampleType_S16) { for(auto &val : coeffs) val[0] = GetLE_ALshort(data) / 32768.0f; } else if(sampleType == SampleType_S24) { for(auto &val : coeffs) val[0] = static_cast(GetLE_ALint24(data)) / 8388608.0f; } for(auto &val : delays) val[0] = GetLE_ALubyte(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irTotal;++i) { if(delays[i][0] > MAX_HRIR_DELAY) { ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } delays[i][0] <<= HRIR_DELAY_FRACBITS; } } else if(channelType == ChanType_LeftRight) { if(sampleType == SampleType_S16) { for(auto &val : coeffs) { val[0] = GetLE_ALshort(data) / 32768.0f; val[1] = GetLE_ALshort(data) / 32768.0f; } } else if(sampleType == SampleType_S24) { for(auto &val : coeffs) { val[0] = static_cast(GetLE_ALint24(data)) / 8388608.0f; val[1] = static_cast(GetLE_ALint24(data)) / 8388608.0f; } } for(auto &val : delays) { val[0] = GetLE_ALubyte(data); val[1] = GetLE_ALubyte(data); } if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irTotal;++i) { if(delays[i][0] > MAX_HRIR_DELAY) { ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MAX_HRIR_DELAY); failed = AL_TRUE; } if(delays[i][1] > MAX_HRIR_DELAY) { ERR("Invalid delays[%zu][1]: %d (%d)\n", i, delays[i][1], MAX_HRIR_DELAY); failed = AL_TRUE; } delays[i][0] <<= HRIR_DELAY_FRACBITS; delays[i][1] <<= HRIR_DELAY_FRACBITS; } } if(failed) return nullptr; if(channelType == ChanType_LeftOnly) { /* Mirror the left ear responses to the right ear. */ size_t ebase{0}; for(size_t f{0};f < fdCount;f++) { for(size_t e{0};e < evCount[f];e++) { const ALushort evoffset{evOffset[ebase+e]}; const ALushort azcount{azCount[ebase+e]}; for(size_t a{0};a < azcount;a++) { const size_t lidx{evoffset + a}; const size_t ridx{evoffset + ((azcount-a) % azcount)}; for(size_t k{0};k < irSize;k++) coeffs[ridx*irSize + k][1] = coeffs[lidx*irSize + k][0]; delays[ridx][1] = delays[lidx][0]; } } ebase += evCount[f]; } } if(fdCount > 1) { auto distance_ = al::vector(distance.size()); auto evCount_ = al::vector(evCount.size()); auto azCount_ = al::vector(azCount.size()); auto evOffset_ = al::vector(evOffset.size()); auto coeffs_ = al::vector(coeffs.size()); auto delays_ = al::vector(delays.size()); /* Simple reverse for the per-field elements. */ std::reverse_copy(distance.cbegin(), distance.cend(), distance_.begin()); std::reverse_copy(evCount.cbegin(), evCount.cend(), evCount_.begin()); /* Each field has a group of elevations, which each have an azimuth * count. Reverse the order of the groups, keeping the relative order * of per-group azimuth counts. */ auto azcnt_end = azCount_.end(); auto copy_azs = [&azCount,&azcnt_end](const ptrdiff_t ebase, const ALubyte num_evs) -> ptrdiff_t { auto azcnt_src = azCount.begin()+ebase; azcnt_end = std::copy_backward(azcnt_src, azcnt_src+num_evs, azcnt_end); return ebase + num_evs; }; std::accumulate(evCount.cbegin(), evCount.cend(), ptrdiff_t{0}, copy_azs); assert(azCount_.begin() == azcnt_end); /* Reestablish the IR offset for each elevation index, given the new * ordering of elevations. */ evOffset_[0] = 0; std::partial_sum(azCount_.cbegin(), azCount_.cend()-1, evOffset_.begin()+1); /* Reverse the order of each field's group of IRs. */ auto coeffs_end = coeffs_.end(); auto delays_end = delays_.end(); auto copy_irs = [irSize,&azCount,&coeffs,&delays,&coeffs_end,&delays_end](const ptrdiff_t ebase, const ALubyte num_evs) -> ptrdiff_t { const ALsizei abase{std::accumulate(azCount.cbegin(), azCount.cbegin()+ebase, 0)}; const ALsizei num_azs{std::accumulate(azCount.cbegin()+ebase, azCount.cbegin() + (ebase+num_evs), 0)}; coeffs_end = std::copy_backward(coeffs.cbegin() + abase*irSize, coeffs.cbegin() + (abase+num_azs)*irSize, coeffs_end); delays_end = std::copy_backward(delays.cbegin() + abase, delays.cbegin() + (abase+num_azs), delays_end); return ebase + num_evs; }; std::accumulate(evCount.cbegin(), evCount.cend(), ptrdiff_t{0}, copy_irs); assert(coeffs_.begin() == coeffs_end); assert(delays_.begin() == delays_end); distance = std::move(distance_); evCount = std::move(evCount_); azCount = std::move(azCount_); evOffset = std::move(evOffset_); coeffs = std::move(coeffs_); delays = std::move(delays_); } return CreateHrtfStore(rate, irSize, fdCount, evCount.data(), distance.data(), azCount.data(), evOffset.data(), irTotal, coeffs.data(), delays.data(), filename); } bool checkName(const std::string &name) { auto match_name = [&name](const HrtfEntry &entry) -> bool { return name == entry.mDispName; }; auto &enum_names = EnumeratedHrtfs; return std::find_if(enum_names.cbegin(), enum_names.cend(), match_name) != enum_names.cend(); } void AddFileEntry(const std::string &filename) { /* Check if this file has already been enumerated. */ auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(), [&filename](const HrtfEntry &entry) -> bool { return entry.mFilename == filename; }); if(enum_iter != EnumeratedHrtfs.cend()) { TRACE("Skipping duplicate file entry %s\n", filename.c_str()); return; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ size_t namepos = filename.find_last_of('/')+1; if(!namepos) namepos = filename.find_last_of('\\')+1; size_t extpos{filename.find_last_of('.')}; if(extpos <= namepos) extpos = std::string::npos; const std::string basename{(extpos == std::string::npos) ? filename.substr(namepos) : filename.substr(namepos, extpos-namepos)}; std::string newname{basename}; int count{1}; while(checkName(newname)) { newname = basename; newname += " #"; newname += std::to_string(++count); } EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename}); const HrtfEntry &entry = EnumeratedHrtfs.back(); TRACE("Adding file entry \"%s\"\n", entry.mFilename.c_str()); } /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer * for input instead of opening the given filename. */ void AddBuiltInEntry(const std::string &dispname, ALuint residx) { const std::string filename{'!'+std::to_string(residx)+'_'+dispname}; auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(), [&filename](const HrtfEntry &entry) -> bool { return entry.mFilename == filename; }); if(enum_iter != EnumeratedHrtfs.cend()) { TRACE("Skipping duplicate file entry %s\n", filename.c_str()); return; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ std::string newname{dispname}; int count{1}; while(checkName(newname)) { newname = dispname; newname += " #"; newname += std::to_string(++count); } EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename}); const HrtfEntry &entry = EnumeratedHrtfs.back(); TRACE("Adding built-in entry \"%s\"\n", entry.mFilename.c_str()); } #define IDR_DEFAULT_HRTF_MHR 1 #ifndef ALSOFT_EMBED_HRTF_DATA al::span GetResource(int /*name*/) { return {}; } #else #include "hrtf_default.h" al::span GetResource(int name) { if(name == IDR_DEFAULT_HRTF_MHR) return {reinterpret_cast(hrtf_default), sizeof(hrtf_default)}; return {}; } #endif } // namespace al::vector EnumerateHrtf(const char *devname) { std::lock_guard _{EnumeratedHrtfLock}; EnumeratedHrtfs.clear(); bool usedefaults{true}; if(auto pathopt = ConfigValueStr(devname, nullptr, "hrtf-paths")) { const char *pathlist{pathopt->c_str()}; while(pathlist && *pathlist) { const char *next, *end; while(isspace(*pathlist) || *pathlist == ',') pathlist++; if(*pathlist == '\0') continue; next = strchr(pathlist, ','); if(next) end = next++; else { end = pathlist + strlen(pathlist); usedefaults = false; } while(end != pathlist && isspace(*(end-1))) --end; if(end != pathlist) { const std::string pname{pathlist, end}; for(const auto &fname : SearchDataFiles(".mhr", pname.c_str())) AddFileEntry(fname); } pathlist = next; } } if(usedefaults) { for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf")) AddFileEntry(fname); if(!GetResource(IDR_DEFAULT_HRTF_MHR).empty()) AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR); } al::vector list; list.reserve(EnumeratedHrtfs.size()); for(auto &entry : EnumeratedHrtfs) list.emplace_back(entry.mDispName); if(auto defhrtfopt = ConfigValueStr(devname, nullptr, "default-hrtf")) { auto iter = std::find(list.begin(), list.end(), *defhrtfopt); if(iter == list.end()) WARN("Failed to find default HRTF \"%s\"\n", defhrtfopt->c_str()); else if(iter != list.begin()) std::rotate(list.begin(), iter, iter+1); } return list; } HrtfStore *GetLoadedHrtf(const std::string &name, const char *devname, const ALuint devrate) { std::lock_guard _{EnumeratedHrtfLock}; auto entry_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(), [&name](const HrtfEntry &entry) -> bool { return entry.mDispName == name; } ); if(entry_iter == EnumeratedHrtfs.cend()) return nullptr; const std::string &fname = entry_iter->mFilename; std::lock_guard __{LoadedHrtfLock}; auto hrtf_lt_fname = [](LoadedHrtf &hrtf, const std::string &filename) -> bool { return hrtf.mFilename < filename; }; auto handle = std::lower_bound(LoadedHrtfs.begin(), LoadedHrtfs.end(), fname, hrtf_lt_fname); while(handle != LoadedHrtfs.end() && handle->mFilename == fname) { HrtfStore *hrtf{handle->mEntry.get()}; if(hrtf && hrtf->sampleRate == devrate) { hrtf->IncRef(); return hrtf; } ++handle; } std::unique_ptr stream; ALint residx{}; char ch{}; if(sscanf(fname.c_str(), "!%d%c", &residx, &ch) == 2 && ch == '_') { TRACE("Loading %s...\n", fname.c_str()); al::span res{GetResource(residx)}; if(res.empty()) { ERR("Could not get resource %u, %s\n", residx, name.c_str()); return nullptr; } stream = al::make_unique(res.begin(), res.end()); } else { TRACE("Loading %s...\n", fname.c_str()); auto fstr = al::make_unique(fname.c_str(), std::ios::binary); if(!fstr->is_open()) { ERR("Could not open %s\n", fname.c_str()); return nullptr; } stream = std::move(fstr); } std::unique_ptr hrtf; char magic[sizeof(magicMarker02)]; stream->read(magic, sizeof(magic)); if(stream->gcount() < static_cast(sizeof(magicMarker02))) ERR("%s data is too short (%zu bytes)\n", name.c_str(), stream->gcount()); else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0) { TRACE("Detected data set format v2\n"); hrtf = LoadHrtf02(*stream, name.c_str()); } else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); hrtf = LoadHrtf01(*stream, name.c_str()); } else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); hrtf = LoadHrtf00(*stream, name.c_str()); } else ERR("Invalid header in %s: \"%.8s\"\n", name.c_str(), magic); stream.reset(); if(!hrtf) { ERR("Failed to load %s\n", name.c_str()); return nullptr; } if(hrtf->sampleRate != devrate) { /* Calculate the last elevation's index and get the total IR count. */ const size_t lastEv{std::accumulate(hrtf->field, hrtf->field+hrtf->fdCount, size_t{0}, [](const size_t curval, const HrtfStore::Field &field) noexcept -> size_t { return curval + field.evCount; } ) - 1}; const size_t irCount{size_t{hrtf->elev[lastEv].irOffset} + hrtf->elev[lastEv].azCount}; /* Resample all the IRs. */ std::array,2> inout; PPhaseResampler rs; rs.init(hrtf->sampleRate, devrate); for(size_t i{0};i < irCount;++i) { HrirArray &coeffs = const_cast(hrtf->coeffs[i]); for(size_t j{0};j < 2;++j) { std::transform(coeffs.cbegin(), coeffs.cend(), inout[0].begin(), [j](const float2 &in) noexcept -> double { return in[j]; }); rs.process(HRIR_LENGTH, inout[0].data(), HRIR_LENGTH, inout[1].data()); for(size_t k{0};k < HRIR_LENGTH;++k) coeffs[k][j] = static_cast(inout[1][k]); } } rs = {}; const ALuint srate{hrtf->sampleRate}; for(size_t i{0};i < irCount;++i) { for(ALubyte &delay : const_cast(hrtf->delays[i])) delay = static_cast(minu64(MAX_HRIR_DELAY*HRIR_DELAY_FRACONE, (uint64_t{delay}*devrate + srate/2) / srate)); } /* Scale the IR size for the new sample rate and update the stored * sample rate. */ uint64_t newIrSize{(uint64_t{hrtf->irSize}*devrate + srate-1) / srate}; newIrSize = minu64(HRIR_LENGTH, newIrSize) + (MOD_IR_SIZE-1); hrtf->irSize = static_cast(newIrSize - (newIrSize%MOD_IR_SIZE)); hrtf->sampleRate = devrate; } if(auto hrtfsizeopt = ConfigValueUInt(devname, nullptr, "hrtf-size")) { if(*hrtfsizeopt > 0 && *hrtfsizeopt < hrtf->irSize) { hrtf->irSize = maxu(*hrtfsizeopt, MIN_IR_SIZE); hrtf->irSize -= hrtf->irSize % MOD_IR_SIZE; } } TRACE("Loaded HRTF %s for sample rate %uhz, %u-sample filter\n", name.c_str(), hrtf->sampleRate, hrtf->irSize); handle = LoadedHrtfs.emplace(handle, LoadedHrtf{fname, std::move(hrtf)}); return handle->mEntry.get(); } void HrtfStore::IncRef() { auto ref = IncrementRef(mRef); TRACE("HrtfEntry %p increasing refcount to %u\n", decltype(std::declval()){this}, ref); } void HrtfStore::DecRef() { auto ref = DecrementRef(mRef); TRACE("HrtfEntry %p decreasing refcount to %u\n", decltype(std::declval()){this}, ref); if(ref == 0) { std::lock_guard _{LoadedHrtfLock}; /* Go through and remove all unused HRTFs. */ auto remove_unused = [](LoadedHrtf &hrtf) -> bool { HrtfStore *entry{hrtf.mEntry.get()}; if(entry && ReadRef(entry->mRef) == 0) { TRACE("Unloading unused HRTF %s\n", hrtf.mFilename.data()); hrtf.mEntry = nullptr; return true; } return false; }; auto iter = std::remove_if(LoadedHrtfs.begin(), LoadedHrtfs.end(), remove_unused); LoadedHrtfs.erase(iter, LoadedHrtfs.end()); } }